organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­pyridinium 4-nitro­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 January 2010; accepted 6 January 2010; online 13 January 2010)

In the title salt, C6H9N2+·C7H4NO4, the nitro group of the 4-nitro­benzoate anion is twisted by 7.66 (10)° from the attached ring. In the crystal structure, the 2-amino-4-methyl­pyridinium cations and 4-nitro­benzoate anions are linked via a pair of N—H⋯O hydrogen bonds to form a ribbon-like structure along the c axis. The ribbons are crosslinked into a three-dimensional framework by C—H⋯O hydrogen bonds.

Related literature

For substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H4NO4

  • Mr = 275.26

  • Monoclinic, P c

  • a = 10.5267 (2) Å

  • b = 5.0187 (1) Å

  • c = 12.2436 (3) Å

  • β = 92.194 (1)°

  • V = 646.36 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.49 × 0.28 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.983

  • 10644 measured reflections

  • 2841 independent reflections

  • 2390 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.124

  • S = 1.03

  • 2841 reflections

  • 222 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.93 (3) 2.55 (3) 3.254 (2) 134 (3)
N2—H1N2⋯O2i 0.93 (3) 1.78 (3) 2.688 (2) 167 (3)
N3—H1N3⋯O2ii 0.85 (4) 2.04 (4) 2.875 (2) 170 (4)
N3—H2N3⋯O1i 0.94 (3) 1.84 (3) 2.778 (2) 173 (3)
C3—H3A⋯O4iii 0.97 (2) 2.53 (2) 3.160 (2) 123 (2)
C6—H6A⋯O1ii 1.00 (2) 2.46 (2) 3.116 (2) 123 (3)
C7—H7A⋯O1ii 1.00 (3) 2.45 (3) 3.102 (2) 122 (2)
C9—H9A⋯O3iv 0.96 (3) 2.33 (3) 3.276 (3) 168 (3)
C13—H13C⋯O4v 0.96 2.55 3.335 (2) 139
Symmetry codes: (i) x, y-1, z+1; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) x-1, y+1, z+1; (v) [x-1, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound (Fig 1), contains a protonated 2-amino-4-methylpyridinium cation and a 4-nitrobenzoate anion. The 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.027 (1) Å for atom N3. The protonated N2 atom has lead to a slight increase in the C8—N2—C12 angle to 121.65 (14)°. In the 4-nitrobenzoate anion, the nitro group is twisted slightly from the ring with the dihedral angle between O3/O4/N1/C5 and C2-C7 planes being 7.66 (10)°. The bond lengths and angles are normal (Allen et al. 1987).

In the crystal packing (Fig. 2), the protonated N2 atom and 2-amino group (N3) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds leading to the formation of a R22(8) ring (Bernstein et al. 1995). Furthermore, the crystal structure is stabilized by C—H···O hydrogen bonds to form a three-dimensional network.

Related literature top

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (27 mg, Aldrich) and 4-nitrobenzoic acid (42 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

The methyl H atoms were positioned geometrically [C–H = 0.96Å] and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group. The remaining H atoms were located in a difference map and refined freely [N–H = 0.85 (4)–0.94 (3) Å and C–H = 0.95 (3)–1.00 (3) Å]. In the absence of significant anomalous scattering effects, 2841 Friedel pairs were merged.

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound (Fig 1), contains a protonated 2-amino-4-methylpyridinium cation and a 4-nitrobenzoate anion. The 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.027 (1) Å for atom N3. The protonated N2 atom has lead to a slight increase in the C8—N2—C12 angle to 121.65 (14)°. In the 4-nitrobenzoate anion, the nitro group is twisted slightly from the ring with the dihedral angle between O3/O4/N1/C5 and C2-C7 planes being 7.66 (10)°. The bond lengths and angles are normal (Allen et al. 1987).

In the crystal packing (Fig. 2), the protonated N2 atom and 2-amino group (N3) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of N—H···O hydrogen bonds leading to the formation of a R22(8) ring (Bernstein et al. 1995). Furthermore, the crystal structure is stabilized by C—H···O hydrogen bonds to form a three-dimensional network.

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) network.
2-Amino-4-methylpyridinium 4-nitrobenzoate top
Crystal data top
C6H9N2+·C7H4NO4F(000) = 288
Mr = 275.26Dx = 1.414 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 3965 reflections
a = 10.5267 (2) Åθ = 3.3–34.8°
b = 5.0187 (1) ŵ = 0.11 mm1
c = 12.2436 (3) ÅT = 100 K
β = 92.194 (1)°Block, colourless
V = 646.36 (2) Å30.49 × 0.28 × 0.16 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2841 independent reflections
Radiation source: fine-focus sealed tube2390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 35.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.949, Tmax = 0.983k = 88
10644 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0808P)2]
where P = (Fo2 + 2Fc2)/3
2841 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C6H9N2+·C7H4NO4V = 646.36 (2) Å3
Mr = 275.26Z = 2
Monoclinic, PcMo Kα radiation
a = 10.5267 (2) ŵ = 0.11 mm1
b = 5.0187 (1) ÅT = 100 K
c = 12.2436 (3) Å0.49 × 0.28 × 0.16 mm
β = 92.194 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2841 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2390 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.983Rint = 0.029
10644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
2841 reflectionsΔρmin = 0.30 e Å3
222 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80158 (13)0.6741 (3)0.02376 (11)0.0242 (3)
O20.71718 (12)0.7465 (3)0.13779 (10)0.0199 (2)
O31.22450 (16)0.2278 (4)0.19930 (13)0.0424 (5)
O41.13745 (12)0.1978 (3)0.35531 (10)0.0223 (3)
N11.14461 (14)0.1369 (3)0.25872 (13)0.0198 (3)
C10.79450 (13)0.6328 (3)0.07603 (12)0.0153 (3)
C20.88627 (14)0.4321 (3)0.12679 (12)0.0148 (3)
C30.96760 (16)0.2969 (4)0.05869 (14)0.0207 (3)
C41.05331 (17)0.1098 (4)0.10127 (14)0.0222 (3)
C51.05432 (15)0.0620 (3)0.21297 (13)0.0171 (3)
C60.97482 (15)0.1920 (3)0.28289 (13)0.0162 (3)
C70.88970 (14)0.3788 (4)0.23830 (13)0.0160 (3)
N20.57997 (13)0.1076 (3)1.02192 (11)0.0178 (3)
N30.67843 (14)0.0756 (3)0.85722 (12)0.0210 (3)
C80.49010 (17)0.2097 (4)1.08697 (15)0.0214 (3)
C90.40877 (17)0.4041 (4)1.05116 (16)0.0240 (3)
C100.41950 (16)0.5031 (3)0.94309 (15)0.0207 (3)
C110.51011 (15)0.3970 (3)0.87848 (14)0.0193 (3)
C120.59201 (15)0.1925 (3)0.91783 (14)0.0169 (3)
C130.33051 (18)0.7156 (4)0.90181 (19)0.0259 (4)
H13A0.35740.77910.83240.039*
H13B0.33080.86050.95300.039*
H13C0.24620.64390.89340.039*
H3A0.969 (2)0.351 (5)0.017 (2)0.023 (6)*
H4A1.110 (2)0.010 (5)0.055 (2)0.020 (6)*
H6A0.977 (2)0.176 (5)0.364 (2)0.025 (6)*
H7A0.833 (2)0.476 (6)0.289 (2)0.028 (7)*
H8A0.479 (3)0.152 (6)1.160 (3)0.045 (9)*
H9A0.347 (3)0.490 (6)1.095 (2)0.036 (7)*
H11A0.519 (3)0.464 (6)0.804 (2)0.029 (6)*
H1N20.631 (3)0.026 (7)1.052 (3)0.043 (8)*
H1N30.690 (3)0.148 (8)0.796 (3)0.054 (10)*
H2N30.726 (3)0.058 (7)0.894 (3)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0315 (7)0.0287 (7)0.0127 (5)0.0121 (5)0.0045 (5)0.0033 (5)
O20.0231 (5)0.0239 (6)0.0131 (5)0.0076 (5)0.0048 (4)0.0012 (4)
O30.0476 (10)0.0597 (11)0.0206 (7)0.0367 (9)0.0094 (7)0.0023 (7)
O40.0258 (6)0.0253 (7)0.0161 (6)0.0035 (5)0.0024 (5)0.0043 (5)
N10.0226 (6)0.0214 (7)0.0153 (6)0.0055 (5)0.0007 (5)0.0001 (5)
C10.0173 (6)0.0164 (7)0.0122 (7)0.0004 (5)0.0014 (5)0.0015 (5)
C20.0175 (6)0.0162 (7)0.0109 (6)0.0009 (5)0.0021 (5)0.0010 (5)
C30.0248 (8)0.0263 (9)0.0110 (7)0.0063 (6)0.0034 (6)0.0006 (6)
C40.0254 (8)0.0276 (9)0.0139 (7)0.0094 (7)0.0054 (6)0.0019 (6)
C50.0172 (6)0.0198 (8)0.0143 (7)0.0027 (5)0.0009 (5)0.0005 (6)
C60.0177 (6)0.0189 (8)0.0121 (7)0.0017 (5)0.0023 (5)0.0017 (5)
C70.0175 (6)0.0191 (8)0.0116 (6)0.0032 (5)0.0028 (5)0.0006 (5)
N20.0195 (6)0.0195 (7)0.0145 (6)0.0048 (5)0.0031 (5)0.0001 (5)
N30.0241 (7)0.0228 (7)0.0165 (6)0.0065 (5)0.0062 (5)0.0045 (5)
C80.0245 (7)0.0245 (8)0.0155 (7)0.0047 (6)0.0045 (6)0.0026 (6)
C90.0229 (7)0.0255 (9)0.0238 (8)0.0068 (6)0.0050 (6)0.0045 (6)
C100.0194 (6)0.0161 (7)0.0263 (8)0.0015 (5)0.0019 (6)0.0017 (6)
C110.0222 (7)0.0160 (7)0.0195 (7)0.0018 (5)0.0006 (6)0.0019 (5)
C120.0182 (6)0.0167 (7)0.0159 (7)0.0009 (5)0.0016 (5)0.0010 (6)
C130.0237 (8)0.0199 (8)0.0336 (10)0.0050 (6)0.0043 (7)0.0012 (7)
Geometric parameters (Å, º) top
O1—C11.244 (2)N2—C81.360 (2)
O2—C11.2675 (19)N2—H1N20.93 (3)
O3—N11.221 (2)N3—C121.332 (2)
O4—N11.227 (2)N3—H1N30.85 (4)
N1—C51.474 (2)N3—H2N30.94 (3)
C1—C21.513 (2)C8—C91.359 (3)
C2—C71.390 (2)C8—H8A0.95 (3)
C2—C31.394 (2)C9—C101.422 (3)
C3—C41.390 (3)C9—H9A0.96 (3)
C3—H3A0.96 (3)C10—C111.370 (2)
C4—C51.388 (2)C10—C131.495 (3)
C4—H4A0.98 (2)C11—C121.413 (2)
C5—C61.383 (2)C11—H11A0.98 (3)
C6—C71.394 (2)C13—H13A0.96
C6—H6A0.99 (3)C13—H13B0.96
C7—H7A1.00 (3)C13—H13C0.96
N2—C121.354 (2)
O3—N1—O4123.39 (16)C8—N2—H1N2116.1 (19)
O3—N1—C5118.38 (16)C12—N3—H1N3116 (2)
O4—N1—C5118.21 (14)C12—N3—H2N3114.0 (19)
O1—C1—O2125.08 (16)H1N3—N3—H2N3130 (3)
O1—C1—C2116.94 (13)C9—C8—N2121.68 (17)
O2—C1—C2117.98 (14)C9—C8—H8A115.0 (19)
C7—C2—C3120.02 (15)N2—C8—H8A123.4 (19)
C7—C2—C1121.57 (13)C8—C9—C10118.65 (15)
C3—C2—C1118.40 (14)C8—C9—H9A125.2 (17)
C4—C3—C2120.61 (16)C10—C9—H9A116.0 (18)
C4—C3—H3A121.0 (14)C11—C10—C9118.90 (15)
C2—C3—H3A118.0 (14)C11—C10—C13121.55 (17)
C5—C4—C3117.84 (15)C9—C10—C13119.53 (17)
C5—C4—H4A120.0 (14)C10—C11—C12120.97 (16)
C3—C4—H4A122.1 (14)C10—C11—H11A119.6 (16)
C6—C5—C4123.09 (15)C12—C11—H11A119.4 (16)
C6—C5—N1118.73 (15)N3—C12—N2118.43 (15)
C4—C5—N1118.17 (15)N3—C12—C11123.42 (16)
C5—C6—C7118.03 (15)N2—C12—C11118.13 (15)
C5—C6—H6A126.2 (14)C10—C13—H13A109.5
C7—C6—H6A115.6 (14)C10—C13—H13B109.5
C2—C7—C6120.40 (14)H13A—C13—H13B109.5
C2—C7—H7A121.4 (16)C10—C13—H13C109.5
C6—C7—H7A118.2 (16)H13A—C13—H13C109.5
C12—N2—C8121.65 (14)H13B—C13—H13C109.5
C12—N2—H1N2122.2 (19)
O1—C1—C2—C7177.48 (16)N1—C5—C6—C7179.78 (15)
O2—C1—C2—C72.2 (2)C3—C2—C7—C60.5 (2)
O1—C1—C2—C33.3 (2)C1—C2—C7—C6179.72 (15)
O2—C1—C2—C3177.03 (16)C5—C6—C7—C20.4 (2)
C7—C2—C3—C40.5 (3)C12—N2—C8—C90.7 (3)
C1—C2—C3—C4179.77 (17)N2—C8—C9—C100.5 (3)
C2—C3—C4—C50.4 (3)C8—C9—C10—C110.8 (3)
C3—C4—C5—C60.3 (3)C8—C9—C10—C13179.63 (18)
C3—C4—C5—N1179.75 (17)C9—C10—C11—C120.0 (2)
O3—N1—C5—C6171.50 (18)C13—C10—C11—C12178.76 (16)
O4—N1—C5—C66.8 (2)C8—N2—C12—N3177.11 (16)
O3—N1—C5—C48.5 (3)C8—N2—C12—C111.5 (2)
O4—N1—C5—C4173.20 (17)C10—C11—C12—N3177.40 (17)
C4—C5—C6—C70.2 (3)C10—C11—C12—N21.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.93 (3)2.55 (3)3.254 (2)134 (3)
N2—H1N2···O2i0.93 (3)1.78 (3)2.688 (2)167 (3)
N3—H1N3···O2ii0.85 (4)2.04 (4)2.875 (2)170 (4)
N3—H2N3···O1i0.94 (3)1.84 (3)2.778 (2)173 (3)
C3—H3A···O4iii0.97 (2)2.53 (2)3.160 (2)123 (2)
C6—H6A···O1ii1.00 (2)2.46 (2)3.116 (2)123 (3)
C7—H7A···O1ii1.00 (3)2.45 (3)3.102 (2)122 (2)
C9—H9A···O3iv0.96 (3)2.33 (3)3.276 (3)168 (3)
C13—H13C···O4v0.962.553.335 (2)139
Symmetry codes: (i) x, y1, z+1; (ii) x, y+1, z+1/2; (iii) x, y, z1/2; (iv) x1, y+1, z+1; (v) x1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H4NO4
Mr275.26
Crystal system, space groupMonoclinic, Pc
Temperature (K)100
a, b, c (Å)10.5267 (2), 5.0187 (1), 12.2436 (3)
β (°) 92.194 (1)
V3)646.36 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.49 × 0.28 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.949, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10644, 2841, 2390
Rint0.029
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.03
No. of reflections2841
No. of parameters222
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.93 (3)2.55 (3)3.254 (2)134 (3)
N2—H1N2···O2i0.93 (3)1.78 (3)2.688 (2)167 (3)
N3—H1N3···O2ii0.85 (4)2.04 (4)2.875 (2)170 (4)
N3—H2N3···O1i0.94 (3)1.84 (3)2.778 (2)173 (3)
C3—H3A···O4iii0.97 (2)2.53 (2)3.160 (2)123 (2)
C6—H6A···O1ii1.00 (2)2.46 (2)3.116 (2)123 (3)
C7—H7A···O1ii1.00 (3)2.45 (3)3.102 (2)122 (2)
C9—H9A···O3iv0.96 (3)2.33 (3)3.276 (3)168 (3)
C13—H13C···O4v0.962.553.335 (2)139
Symmetry codes: (i) x, y1, z+1; (ii) x, y+1, z+1/2; (iii) x, y, z1/2; (iv) x1, y+1, z+1; (v) x1, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and H-KF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds