organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[(2-Ethyl­phen­yl)imino­meth­yl]-6-meth­oxy­phenol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey, bSinop Faculty of Education, Sinop University, TR-57000 Sinop, Turkey, and cDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey
*Correspondence e-mail: yserap@omu.edu.tr

(Received 26 December 2009; accepted 28 December 2009; online 9 January 2010)

The mol­ecule of the title compound, C16H17NO2, adopts the phenol–imine tautomeric form with a strong intra­molecular O—H⋯N hydrogen bond and an E conformation with respect to the azomethine C=N bond. The dihedral angle between the aromatic rings is 21.23 (9)°. The ethyl group is disordered over two orientations with occupancies of 0.598 (6) and 0.402 (6). In the crystal, the mol­ecules are linked into chains along the b axis by C—H⋯π inter­actions.

Related literature

For general background to o-hydr­oxy Schiff bases, see: Stewart & Lingafelter (1959[Stewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.]); Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Maslen & Waters (1975[Maslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev. 17, 137-176.]). For the photochromic and thermochromic characteristics of Schiff base compounds, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.]); Moustakali-Mavridis et al. (1980[Moustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). Tetrahedron, 43, 1345-1360.]); Xu et al. (1994[Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.]). For a related structure, see: Yüce et al. (2004[Yüce, S., Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o718-o719.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO2

  • Mr = 255.31

  • Monoclinic, P 21 /c

  • a = 18.2379 (7) Å

  • b = 5.2044 (2) Å

  • c = 15.0950 (7) Å

  • β = 113.788 (3)°

  • V = 1311.05 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.58 × 0.39 × 0.08 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.961, Tmax = 0.993

  • 18335 measured reflections

  • 3014 independent reflections

  • 2353 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.03

  • 3014 reflections

  • 196 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.98 (2) 1.68 (2) 2.6023 (15) 156 (2)
C14—H14c⋯Cg1i 0.96 2.83 3.6241 (18) 141
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

o-Hydroxy Schiff bases derived from the reaction of o-hydroxyaldehydes with aniline have been examined extensively (Steward & Lingafelter, 1959; Calligaris et al., 1972; Maslen & Waters, 1975). Schiff base compounds display interesting photochromic and thermochromic features and can be classified in terms of these (Cohen et al., 1964; Moustakali-Mavridis et al., 1980; Hadjoudis et al., 1987). Photo- and thermochromism arise via H atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994).

The molecule of the title compound (Fig. 1) exists in the phenol-imine form which is confirmed by C13—O1 and C7—N1 bond distances. These distances agree with the corresponding distances in 1-{4-[(2-hydroxybenzylidene)amino]phenyl}ethanone, a related structure [C—O = 1.3500 (17) and C—N = 1.2772 (16) Å; Yüce et al., 2004].

The title molecule is not planar; the dihedral angle between the two benzene rings is 21.23 (9)°. An intramolecular O1—H1···N1 hydrogen bond (Fig. 1) generates an S(6) ring-motif.

The crystal structure is stabilized by weak C—H···π interactions involving H14C and C8–C13 ring (Fig. 2).

Related literature top

For general background to o-hydroxy Schiff bases, see: Steward & Lingafelter (1959); Calligaris et al. (1972); Maslen & Waters (1975). For the photochromic and thermochromic characteristics of Schiff base compounds, see: Cohen et al. (1964); Moustakali-Mavridis et al. (1980); Hadjoudis et al. (1987); Xu et al. (1994). For a related structure, see: Yüce et al. (2004).

Experimental top

A solution of 3-methoxysalicylaldehyde (0.5 g 3.3 mmol) in ethanol (20 ml) was added to a solution of 2-ethylaniline (0.4 g 3.3 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. Single crystals of the title compound were obtained by slow evaporation of an ethanol solution (yield 72%, m.p. 339-340 K).

Refinement top

The ethyl group is disordered over two orientations with occupancies of 0.598 (6) and 0.402 (6). Atom H1 was located in a difference map and refined freely. The remaining H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C-H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Structure description top

o-Hydroxy Schiff bases derived from the reaction of o-hydroxyaldehydes with aniline have been examined extensively (Steward & Lingafelter, 1959; Calligaris et al., 1972; Maslen & Waters, 1975). Schiff base compounds display interesting photochromic and thermochromic features and can be classified in terms of these (Cohen et al., 1964; Moustakali-Mavridis et al., 1980; Hadjoudis et al., 1987). Photo- and thermochromism arise via H atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994).

The molecule of the title compound (Fig. 1) exists in the phenol-imine form which is confirmed by C13—O1 and C7—N1 bond distances. These distances agree with the corresponding distances in 1-{4-[(2-hydroxybenzylidene)amino]phenyl}ethanone, a related structure [C—O = 1.3500 (17) and C—N = 1.2772 (16) Å; Yüce et al., 2004].

The title molecule is not planar; the dihedral angle between the two benzene rings is 21.23 (9)°. An intramolecular O1—H1···N1 hydrogen bond (Fig. 1) generates an S(6) ring-motif.

The crystal structure is stabilized by weak C—H···π interactions involving H14C and C8–C13 ring (Fig. 2).

For general background to o-hydroxy Schiff bases, see: Steward & Lingafelter (1959); Calligaris et al. (1972); Maslen & Waters (1975). For the photochromic and thermochromic characteristics of Schiff base compounds, see: Cohen et al. (1964); Moustakali-Mavridis et al. (1980); Hadjoudis et al. (1987); Xu et al. (1994). For a related structure, see: Yüce et al. (2004).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a hydrogen bond. Only the major disorder component is shown.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Dashed lines indicate C—H···π interactions.
(E)-2-[(2-Ethylphenyl)iminomethyl]-6-methoxyphenol top
Crystal data top
C16H17NO2F(000) = 544
Mr = 255.31Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2353 reflections
a = 18.2379 (7) Åθ = 1.5–28.0°
b = 5.2044 (2) ŵ = 0.09 mm1
c = 15.0950 (7) ÅT = 150 K
β = 113.788 (3)°Plate, brown
V = 1311.05 (9) Å30.58 × 0.39 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
3014 independent reflections
Radiation source: fine-focus sealed tube2353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 6.67 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 2323
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 66
Tmin = 0.961, Tmax = 0.993l = 1919
18335 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.052P)2 + 0.279P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3014 reflectionsΔρmax = 0.26 e Å3
196 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (3)
Crystal data top
C16H17NO2V = 1311.05 (9) Å3
Mr = 255.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.2379 (7) ŵ = 0.09 mm1
b = 5.2044 (2) ÅT = 150 K
c = 15.0950 (7) Å0.58 × 0.39 × 0.08 mm
β = 113.788 (3)°
Data collection top
Stoe IPDS II
diffractometer
3014 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2353 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.993Rint = 0.072
18335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
3014 reflectionsΔρmin = 0.32 e Å3
196 parameters
Special details top

Experimental. 320 frames, detector distance = 100 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C16A0.0701 (3)0.3212 (10)0.5111 (3)0.0532 (15)0.402 (6)
H16A0.06280.34250.57020.080*0.402 (6)
H16B0.01880.30270.45810.080*0.402 (6)
H16C0.09700.46910.50060.080*0.402 (6)
C15A0.1206 (3)0.0813 (10)0.5183 (4)0.0411 (12)0.402 (6)
H15A0.09440.07270.52740.049*0.402 (6)
H15B0.17340.09530.57050.049*0.402 (6)
C15B0.09657 (17)0.2040 (7)0.4866 (2)0.0380 (9)0.598 (6)
H15C0.11140.38390.49670.046*0.598 (6)
H15D0.03880.19030.46390.046*0.598 (6)
C16B0.13777 (19)0.0531 (6)0.5796 (3)0.0470 (9)0.598 (6)
H16D0.12200.12020.62850.070*0.598 (6)
H16E0.19480.06810.60090.070*0.598 (6)
H16F0.12260.12440.56820.070*0.598 (6)
H10.2630 (14)0.462 (4)0.5862 (17)0.077 (7)*
O10.29046 (6)0.5645 (2)0.64484 (7)0.0387 (3)
N10.23740 (7)0.3745 (3)0.47070 (8)0.0376 (3)
C120.38182 (8)0.9118 (3)0.68144 (9)0.0314 (3)
O20.37858 (6)0.9107 (2)0.77070 (7)0.0386 (3)
C90.38032 (8)0.8881 (3)0.49637 (10)0.0344 (3)
H90.37980.88120.43450.041*
C130.33418 (7)0.7266 (3)0.61589 (9)0.0306 (3)
C80.33213 (7)0.7187 (3)0.52183 (9)0.0315 (3)
C140.42206 (9)1.1110 (3)0.83509 (10)0.0406 (3)
H14A0.41621.09390.89520.061*
H14B0.40151.27470.80660.061*
H14C0.47771.09890.84680.061*
C110.42846 (8)1.0776 (3)0.65443 (10)0.0338 (3)
H110.46021.19930.69820.041*
C70.27988 (8)0.5403 (3)0.45018 (10)0.0346 (3)
H70.27720.54680.38740.042*
C20.20659 (9)0.1179 (3)0.32266 (10)0.0407 (3)
H20.24930.19250.31330.049*
C100.42817 (8)1.0634 (3)0.56190 (10)0.0347 (3)
H100.46051.17320.54470.042*
C30.16088 (10)0.0684 (3)0.25904 (11)0.0474 (4)
H30.17290.11860.20730.057*
C10.18945 (8)0.1950 (3)0.40048 (10)0.0378 (3)
C40.09745 (10)0.1796 (3)0.27231 (11)0.0479 (4)
H40.06660.30530.22980.057*
C60.12496 (10)0.0848 (4)0.41384 (13)0.0594 (5)
C50.08014 (10)0.1034 (4)0.34882 (13)0.0568 (5)
H50.03730.17940.35750.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C16A0.049 (2)0.056 (3)0.061 (3)0.001 (2)0.028 (2)0.013 (2)
C15A0.041 (2)0.041 (3)0.043 (4)0.007 (2)0.019 (2)0.004 (2)
C15B0.0310 (13)0.0355 (19)0.0482 (16)0.0008 (13)0.0168 (12)0.0063 (14)
C16B0.0583 (17)0.0449 (16)0.042 (2)0.0002 (13)0.0248 (15)0.0062 (13)
O10.0388 (5)0.0449 (6)0.0382 (5)0.0100 (5)0.0216 (4)0.0055 (5)
N10.0279 (5)0.0472 (7)0.0369 (6)0.0015 (5)0.0124 (5)0.0066 (5)
C120.0324 (6)0.0346 (7)0.0296 (6)0.0033 (6)0.0151 (5)0.0015 (5)
O20.0447 (5)0.0440 (6)0.0327 (5)0.0101 (5)0.0214 (4)0.0068 (4)
C90.0384 (7)0.0358 (7)0.0318 (6)0.0057 (6)0.0169 (6)0.0043 (5)
C130.0271 (6)0.0332 (7)0.0338 (6)0.0025 (5)0.0146 (5)0.0020 (5)
C80.0290 (6)0.0337 (7)0.0315 (6)0.0053 (5)0.0117 (5)0.0016 (5)
C140.0491 (8)0.0413 (9)0.0362 (7)0.0070 (7)0.0220 (6)0.0083 (6)
C110.0358 (7)0.0316 (7)0.0345 (7)0.0002 (6)0.0148 (6)0.0000 (6)
C70.0307 (6)0.0404 (8)0.0318 (6)0.0055 (6)0.0116 (5)0.0002 (6)
C20.0402 (7)0.0450 (9)0.0350 (7)0.0007 (6)0.0132 (6)0.0004 (6)
C100.0381 (7)0.0329 (7)0.0372 (7)0.0013 (6)0.0193 (6)0.0050 (6)
C30.0531 (9)0.0507 (10)0.0350 (7)0.0020 (8)0.0143 (7)0.0054 (7)
C10.0299 (6)0.0454 (9)0.0340 (7)0.0001 (6)0.0088 (5)0.0047 (6)
C40.0426 (8)0.0488 (9)0.0396 (8)0.0027 (7)0.0035 (6)0.0058 (7)
C60.0407 (8)0.0860 (14)0.0566 (10)0.0213 (9)0.0248 (8)0.0273 (10)
C50.0376 (8)0.0732 (13)0.0584 (10)0.0174 (8)0.0180 (8)0.0171 (9)
Geometric parameters (Å, º) top
C16A—C15A1.529 (7)C9—C101.370 (2)
C16A—H16A0.96C9—C81.4035 (19)
C16A—H16B0.96C9—H90.93
C16A—H16C0.96C13—C81.4058 (17)
C15A—C61.611 (5)C8—C71.4521 (19)
C15A—H15A0.97C14—H14A0.96
C15A—H15B0.97C14—H14B0.96
C15B—C16B1.516 (5)C14—H14C0.96
C15B—C61.523 (3)C11—C101.3966 (18)
C15B—H15C0.97C11—H110.93
C15B—H15D0.97C7—H70.93
C16B—H16D0.96C2—C31.382 (2)
C16B—H16E0.96C2—C11.391 (2)
C16B—H16F0.96C2—H20.93
O1—C131.3490 (16)C10—H100.93
O1—H10.98 (2)C3—C41.378 (2)
N1—C71.2781 (19)C3—H30.93
N1—C11.4193 (18)C1—C61.394 (2)
C12—O21.3722 (15)C4—C51.373 (2)
C12—C111.3834 (19)C4—H40.93
C12—C131.4034 (19)C6—C51.394 (2)
O2—C141.4274 (17)C5—H50.93
C15A—C16A—H16A109.5C9—C8—C7119.54 (12)
C15A—C16A—H16B109.5C13—C8—C7120.87 (12)
H16A—C16A—H16B109.5O2—C14—H14A109.5
C15A—C16A—H16C109.5O2—C14—H14B109.5
H16A—C16A—H16C109.5H14A—C14—H14B109.5
H16B—C16A—H16C109.5O2—C14—H14C109.5
C16A—C15A—C6100.8 (4)H14A—C14—H14C109.5
C16A—C15A—H15A111.6H14B—C14—H14C109.5
C6—C15A—H15A111.6C12—C11—C10120.47 (13)
C16A—C15A—H15B111.6C12—C11—H11119.8
C6—C15A—H15B111.6C10—C11—H11119.8
H15A—C15A—H15B109.4N1—C7—C8122.06 (12)
C16B—C15B—C6105.7 (3)N1—C7—H7119.0
C16B—C15B—H15C110.6C8—C7—H7119.0
C6—C15B—H15C110.6C3—C2—C1120.71 (14)
C16B—C15B—H15D110.6C3—C2—H2119.6
C6—C15B—H15D110.6C1—C2—H2119.6
H15C—C15B—H15D108.7C9—C10—C11120.11 (13)
C15B—C16B—H16D109.5C9—C10—H10119.9
C15B—C16B—H16E109.5C11—C10—H10119.9
H16D—C16B—H16E109.5C4—C3—C2120.00 (14)
C15B—C16B—H16F109.5C4—C3—H3120.0
H16D—C16B—H16F109.5C2—C3—H3120.0
H16E—C16B—H16F109.5C2—C1—C6119.58 (14)
C13—O1—H1101.6 (13)C2—C1—N1122.67 (13)
C7—N1—C1120.97 (12)C6—C1—N1117.68 (13)
O2—C12—C11124.55 (12)C5—C4—C3119.48 (15)
O2—C12—C13115.46 (11)C5—C4—H4120.3
C11—C12—C13119.99 (12)C3—C4—H4120.3
C12—O2—C14115.69 (10)C5—C6—C1118.45 (15)
C10—C9—C8120.50 (12)C5—C6—C15B121.37 (16)
C10—C9—H9119.7C1—C6—C15B119.27 (17)
C8—C9—H9119.7C5—C6—C15A115.8 (2)
O1—C13—C12118.68 (11)C1—C6—C15A121.60 (19)
O1—C13—C8122.03 (12)C4—C5—C6121.78 (16)
C12—C13—C8119.27 (12)C4—C5—H5119.1
C9—C8—C13119.58 (12)C6—C5—H5119.1
C11—C12—O2—C145.35 (19)C3—C2—C1—N1176.31 (14)
C13—C12—O2—C14175.41 (12)C7—N1—C1—C225.3 (2)
O2—C12—C13—O10.49 (18)C7—N1—C1—C6157.73 (16)
C11—C12—C13—O1178.79 (12)C2—C3—C4—C50.2 (3)
O2—C12—C13—C8178.24 (11)C2—C1—C6—C50.9 (3)
C11—C12—C13—C82.48 (19)N1—C1—C6—C5176.19 (17)
C10—C9—C8—C131.1 (2)C2—C1—C6—C15B168.4 (2)
C10—C9—C8—C7177.95 (13)N1—C1—C6—C15B14.5 (3)
O1—C13—C8—C9178.51 (12)C2—C1—C6—C15A156.9 (3)
C12—C13—C8—C92.80 (19)N1—C1—C6—C15A20.1 (4)
O1—C13—C8—C72.45 (19)C16B—C15B—C6—C595.4 (3)
C12—C13—C8—C7176.23 (12)C16B—C15B—C6—C195.6 (3)
O2—C12—C11—C10179.66 (13)C16B—C15B—C6—C15A7.7 (3)
C13—C12—C11—C100.4 (2)C16A—C15A—C6—C5108.3 (3)
C1—N1—C7—C8177.25 (12)C16A—C15A—C6—C195.1 (3)
C9—C8—C7—N1176.91 (13)C16A—C15A—C6—C15B0.4 (3)
C13—C8—C7—N14.1 (2)C3—C4—C5—C60.1 (3)
C8—C9—C10—C111.0 (2)C1—C6—C5—C40.7 (3)
C12—C11—C10—C91.3 (2)C15B—C6—C5—C4168.4 (2)
C1—C2—C3—C40.1 (3)C15A—C6—C5—C4158.1 (3)
C3—C2—C1—C60.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.98 (2)1.68 (2)2.6023 (15)156 (2)
C14—H14c···Cg1i0.962.833.6241 (18)141
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H17NO2
Mr255.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)18.2379 (7), 5.2044 (2), 15.0950 (7)
β (°) 113.788 (3)
V3)1311.05 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.39 × 0.08
Data collection
DiffractometerStoe IPDS II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.961, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
18335, 3014, 2353
Rint0.072
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.03
No. of reflections3014
No. of parameters196
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.98 (2)1.68 (2)2.6023 (15)156 (2)
C14—H14c···Cg1i0.962.833.6241 (18)141
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M. & Maviridis, I. M. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationMaslen, H. S. & Waters, T. N. (1975). Coord. Chem. Rev. 17, 137–176.  CrossRef CAS Web of Science Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, B. & Mavridis, A. (1980). Acta Cryst. B36, 1126–1130.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. M. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842–845.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYüce, S., Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o718–o719.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds