organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinol­yl)-3-(2-meth­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 4 January 2010; accepted 7 January 2010; online 13 January 2010)

In the title compound, C26H20ClNO2, the quinoline ring system and the methoxy­phenyl ring form dihedral angles of 69.97 (6) and 22.10 (10)°, respectively, with the propenone linkage. The 4-phenyl ring substituent on the quinoline ring system is oriented at a dihedral angle of 66.47 (3)°. In the crystal, mol­ecules exist as C—H⋯O hydrogen-bonded dimers. The structure is further stabilized by C—H⋯π inter­actions.

Related literature

For background details and the biological activity of quinolines, see: Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399-404.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]). For the biological activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Zi & Simoneau (2005[Zi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479-3486.]). For related structures, see: Loh et al. (2009a[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009a). Acta Cryst. E65, o3144-o3145.],b[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009b). Acta Cryst. E65, o3237-o3238.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20ClNO2

  • Mr = 413.88

  • Monoclinic, C 2/c

  • a = 15.1154 (2) Å

  • b = 15.4655 (2) Å

  • c = 17.2400 (2) Å

  • β = 104.418 (1)°

  • V = 3903.22 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.39 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.960

  • 30753 measured reflections

  • 8197 independent reflections

  • 5864 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.136

  • S = 1.06

  • 8197 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and N1/C1/C2/C7–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.93 2.59 3.2963 (16) 133
C17—H17ACg1ii 0.93 2.96 3.6617 (14) 134
C20—H20ACg2ii 0.93 2.85 3.6353 (14) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [x, -y-1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinoline and its derivatives are very important compounds because of their wide occurrence in natural products (Michael, 1997) and biologically active compounds (Markees et al., 1970). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Kalluraya & Sreenivasa, 1998; Chen et al., 2001). The chalcones are open chain flavonoids, possessing a variety of biological activities, including antioxidant, anti-inflammation, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, chalcones have shown several anticancer activities as inhibitors of cancer cell proliferation, carcinogenesis and metastasis (Zi & Simoneau, 2005).

In the molecule of the title compound (Fig. 1), the quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.065 (1) Å for atom C9. The mean plane of the quinoline ring system forms a dihedral angle of 66.47 (3)° with the C10-C15 phenyl ring. The C1–C9/N1 and C19-C24 planes form dihedral angles of 69.97 (6) and 22.10 (10)°, respectively, with the O1/C16-C18 plane. Bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to closely related structures (Loh et al., 2009a; Loh et al., 2009b).

In the crystal (Fig. 2), pairs of neighbouring molecules are arranged into dimers by pairs of intermolecular C12—H12A···O1 hydrogen bonds. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving C2–C7 (centroid Cg1) and N1/C1/C2/C7-C9 (centroid Cg2) rings.

Related literature top

For background details and the biological activity of quinolines, see: Michael (1997); Markees et al. (1970); Kalluraya & Sreenivasa (1998); Chen et al. (2001). For the biological activity of chalcones, see: Dimmock et al. (1999); Zi & Simoneau (2005). For related structures, see: Loh et al. (2009a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (2.95 g, 0.01 mol), 2-methoxybenzaldehyde (1.36 g, 0.01 mol) and a catalytic amount of KOH in distilled ethanol was stirred for 12 h. The resulting mixture was concentrated to remove the ethanol and then poured onto ice and neutralized with diluted acetic acid. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and petroleum ether (m.p. 403–405 K, yield: 68%).

Refinement top

H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

Quinoline and its derivatives are very important compounds because of their wide occurrence in natural products (Michael, 1997) and biologically active compounds (Markees et al., 1970). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Kalluraya & Sreenivasa, 1998; Chen et al., 2001). The chalcones are open chain flavonoids, possessing a variety of biological activities, including antioxidant, anti-inflammation, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, chalcones have shown several anticancer activities as inhibitors of cancer cell proliferation, carcinogenesis and metastasis (Zi & Simoneau, 2005).

In the molecule of the title compound (Fig. 1), the quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.065 (1) Å for atom C9. The mean plane of the quinoline ring system forms a dihedral angle of 66.47 (3)° with the C10-C15 phenyl ring. The C1–C9/N1 and C19-C24 planes form dihedral angles of 69.97 (6) and 22.10 (10)°, respectively, with the O1/C16-C18 plane. Bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to closely related structures (Loh et al., 2009a; Loh et al., 2009b).

In the crystal (Fig. 2), pairs of neighbouring molecules are arranged into dimers by pairs of intermolecular C12—H12A···O1 hydrogen bonds. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving C2–C7 (centroid Cg1) and N1/C1/C2/C7-C9 (centroid Cg2) rings.

For background details and the biological activity of quinolines, see: Michael (1997); Markees et al. (1970); Kalluraya & Sreenivasa (1998); Chen et al. (2001). For the biological activity of chalcones, see: Dimmock et al. (1999); Zi & Simoneau (2005). For related structures, see: Loh et al. (2009a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the b axis, showing the dimers. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)-3-(2-methoxyphenyl)prop- 2-en-1-one top
Crystal data top
C26H20ClNO2F(000) = 1728
Mr = 413.88Dx = 1.409 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7486 reflections
a = 15.1154 (2) Åθ = 2.4–31.5°
b = 15.4655 (2) ŵ = 0.22 mm1
c = 17.2400 (2) ÅT = 100 K
β = 104.418 (1)°Block, yellow
V = 3903.22 (9) Å30.39 × 0.25 × 0.19 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8197 independent reflections
Radiation source: fine-focus sealed tube5864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 34.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2024
Tmin = 0.919, Tmax = 0.960k = 2419
30753 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.7227P]
where P = (Fo2 + 2Fc2)/3
8197 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C26H20ClNO2V = 3903.22 (9) Å3
Mr = 413.88Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.1154 (2) ŵ = 0.22 mm1
b = 15.4655 (2) ÅT = 100 K
c = 17.2400 (2) Å0.39 × 0.25 × 0.19 mm
β = 104.418 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8197 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5864 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.960Rint = 0.039
30753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.06Δρmax = 0.54 e Å3
8197 reflectionsΔρmin = 0.31 e Å3
273 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02177 (2)1.01758 (2)0.635395 (19)0.01901 (8)
O10.27571 (6)0.58953 (6)0.86651 (5)0.0176 (2)
O20.04599 (6)0.49228 (6)0.58651 (5)0.0182 (2)
N10.23373 (7)0.70354 (7)0.61280 (6)0.0132 (2)
C10.24441 (8)0.64331 (8)0.66867 (7)0.0119 (2)
C20.18686 (8)0.77723 (8)0.62237 (7)0.0118 (2)
C30.17164 (9)0.83936 (8)0.55976 (7)0.0140 (2)
H3A0.19480.82990.51530.017*
C40.12304 (9)0.91308 (8)0.56457 (7)0.0147 (2)
H4A0.11300.95380.52360.018*
C50.08838 (8)0.92650 (8)0.63233 (7)0.0137 (2)
C60.10437 (8)0.87006 (8)0.69522 (7)0.0130 (2)
H6A0.08260.88180.74000.016*
C70.15466 (8)0.79326 (8)0.69143 (7)0.0114 (2)
C80.17037 (8)0.72900 (8)0.75300 (7)0.0113 (2)
C90.21100 (8)0.65250 (8)0.73916 (7)0.0117 (2)
C100.14444 (8)0.74686 (8)0.82932 (7)0.0126 (2)
C110.18819 (9)0.81414 (9)0.87804 (8)0.0184 (3)
H11A0.23230.84680.86220.022*
C120.16655 (11)0.83282 (10)0.94971 (8)0.0234 (3)
H12A0.19660.87740.98190.028*
C130.10036 (10)0.78525 (10)0.97343 (8)0.0236 (3)
H13A0.08530.79831.02120.028*
C140.05658 (9)0.71812 (10)0.92586 (8)0.0213 (3)
H14A0.01220.68600.94190.026*
C150.07867 (9)0.69836 (9)0.85395 (7)0.0166 (2)
H15A0.04950.65280.82250.020*
C160.22442 (8)0.57996 (8)0.79974 (7)0.0125 (2)
C170.17554 (9)0.49843 (8)0.77583 (7)0.0144 (2)
H17A0.19080.45090.80950.017*
C180.10990 (9)0.48907 (8)0.70786 (7)0.0137 (2)
H18A0.09290.53840.67690.016*
C190.06258 (8)0.40889 (8)0.67781 (7)0.0135 (2)
C200.09598 (9)0.32817 (8)0.70747 (8)0.0161 (2)
H20A0.14930.32530.74840.019*
C210.05186 (9)0.25228 (9)0.67757 (8)0.0186 (3)
H21A0.07580.19900.69740.022*
C220.02865 (9)0.25684 (9)0.61751 (8)0.0193 (3)
H22A0.05950.20620.59830.023*
C230.06371 (9)0.33563 (9)0.58583 (8)0.0171 (3)
H23A0.11750.33770.54540.021*
C240.01789 (9)0.41163 (8)0.61490 (7)0.0148 (2)
C250.29908 (9)0.56529 (8)0.65696 (8)0.0170 (2)
H25A0.32730.57580.61370.026*
H25B0.25940.51600.64450.026*
H25C0.34540.55420.70520.026*
C260.12419 (10)0.49727 (10)0.51992 (8)0.0213 (3)
H26A0.13480.55640.50340.032*
H26B0.17670.47520.53530.032*
H26C0.11360.46360.47630.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01956 (16)0.01561 (16)0.02069 (15)0.00653 (12)0.00279 (12)0.00098 (11)
O10.0204 (5)0.0172 (5)0.0129 (4)0.0012 (4)0.0004 (3)0.0009 (3)
O20.0176 (5)0.0162 (5)0.0172 (4)0.0006 (4)0.0022 (4)0.0005 (3)
N10.0144 (5)0.0130 (5)0.0124 (4)0.0001 (4)0.0039 (4)0.0009 (4)
C10.0120 (5)0.0122 (6)0.0117 (5)0.0003 (4)0.0030 (4)0.0017 (4)
C20.0109 (5)0.0123 (5)0.0119 (5)0.0004 (4)0.0026 (4)0.0004 (4)
C30.0148 (6)0.0156 (6)0.0112 (5)0.0014 (4)0.0025 (4)0.0004 (4)
C40.0158 (6)0.0147 (6)0.0125 (5)0.0006 (5)0.0013 (4)0.0014 (4)
C50.0130 (6)0.0110 (5)0.0155 (5)0.0003 (4)0.0008 (4)0.0005 (4)
C60.0139 (5)0.0135 (6)0.0118 (5)0.0002 (4)0.0034 (4)0.0010 (4)
C70.0108 (5)0.0120 (6)0.0111 (5)0.0003 (4)0.0021 (4)0.0001 (4)
C80.0113 (5)0.0121 (5)0.0106 (5)0.0017 (4)0.0028 (4)0.0001 (4)
C90.0120 (5)0.0116 (5)0.0111 (5)0.0007 (4)0.0022 (4)0.0005 (4)
C100.0152 (6)0.0121 (5)0.0107 (5)0.0031 (4)0.0038 (4)0.0011 (4)
C110.0228 (7)0.0180 (6)0.0154 (5)0.0025 (5)0.0069 (5)0.0022 (5)
C120.0329 (8)0.0227 (7)0.0153 (6)0.0010 (6)0.0073 (6)0.0046 (5)
C130.0293 (8)0.0305 (8)0.0135 (5)0.0091 (6)0.0103 (5)0.0023 (5)
C140.0206 (7)0.0282 (8)0.0186 (6)0.0042 (6)0.0116 (5)0.0059 (5)
C150.0170 (6)0.0179 (6)0.0157 (5)0.0009 (5)0.0054 (5)0.0019 (5)
C160.0132 (5)0.0132 (6)0.0116 (5)0.0015 (4)0.0042 (4)0.0001 (4)
C170.0180 (6)0.0119 (6)0.0139 (5)0.0003 (4)0.0052 (5)0.0012 (4)
C180.0152 (6)0.0129 (6)0.0136 (5)0.0001 (4)0.0047 (4)0.0003 (4)
C190.0126 (5)0.0155 (6)0.0132 (5)0.0009 (4)0.0047 (4)0.0006 (4)
C200.0140 (6)0.0166 (6)0.0170 (6)0.0000 (5)0.0026 (5)0.0017 (5)
C210.0200 (6)0.0130 (6)0.0218 (6)0.0005 (5)0.0036 (5)0.0012 (5)
C220.0215 (7)0.0163 (6)0.0201 (6)0.0037 (5)0.0052 (5)0.0041 (5)
C230.0156 (6)0.0204 (6)0.0150 (5)0.0024 (5)0.0032 (5)0.0031 (5)
C240.0144 (6)0.0167 (6)0.0140 (5)0.0004 (5)0.0048 (4)0.0016 (4)
C250.0193 (6)0.0160 (6)0.0168 (6)0.0046 (5)0.0065 (5)0.0005 (5)
C260.0179 (7)0.0245 (7)0.0178 (6)0.0014 (5)0.0025 (5)0.0019 (5)
Geometric parameters (Å, º) top
Cl1—C51.7397 (13)C13—C141.385 (2)
O1—C161.2262 (14)C13—H13A0.93
O2—C241.3683 (15)C14—C151.3956 (17)
O2—C261.4302 (16)C14—H14A0.93
N1—C11.3207 (15)C15—H15A0.93
N1—C21.3733 (15)C16—C171.4678 (18)
C1—C91.4344 (16)C17—C181.3414 (17)
C1—C251.5042 (17)C17—H17A0.93
C2—C71.4158 (16)C18—C191.4606 (18)
C2—C31.4205 (17)C18—H18A0.93
C3—C41.3700 (18)C19—C201.3951 (18)
C3—H3A0.93C19—C241.4144 (18)
C4—C51.4098 (17)C20—C211.3845 (18)
C4—H4A0.93C20—H20A0.93
C5—C61.3657 (16)C21—C221.3895 (18)
C6—C71.4204 (17)C21—H21A0.93
C6—H6A0.93C22—C231.3855 (19)
C7—C81.4302 (16)C22—H22A0.93
C8—C91.3808 (17)C23—C241.3926 (18)
C8—C101.4893 (16)C23—H23A0.93
C9—C161.5116 (17)C25—H25A0.96
C10—C151.3934 (18)C25—H25B0.96
C10—C111.3960 (18)C25—H25C0.96
C11—C121.3851 (18)C26—H26A0.96
C11—H11A0.93C26—H26B0.96
C12—C131.383 (2)C26—H26C0.96
C12—H12A0.93
C24—O2—C26117.21 (10)C15—C14—H14A119.8
C1—N1—C2118.08 (10)C10—C15—C14119.97 (12)
N1—C1—C9122.90 (11)C10—C15—H15A120.0
N1—C1—C25116.07 (10)C14—C15—H15A120.0
C9—C1—C25120.94 (10)O1—C16—C17121.58 (11)
N1—C2—C7122.82 (11)O1—C16—C9120.26 (11)
N1—C2—C3117.44 (10)C17—C16—C9118.16 (10)
C7—C2—C3119.74 (11)C18—C17—C16123.30 (11)
C4—C3—C2120.32 (11)C18—C17—H17A118.3
C4—C3—H3A119.8C16—C17—H17A118.3
C2—C3—H3A119.8C17—C18—C19126.29 (12)
C3—C4—C5119.23 (11)C17—C18—H18A116.9
C3—C4—H4A120.4C19—C18—H18A116.9
C5—C4—H4A120.4C20—C19—C24118.13 (11)
C6—C5—C4122.34 (11)C20—C19—C18121.94 (11)
C6—C5—Cl1118.87 (10)C24—C19—C18119.89 (11)
C4—C5—Cl1118.79 (9)C21—C20—C19121.69 (12)
C5—C6—C7119.27 (11)C21—C20—H20A119.2
C5—C6—H6A120.4C19—C20—H20A119.2
C7—C6—H6A120.4C20—C21—C22119.06 (12)
C2—C7—C6119.02 (10)C20—C21—H21A120.5
C2—C7—C8118.30 (11)C22—C21—H21A120.5
C6—C7—C8122.60 (11)C23—C22—C21121.09 (12)
C9—C8—C7117.77 (10)C23—C22—H22A119.5
C9—C8—C10122.53 (10)C21—C22—H22A119.5
C7—C8—C10119.68 (11)C22—C23—C24119.56 (12)
C8—C9—C1119.79 (10)C22—C23—H23A120.2
C8—C9—C16120.36 (10)C24—C23—H23A120.2
C1—C9—C16119.79 (10)O2—C24—C23123.95 (11)
C15—C10—C11119.01 (11)O2—C24—C19115.63 (11)
C15—C10—C8122.28 (11)C23—C24—C19120.42 (12)
C11—C10—C8118.71 (11)C1—C25—H25A109.5
C12—C11—C10120.69 (13)C1—C25—H25B109.5
C12—C11—H11A119.7H25A—C25—H25B109.5
C10—C11—H11A119.7C1—C25—H25C109.5
C13—C12—C11120.11 (13)H25A—C25—H25C109.5
C13—C12—H12A119.9H25B—C25—H25C109.5
C11—C12—H12A119.9O2—C26—H26A109.5
C12—C13—C14119.85 (12)O2—C26—H26B109.5
C12—C13—H13A120.1H26A—C26—H26B109.5
C14—C13—H13A120.1O2—C26—H26C109.5
C13—C14—C15120.36 (13)H26A—C26—H26C109.5
C13—C14—H14A119.8H26B—C26—H26C109.5
C2—N1—C1—C91.36 (17)C7—C8—C10—C1163.24 (16)
C2—N1—C1—C25177.88 (10)C15—C10—C11—C120.21 (19)
C1—N1—C2—C73.89 (17)C8—C10—C11—C12179.71 (12)
C1—N1—C2—C3176.69 (11)C10—C11—C12—C130.6 (2)
N1—C2—C3—C4178.10 (11)C11—C12—C13—C140.9 (2)
C7—C2—C3—C42.46 (18)C12—C13—C14—C150.2 (2)
C2—C3—C4—C50.00 (18)C11—C10—C15—C140.85 (19)
C3—C4—C5—C62.54 (19)C8—C10—C15—C14179.67 (11)
C3—C4—C5—Cl1176.70 (10)C13—C14—C15—C100.6 (2)
C4—C5—C6—C72.50 (18)C8—C9—C16—O164.94 (16)
Cl1—C5—C6—C7176.75 (9)C1—C9—C16—O1112.20 (13)
N1—C2—C7—C6178.11 (11)C8—C9—C16—C17115.85 (13)
C3—C2—C7—C62.48 (17)C1—C9—C16—C1767.02 (15)
N1—C2—C7—C81.18 (17)O1—C16—C17—C18170.75 (12)
C3—C2—C7—C8179.42 (11)C9—C16—C17—C1810.04 (18)
C5—C6—C7—C20.04 (17)C16—C17—C18—C19175.84 (12)
C5—C6—C7—C8176.84 (11)C17—C18—C19—C2015.8 (2)
C2—C7—C8—C94.05 (17)C17—C18—C19—C24166.47 (12)
C6—C7—C8—C9172.77 (11)C24—C19—C20—C210.80 (18)
C2—C7—C8—C10174.87 (11)C18—C19—C20—C21178.61 (12)
C6—C7—C8—C108.31 (17)C19—C20—C21—C221.21 (19)
C7—C8—C9—C16.47 (17)C20—C21—C22—C231.8 (2)
C10—C8—C9—C1172.42 (11)C21—C22—C23—C240.39 (19)
C7—C8—C9—C16176.40 (10)C26—O2—C24—C233.77 (18)
C10—C8—C9—C164.71 (18)C26—O2—C24—C19176.59 (11)
N1—C1—C9—C83.94 (18)C22—C23—C24—O2178.69 (12)
C25—C1—C9—C8172.42 (11)C22—C23—C24—C191.69 (19)
N1—C1—C9—C16178.91 (11)C20—C19—C24—O2178.09 (11)
C25—C1—C9—C164.73 (17)C18—C19—C24—O20.24 (17)
C9—C8—C10—C1563.86 (17)C20—C19—C24—C232.26 (18)
C7—C8—C10—C15117.28 (13)C18—C19—C24—C23179.89 (11)
C9—C8—C10—C11115.63 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.932.593.2963 (16)133
C17—H17A···Cg1ii0.932.963.6617 (14)134
C20—H20A···Cg2ii0.932.853.6353 (14)143
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H20ClNO2
Mr413.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)15.1154 (2), 15.4655 (2), 17.2400 (2)
β (°) 104.418 (1)
V3)3903.22 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.39 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.919, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
30753, 8197, 5864
Rint0.039
(sin θ/λ)max1)0.796
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.136, 1.06
No. of reflections8197
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.932.593.2963 (16)133
C17—H17A···Cg1ii0.932.963.6617 (14)134
C20—H20A···Cg2ii0.932.853.6353 (14)143
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x, y1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. WSL thanks the Malaysian government and USM for the award of the post of Assistant Research Officer under Research University Golden Goose grant No. 1001/PFIZIK/811012. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009a). Acta Cryst. E65, o3144–o3145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009b). Acta Cryst. E65, o3237–o3238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZi, X. & Simoneau, A. R. (2005). Cancer Res. 65, 3479–3486.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds