metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N-phenyl­ethane-1,2-di­amine)di­thio­cyanato­nickel(II)

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 30 December 2009; accepted 30 December 2009; online 9 January 2010)

The asymmetric unit of the title mononuclear NiII compound, [Ni(NCS)2(C8H12N2)2], contains two independent half-mol­ecules, the Ni atoms of which lie on crystallographic inversion centres. Each NiII ion is chelated by two N atoms from two N-phenyl­ethane-1,2-diamine ligands and is also coordinated by two N atoms from two thio­cyanate ligands, giving a distorted octa­hedral geometry. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (100) by N—H⋯S inter­actions.

Related literature

For related structures, see: Lever et al. (1983[Lever, A. B. P., Walker, I. M., McCarthy, P. J., Mertes, K. B., Jircitano, A. & Sheldon, R. (1983). Inorg. Chem. 22, 2252-2258.]); Brown & Lingafelter (1963[Brown, B. W. & Lingafelter, E. C. (1963). Acta Cryst. 16, 753-758.]); Sanni et al. (1987[Sanni, S. B., Behm, H., García-Granda, S., Beurskens, P. T. & Patel, V. C. (1987). Acta Cryst. C43, 437-439.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C8H12N2)2]

  • Mr = 447.26

  • Triclinic, [P \overline 1]

  • a = 7.9947 (2) Å

  • b = 9.4708 (3) Å

  • c = 13.8044 (3) Å

  • α = 93.045 (1)°

  • β = 98.258 (1)°

  • γ = 90.934 (1)°

  • V = 1032.62 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.819, Tmax = 0.828

  • 6197 measured reflections

  • 4314 independent reflections

  • 3284 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.080

  • S = 1.03

  • 4314 reflections

  • 253 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N5 2.073 (2)
Ni1—N1 2.094 (2)
Ni1—N2 2.159 (2)
Ni2—N6 2.047 (2)
Ni2—N3 2.104 (2)
Ni2—N4 2.171 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯S1i 0.89 (1) 2.52 (1) 3.393 (2) 168 (3)
N2—H2⋯S2ii 0.90 (1) 2.67 (2) 3.436 (2) 144 (3)
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into novel urease inhibitors, we have synthesized the title compound, a new NiII complex. There are two independent half-molecules in the asymmetric unit. Each Ni atom lies on an inversion centre and is chelated by two N atoms from two N-phenylethane-1,2-diamine ligands, and coordinated by two N atoms from two thiocyanate ligands (Fig. 1). While the three trans angles at each Ni centre are 180° by symmetry, the other angles are close to 90° [81.54 (8)°–98.46 (8)°], indicating a slightly distorted octahedral coordination. The Ni—N bond lengths (Table 1) are typical and are comparable with those observed in other similar nickel(II) complexes (Lever et al., 1983; Brown & Lingafelter, 1963; Sanni et al., 1987).

Related literature top

For related structures, see: Lever et al. (1983); Brown & Lingafelter (1963); Sanni et al. (1987).

Experimental top

N-Phenylethane-1,2-diamine (0.2 mmol, 27.2 mg), ammonium thiocyanate (0.2 mmol, 15.2 mg), and Ni(CH3COO)2.4H2O (0.1 mmol, 24.9 mg) were mixed in a MeOH solution with stirring for 30 min at room temperature. After keeping the filtrate in air for five days, green block-shaped crystals were formed at the bottom of the vessel.

Refinement top

Atoms H2 and H4A were located in a difference Fourier map and refined isotropically, with N-H distances restrained to 0.90 (1) Å. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N).

Structure description top

As part of our investigations into novel urease inhibitors, we have synthesized the title compound, a new NiII complex. There are two independent half-molecules in the asymmetric unit. Each Ni atom lies on an inversion centre and is chelated by two N atoms from two N-phenylethane-1,2-diamine ligands, and coordinated by two N atoms from two thiocyanate ligands (Fig. 1). While the three trans angles at each Ni centre are 180° by symmetry, the other angles are close to 90° [81.54 (8)°–98.46 (8)°], indicating a slightly distorted octahedral coordination. The Ni—N bond lengths (Table 1) are typical and are comparable with those observed in other similar nickel(II) complexes (Lever et al., 1983; Brown & Lingafelter, 1963; Sanni et al., 1987).

For related structures, see: Lever et al. (1983); Brown & Lingafelter (1963); Sanni et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the two independent half-molecules in the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms in the molecule containing Ni1 are at the symmetry position (-x, 2 - y, -z) and those in the other molecule are at (2 -x, 1 - y, 1 -z).
Bis(N-phenylethane-1,2-diamine)dithiocyanatonickel(II) top
Crystal data top
[Ni(NCS)2(C8H12N2)2]Z = 2
Mr = 447.26F(000) = 468
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9947 (2) ÅCell parameters from 1847 reflections
b = 9.4708 (3) Åθ = 2.5–25.0°
c = 13.8044 (3) ŵ = 1.16 mm1
α = 93.045 (1)°T = 298 K
β = 98.258 (1)°Block, green
γ = 90.934 (1)°0.18 × 0.17 × 0.17 mm
V = 1032.62 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4314 independent reflections
Radiation source: fine-focus sealed tube3284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scanθmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.819, Tmax = 0.828k = 128
6197 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.3717P]
where P = (Fo2 + 2Fc2)/3
4314 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(NCS)2(C8H12N2)2]γ = 90.934 (1)°
Mr = 447.26V = 1032.62 (5) Å3
Triclinic, P1Z = 2
a = 7.9947 (2) ÅMo Kα radiation
b = 9.4708 (3) ŵ = 1.16 mm1
c = 13.8044 (3) ÅT = 298 K
α = 93.045 (1)°0.18 × 0.17 × 0.17 mm
β = 98.258 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4314 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3284 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.828Rint = 0.018
6197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
4314 reflectionsΔρmin = 0.26 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00001.00000.00000.03175 (12)
Ni21.00000.50000.50000.03243 (12)
S10.21085 (10)1.40198 (7)0.20456 (5)0.0487 (2)
S21.28479 (10)0.83224 (9)0.32626 (6)0.0600 (2)
N10.2337 (3)0.9430 (2)0.04011 (16)0.0424 (5)
H1A0.21880.90220.10120.051*
H1B0.30091.02040.03920.051*
N20.0504 (3)0.8295 (2)0.09707 (15)0.0348 (5)
N31.2463 (3)0.4484 (2)0.56125 (16)0.0444 (6)
H3A1.31390.52630.56820.053*
H3B1.24480.41470.62090.053*
N41.0325 (3)0.3174 (2)0.40317 (16)0.0372 (5)
N50.1256 (3)1.1389 (2)0.10846 (17)0.0460 (6)
N61.1013 (3)0.6271 (2)0.40688 (16)0.0435 (6)
C10.3124 (3)0.8433 (3)0.0301 (2)0.0452 (7)
H1C0.36640.89470.08930.054*
H1D0.39790.79020.00170.054*
C20.1773 (3)0.7435 (3)0.0544 (2)0.0411 (6)
H2A0.12470.69040.00440.049*
H2B0.22650.67720.10100.049*
C30.0938 (3)0.7571 (2)0.12332 (18)0.0345 (6)
C40.1649 (3)0.6357 (3)0.0722 (2)0.0419 (6)
H40.11590.59530.02050.050*
C50.3091 (4)0.5748 (3)0.0985 (2)0.0514 (8)
H50.35630.49330.06400.062*
C60.3842 (4)0.6325 (3)0.1746 (2)0.0541 (8)
H60.48110.59060.19160.065*
C70.3129 (4)0.7538 (3)0.2254 (2)0.0498 (7)
H70.36270.79410.27680.060*
C80.1695 (3)0.8152 (3)0.2006 (2)0.0427 (6)
H80.12240.89630.23560.051*
C91.3121 (3)0.3404 (3)0.4961 (2)0.0501 (7)
H9A1.40420.29120.53250.060*
H9B1.35460.38510.44260.060*
C101.1697 (3)0.2371 (3)0.4563 (2)0.0486 (7)
H10A1.20890.16570.41240.058*
H10B1.12930.19020.50960.058*
C110.8788 (3)0.2437 (3)0.36351 (19)0.0369 (6)
C120.8105 (4)0.1359 (3)0.4109 (2)0.0448 (7)
H120.87160.10110.46670.054*
C130.6509 (4)0.0801 (3)0.3749 (2)0.0532 (8)
H130.60590.00800.40710.064*
C140.5582 (4)0.1295 (3)0.2925 (2)0.0551 (8)
H140.45050.09230.26970.066*
C150.6271 (4)0.2353 (3)0.2438 (2)0.0492 (7)
H150.56630.26860.18740.059*
C160.7864 (3)0.2914 (3)0.2791 (2)0.0428 (6)
H160.83210.36210.24590.051*
C170.1622 (3)1.2472 (3)0.14957 (18)0.0353 (6)
C181.1772 (3)0.7109 (3)0.37193 (18)0.0372 (6)
H20.104 (4)0.874 (3)0.1524 (14)0.080*
H4A1.076 (4)0.353 (3)0.3537 (17)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0354 (3)0.0256 (2)0.0348 (3)0.00085 (18)0.00618 (19)0.00362 (18)
Ni20.0350 (3)0.0293 (2)0.0333 (3)0.00465 (19)0.00483 (19)0.00667 (19)
S10.0621 (5)0.0367 (4)0.0477 (4)0.0126 (3)0.0130 (4)0.0036 (3)
S20.0544 (5)0.0756 (6)0.0502 (5)0.0305 (4)0.0059 (4)0.0199 (4)
N10.0442 (13)0.0376 (12)0.0484 (14)0.0029 (10)0.0135 (11)0.0114 (10)
N20.0373 (12)0.0311 (11)0.0371 (13)0.0011 (9)0.0079 (10)0.0054 (9)
N30.0426 (13)0.0445 (13)0.0439 (14)0.0035 (10)0.0003 (10)0.0028 (11)
N40.0372 (12)0.0370 (12)0.0374 (13)0.0042 (10)0.0050 (10)0.0053 (10)
N50.0558 (15)0.0365 (13)0.0436 (14)0.0056 (11)0.0019 (11)0.0002 (11)
N60.0518 (15)0.0391 (13)0.0415 (13)0.0066 (11)0.0126 (11)0.0075 (10)
C10.0382 (16)0.0445 (16)0.0552 (18)0.0092 (12)0.0096 (13)0.0145 (13)
C20.0434 (16)0.0325 (14)0.0494 (17)0.0092 (12)0.0090 (13)0.0120 (12)
C30.0353 (14)0.0312 (13)0.0375 (14)0.0001 (11)0.0026 (11)0.0132 (11)
C40.0494 (17)0.0345 (14)0.0419 (16)0.0006 (12)0.0049 (13)0.0080 (12)
C50.0481 (18)0.0373 (16)0.067 (2)0.0073 (13)0.0003 (15)0.0110 (14)
C60.0368 (16)0.0563 (19)0.071 (2)0.0027 (14)0.0066 (15)0.0288 (17)
C70.0505 (18)0.0519 (18)0.0511 (18)0.0062 (14)0.0161 (14)0.0153 (14)
C80.0485 (17)0.0408 (15)0.0411 (16)0.0003 (12)0.0124 (13)0.0089 (12)
C90.0384 (16)0.0549 (18)0.0569 (19)0.0059 (13)0.0047 (14)0.0046 (15)
C100.0473 (17)0.0423 (16)0.0556 (19)0.0067 (13)0.0061 (14)0.0004 (14)
C110.0413 (15)0.0308 (13)0.0386 (15)0.0011 (11)0.0084 (12)0.0030 (11)
C120.0545 (18)0.0361 (15)0.0440 (16)0.0061 (13)0.0080 (13)0.0040 (12)
C130.061 (2)0.0409 (16)0.059 (2)0.0167 (14)0.0143 (16)0.0009 (14)
C140.0462 (18)0.0518 (18)0.065 (2)0.0127 (14)0.0053 (15)0.0053 (16)
C150.0478 (18)0.0529 (18)0.0453 (17)0.0017 (14)0.0027 (13)0.0008 (14)
C160.0440 (16)0.0426 (15)0.0422 (16)0.0039 (12)0.0070 (13)0.0059 (12)
C170.0330 (14)0.0420 (15)0.0318 (14)0.0013 (11)0.0054 (11)0.0091 (12)
C180.0376 (15)0.0402 (15)0.0335 (14)0.0013 (12)0.0048 (11)0.0014 (11)
Geometric parameters (Å, º) top
Ni1—N52.073 (2)C1—H1D0.97
Ni1—N5i2.073 (2)C2—H2A0.97
Ni1—N1i2.094 (2)C2—H2B0.97
Ni1—N12.094 (2)C3—C41.386 (3)
Ni1—N2i2.159 (2)C3—C81.393 (4)
Ni1—N22.159 (2)C4—C51.384 (4)
Ni2—N6ii2.047 (2)C4—H40.93
Ni2—N62.047 (2)C5—C61.376 (4)
Ni2—N3ii2.104 (2)C5—H50.93
Ni2—N32.104 (2)C6—C71.384 (4)
Ni2—N4ii2.171 (2)C6—H60.93
Ni2—N42.171 (2)C7—C81.372 (4)
S1—C171.629 (3)C7—H70.93
S2—C181.630 (3)C8—H80.93
N1—C11.473 (3)C9—C101.511 (4)
N1—H1A0.90C9—H9A0.97
N1—H1B0.90C9—H9B0.97
N2—C31.432 (3)C10—H10A0.97
N2—C21.479 (3)C10—H10B0.97
N2—H20.898 (10)C11—C121.387 (3)
N3—C91.479 (3)C11—C161.388 (4)
N3—H3A0.90C12—C131.386 (4)
N3—H3B0.90C12—H120.93
N4—C111.426 (3)C13—C141.374 (4)
N4—C101.475 (3)C13—H130.93
N4—H4A0.889 (10)C14—C151.386 (4)
N5—C171.158 (3)C14—H140.93
N6—C181.158 (3)C15—C161.383 (4)
C1—C21.508 (3)C15—H150.93
C1—H1C0.97C16—H160.93
N5—Ni1—N5i180N1—C1—H1D109.9
N5—Ni1—N1i90.87 (9)C2—C1—H1D109.9
N5i—Ni1—N1i89.13 (9)H1C—C1—H1D108.3
N5—Ni1—N189.13 (9)N2—C2—C1107.7 (2)
N5i—Ni1—N190.87 (9)N2—C2—H2A110.2
N1i—Ni1—N1180C1—C2—H2A110.2
N5—Ni1—N2i90.77 (8)N2—C2—H2B110.2
N5i—Ni1—N2i89.23 (8)C1—C2—H2B110.2
N1i—Ni1—N2i82.40 (8)H2A—C2—H2B108.5
N1—Ni1—N2i97.60 (8)C4—C3—C8119.0 (2)
N5—Ni1—N289.23 (8)C4—C3—N2122.6 (2)
N5i—Ni1—N290.77 (8)C8—C3—N2118.3 (2)
N1i—Ni1—N297.60 (8)C5—C4—C3119.6 (3)
N1—Ni1—N282.40 (8)C5—C4—H4120.2
N2i—Ni1—N2180C3—C4—H4120.2
N6ii—Ni2—N6180C6—C5—C4121.3 (3)
N6ii—Ni2—N3ii89.13 (9)C6—C5—H5119.3
N6—Ni2—N3ii90.87 (9)C4—C5—H5119.3
N6ii—Ni2—N390.87 (9)C5—C6—C7118.8 (3)
N6—Ni2—N389.13 (9)C5—C6—H6120.6
N3ii—Ni2—N3180C7—C6—H6120.6
N6ii—Ni2—N4ii89.54 (8)C8—C7—C6120.6 (3)
N6—Ni2—N4ii90.46 (8)C8—C7—H7119.7
N3ii—Ni2—N4ii81.54 (8)C6—C7—H7119.7
N3—Ni2—N4ii98.46 (8)C7—C8—C3120.6 (3)
N6ii—Ni2—N490.46 (8)C7—C8—H8119.7
N6—Ni2—N489.54 (8)C3—C8—H8119.7
N3ii—Ni2—N498.46 (8)N3—C9—C10108.3 (2)
N3—Ni2—N481.54 (8)N3—C9—H9A110.0
N4ii—Ni2—N4180C10—C9—H9A110.0
C1—N1—Ni1108.38 (16)N3—C9—H9B110.0
C1—N1—H1A110.0C10—C9—H9B110.0
Ni1—N1—H1A110.0H9A—C9—H9B108.4
C1—N1—H1B110.0N4—C10—C9107.8 (2)
Ni1—N1—H1B110.0N4—C10—H10A110.1
H1A—N1—H1B108.4C9—C10—H10A110.1
C3—N2—C2117.70 (19)N4—C10—H10B110.1
C3—N2—Ni1116.59 (15)C9—C10—H10B110.1
C2—N2—Ni1104.74 (15)H10A—C10—H10B108.5
C3—N2—H2107 (2)C12—C11—C16118.8 (2)
C2—N2—H2107 (2)C12—C11—N4122.6 (2)
Ni1—N2—H2103 (2)C16—C11—N4118.2 (2)
C9—N3—Ni2109.24 (16)C13—C12—C11119.9 (3)
C9—N3—H3A109.8C13—C12—H12120.1
Ni2—N3—H3A109.8C11—C12—H12120.1
C9—N3—H3B109.8C14—C13—C12121.2 (3)
Ni2—N3—H3B109.8C14—C13—H13119.4
H3A—N3—H3B108.3C12—C13—H13119.4
C11—N4—C10118.3 (2)C13—C14—C15119.2 (3)
C11—N4—Ni2114.31 (16)C13—C14—H14120.4
C10—N4—Ni2105.40 (16)C15—C14—H14120.4
C11—N4—H4A108 (2)C16—C15—C14120.0 (3)
C10—N4—H4A105 (2)C16—C15—H15120.0
Ni2—N4—H4A104 (2)C14—C15—H15120.0
C17—N5—Ni1156.7 (2)C15—C16—C11120.9 (3)
C18—N6—Ni2165.9 (2)C15—C16—H16119.6
N1—C1—C2108.8 (2)C11—C16—H16119.6
N1—C1—H1C109.9N5—C17—S1178.3 (3)
C2—C1—H1C109.9N6—C18—S2178.0 (2)
Symmetry codes: (i) x, y+2, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S1iii0.89 (1)2.52 (1)3.393 (2)168 (3)
N2—H2···S2iv0.90 (1)2.67 (2)3.436 (2)144 (3)
Symmetry codes: (iii) x+1, y1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C8H12N2)2]
Mr447.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9947 (2), 9.4708 (3), 13.8044 (3)
α, β, γ (°)93.045 (1), 98.258 (1), 90.934 (1)
V3)1032.62 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.819, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
6197, 4314, 3284
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.080, 1.03
No. of reflections4314
No. of parameters253
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N52.073 (2)Ni2—N62.047 (2)
Ni1—N12.094 (2)Ni2—N32.104 (2)
Ni1—N22.159 (2)Ni2—N42.171 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S1i0.89 (1)2.52 (1)3.393 (2)168 (3)
N2—H2···S2ii0.90 (1)2.67 (2)3.436 (2)144 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 30771696), the Natural Science Foundation of Zhejiang Province (grant No. Y407318) and the Science and Technology Plan of Huzhou (grant No. 2009GG06).

References

First citationBrown, B. W. & Lingafelter, E. C. (1963). Acta Cryst. 16, 753–758.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLever, A. B. P., Walker, I. M., McCarthy, P. J., Mertes, K. B., Jircitano, A. & Sheldon, R. (1983). Inorg. Chem. 22, 2252–2258.  CSD CrossRef CAS Web of Science Google Scholar
First citationSanni, S. B., Behm, H., García-Granda, S., Beurskens, P. T. & Patel, V. C. (1987). Acta Cryst. C43, 437–439.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds