organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­amino­pyridinium benzoate benzoic acid solvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 10 January 2010; accepted 12 January 2010; online 30 January 2010)

In the title compound, C5H8N3+·C7H5O2·C7H6O2, the carboxyl and carboxyl­ate groups are twisted away from their attached benzene rings by 10.75 (7) and 20.33 (6)°, respectively. In the crystal structure, the 2,3-diamino­pyridinium cations, benzoate anions and benzoic acid mol­ecules are linked into a two-dimensional network parallel to (001) by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds and ππ inter­actions between the pyridinium rings [centroid–centroid distance = 3.4981 (7) Å].

Related literature

For substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Fun & Balasubramani (2009[Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496-o1497.]); Balasubramani & Fun (2009a[Balasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511-o1512.],b[Balasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H5O2·C7H6O2

  • Mr = 353.37

  • Monoclinic, P 21 /c

  • a = 12.5822 (2) Å

  • b = 11.0826 (1) Å

  • c = 12.5615 (2) Å

  • β = 96.345 (1)°

  • V = 1740.89 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 110 K

  • 0.38 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.988

  • 36881 measured reflections

  • 5104 independent reflections

  • 3848 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 1.05

  • 5104 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1OB⋯O1A 0.93 (2) 1.66 (2) 2.5796 (13) 173 (2)
N1—H1N1⋯O1A 0.89 (2) 2.35 (2) 3.0786 (13) 140 (1)
N1—H1N1⋯O2A 0.89 (2) 2.01 (2) 2.8514 (13) 158 (2)
N2—H1N2⋯O2Ai 0.87 (2) 2.07 (2) 2.9370 (14) 173 (2)
N2—H2N2⋯O1A 0.87 (2) 2.08 (2) 2.9038 (14) 157 (2)
N3—H1N3⋯O2Ai 0.88 (2) 2.18 (2) 3.0543 (15) 175 (2)
N3—H2N3⋯O1Aii 0.86 (2) 2.59 (2) 3.0649 (14) 116 (1)
N3—H2N3⋯O2Bii 0.86 (2) 2.16 (2) 2.9912 (15) 162 (1)
C10—H10A⋯O2Bii 0.93 2.58 3.3375 (14) 138
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Recently, we have reported crystal structures of 2,3-diaminopyridinium 4-hydroxybenzoate (Fun & Balasubramani, 2009), 2,3-diaminopyridinium 4-nitrobenzoate (Balasubramani & Fun, 2009a) and 2,3-diaminopyridinium benzoate (Balasubramani & Fun, 2009b). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound (Fig. 1), contains a protonated 2,3-diaminopyridinium cation, a benzoate anion and a benzoic acid. In the 2,3-diaminopyridinium cation, a wide angle (124.11 (11)°) is subtented at the protonated N1 atom. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.010 (1) Å for atom C10. The carboxyl and carboxylate groups are twisted away from the attached benzene rings; the dihedral angle between C1B–C6B and O1B/O2B/C6B/C7B planes is 10.75 (7)° and that between C1A–C6A and O1A/O2A/C6A/C7A planes is 20.33 (6)°. The bond lengths (Allen et al. 1987) and angles are normal.

In the crystal (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1A and O2A) via a pair of N—H···O hydrogen bonds forming a R22(8) ring motif (Bernstein et al. 1995). The benzoate anion and benzoic acid molecules are connected via O—H···O hydrogen bonds. The crystal structure is further stabilized by ππ stacking interactions between the pyridinium rings at (x, y, z) and (2-x, 1-y, -z), with a ring centroid-to-centroid distance of 3.4981 (7) Å.

Related literature top

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Fun & Balasubramani (2009); Balasubramani & Fun (2009a,b). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanolic solution (10 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and a hot aqueous solution (10 ml) of benzoic acid (31 mg, Merck) were mixed and warmed over a water bath for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. Single crystals of the title compound appreared from the mother liquor after a few days.

Refinement top

Atoms H1OB, H1N1, H1N2, H2N2, H1N3 and H2N3 were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Recently, we have reported crystal structures of 2,3-diaminopyridinium 4-hydroxybenzoate (Fun & Balasubramani, 2009), 2,3-diaminopyridinium 4-nitrobenzoate (Balasubramani & Fun, 2009a) and 2,3-diaminopyridinium benzoate (Balasubramani & Fun, 2009b). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound (Fig. 1), contains a protonated 2,3-diaminopyridinium cation, a benzoate anion and a benzoic acid. In the 2,3-diaminopyridinium cation, a wide angle (124.11 (11)°) is subtented at the protonated N1 atom. The 2,3-diaminopyridinium cation is planar, with a maximum deviation of 0.010 (1) Å for atom C10. The carboxyl and carboxylate groups are twisted away from the attached benzene rings; the dihedral angle between C1B–C6B and O1B/O2B/C6B/C7B planes is 10.75 (7)° and that between C1A–C6A and O1A/O2A/C6A/C7A planes is 20.33 (6)°. The bond lengths (Allen et al. 1987) and angles are normal.

In the crystal (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1A and O2A) via a pair of N—H···O hydrogen bonds forming a R22(8) ring motif (Bernstein et al. 1995). The benzoate anion and benzoic acid molecules are connected via O—H···O hydrogen bonds. The crystal structure is further stabilized by ππ stacking interactions between the pyridinium rings at (x, y, z) and (2-x, 1-y, -z), with a ring centroid-to-centroid distance of 3.4981 (7) Å.

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Fun & Balasubramani (2009); Balasubramani & Fun (2009a,b). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
2,3-Diaminopyridinium benzoate benzoic acid solvate top
Crystal data top
C5H8N3+·C7H5O2·C7H6O2F(000) = 744
Mr = 353.37Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9414 reflections
a = 12.5822 (2) Åθ = 2.5–30.0°
b = 11.0826 (1) ŵ = 0.10 mm1
c = 12.5615 (2) ÅT = 110 K
β = 96.345 (1)°Block, orange
V = 1740.89 (4) Å30.38 × 0.18 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5104 independent reflections
Radiation source: fine-focus sealed tube3848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1716
Tmin = 0.964, Tmax = 0.988k = 1515
36881 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.4367P]
where P = (Fo2 + 2Fc2)/3
5104 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C5H8N3+·C7H5O2·C7H6O2V = 1740.89 (4) Å3
Mr = 353.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5822 (2) ŵ = 0.10 mm1
b = 11.0826 (1) ÅT = 110 K
c = 12.5615 (2) Å0.38 × 0.18 × 0.13 mm
β = 96.345 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3848 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.988Rint = 0.037
36881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
5104 reflectionsΔρmin = 0.22 e Å3
259 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) k.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.85851 (7)0.85383 (8)0.03377 (7)0.0290 (2)
O2A0.95927 (7)0.88574 (8)0.09759 (6)0.02659 (19)
C1A0.74939 (10)1.07373 (11)0.01140 (9)0.0281 (3)
H1AA0.74941.04340.05760.034*
C2A0.68601 (11)1.17233 (12)0.04363 (11)0.0335 (3)
H2AA0.64551.20970.00450.040*
C3A0.68306 (10)1.21522 (12)0.14752 (11)0.0336 (3)
H3AA0.63931.28010.16970.040*
C4A0.74514 (11)1.16156 (13)0.21788 (10)0.0348 (3)
H4AA0.74261.18990.28780.042*
C5A0.81149 (10)1.06528 (11)0.18501 (9)0.0274 (3)
H5AA0.85491.03120.23220.033*
C6A0.81306 (9)1.01987 (10)0.08187 (8)0.0214 (2)
C7A0.88181 (9)0.91288 (10)0.04745 (8)0.0222 (2)
N11.05200 (8)0.68618 (9)0.02224 (8)0.0237 (2)
N20.98632 (9)0.70123 (10)0.18620 (9)0.0278 (2)
N31.10673 (10)0.49546 (11)0.25569 (9)0.0336 (3)
C81.04742 (9)0.64369 (10)0.12201 (9)0.0221 (2)
C91.10929 (9)0.53927 (10)0.15432 (9)0.0224 (2)
C101.16824 (9)0.48674 (10)0.08034 (9)0.0244 (2)
H10A1.20800.41770.09920.029*
C111.16949 (10)0.53516 (11)0.02261 (9)0.0268 (3)
H11A1.21010.49920.07140.032*
C121.11068 (10)0.63515 (11)0.05016 (9)0.0264 (3)
H12A1.11060.66850.11810.032*
O1B0.69229 (8)0.72978 (9)0.06840 (7)0.0321 (2)
O2B0.75274 (7)0.77725 (8)0.23701 (7)0.0310 (2)
C1B0.54529 (11)0.56665 (13)0.13724 (12)0.0364 (3)
H1BA0.55780.56370.06570.044*
C2B0.46748 (12)0.49389 (14)0.17377 (15)0.0485 (4)
H2BA0.42810.44170.12670.058*
C3B0.44829 (13)0.49857 (14)0.27941 (15)0.0501 (4)
H3BA0.39530.45030.30330.060*
C4B0.50734 (12)0.57449 (14)0.34983 (13)0.0443 (4)
H4BA0.49430.57710.42120.053*
C5B0.58609 (11)0.64699 (12)0.31465 (10)0.0315 (3)
H5BA0.62640.69750.36250.038*
C6B0.60470 (9)0.64412 (10)0.20783 (9)0.0254 (2)
C7B0.69011 (9)0.72314 (10)0.17338 (9)0.0235 (2)
H1OB0.7482 (18)0.7795 (19)0.0545 (17)0.076 (6)*
H1N11.0151 (13)0.7519 (15)0.0012 (13)0.038 (4)*
H1N20.9746 (13)0.6707 (15)0.2475 (14)0.041 (4)*
H2N20.9452 (13)0.7586 (15)0.1570 (13)0.045 (5)*
H1N31.0666 (13)0.5270 (14)0.3014 (13)0.040 (4)*
H2N31.1455 (13)0.4331 (15)0.2731 (12)0.038 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0312 (5)0.0296 (5)0.0266 (4)0.0009 (4)0.0050 (3)0.0098 (3)
O2A0.0266 (4)0.0268 (4)0.0270 (4)0.0029 (3)0.0057 (3)0.0008 (3)
C1A0.0294 (6)0.0309 (6)0.0243 (5)0.0016 (5)0.0045 (5)0.0020 (5)
C2A0.0297 (7)0.0330 (7)0.0385 (7)0.0051 (5)0.0060 (5)0.0029 (5)
C3A0.0282 (7)0.0274 (6)0.0445 (7)0.0048 (5)0.0010 (5)0.0079 (5)
C4A0.0352 (7)0.0379 (7)0.0312 (6)0.0045 (6)0.0031 (5)0.0145 (5)
C5A0.0282 (6)0.0299 (6)0.0246 (5)0.0014 (5)0.0055 (5)0.0051 (4)
C6A0.0208 (5)0.0208 (5)0.0222 (5)0.0029 (4)0.0005 (4)0.0019 (4)
C7A0.0241 (6)0.0219 (5)0.0200 (5)0.0019 (4)0.0000 (4)0.0003 (4)
N10.0254 (5)0.0207 (5)0.0248 (5)0.0020 (4)0.0018 (4)0.0014 (4)
N20.0301 (6)0.0265 (5)0.0280 (5)0.0078 (4)0.0082 (4)0.0024 (4)
N30.0418 (7)0.0340 (6)0.0267 (5)0.0160 (5)0.0113 (5)0.0093 (4)
C80.0212 (5)0.0208 (5)0.0241 (5)0.0012 (4)0.0019 (4)0.0005 (4)
C90.0221 (6)0.0214 (5)0.0235 (5)0.0005 (4)0.0018 (4)0.0006 (4)
C100.0239 (6)0.0212 (6)0.0282 (6)0.0029 (4)0.0029 (4)0.0003 (4)
C110.0285 (6)0.0280 (6)0.0244 (5)0.0016 (5)0.0060 (5)0.0029 (4)
C120.0302 (6)0.0279 (6)0.0213 (5)0.0013 (5)0.0041 (4)0.0008 (4)
O1B0.0342 (5)0.0385 (5)0.0237 (4)0.0063 (4)0.0036 (4)0.0013 (4)
O2B0.0313 (5)0.0331 (5)0.0284 (4)0.0075 (4)0.0031 (4)0.0048 (4)
C1B0.0311 (7)0.0323 (7)0.0451 (8)0.0034 (6)0.0011 (6)0.0051 (6)
C2B0.0355 (8)0.0330 (8)0.0760 (11)0.0094 (6)0.0020 (8)0.0029 (7)
C3B0.0364 (8)0.0315 (8)0.0845 (12)0.0028 (6)0.0156 (8)0.0184 (8)
C4B0.0431 (9)0.0413 (8)0.0510 (9)0.0068 (7)0.0166 (7)0.0208 (7)
C5B0.0324 (7)0.0297 (6)0.0326 (6)0.0034 (5)0.0046 (5)0.0074 (5)
C6B0.0230 (6)0.0207 (5)0.0321 (6)0.0033 (5)0.0017 (5)0.0017 (4)
C7B0.0238 (6)0.0214 (5)0.0253 (5)0.0031 (4)0.0026 (4)0.0017 (4)
Geometric parameters (Å, º) top
O1A—C7A1.2733 (13)C8—C91.4283 (16)
O2A—C7A1.2541 (14)C9—C101.3802 (16)
C1A—C2A1.3866 (18)C10—C111.4018 (16)
C1A—C6A1.3922 (16)C10—H10A0.93
C1A—H1AA0.93C11—C121.3559 (17)
C2A—C3A1.3855 (19)C11—H11A0.93
C2A—H2AA0.93C12—H12A0.93
C3A—C4A1.3775 (19)O1B—C7B1.3241 (14)
C3A—H3AA0.93O1B—H1OB0.93 (2)
C4A—C5A1.3891 (18)O2B—C7B1.2166 (14)
C4A—H4AA0.93C1B—C2B1.385 (2)
C5A—C6A1.3880 (15)C1B—C6B1.3913 (18)
C5A—H5AA0.93C1B—H1BA0.93
C6A—C7A1.5028 (16)C2B—C3B1.376 (2)
N1—C81.3461 (14)C2B—H2BA0.93
N1—C121.3566 (15)C3B—C4B1.377 (2)
N1—H1N10.888 (17)C3B—H3BA0.93
N2—C81.3358 (15)C4B—C5B1.3855 (19)
N2—H1N20.869 (17)C4B—H4BA0.93
N2—H2N20.875 (17)C5B—C6B1.3877 (17)
N3—C91.3665 (15)C5B—H5BA0.93
N3—H1N30.878 (17)C6B—C7B1.4873 (17)
N3—H2N30.860 (17)
C2A—C1A—C6A120.34 (11)N3—C9—C8118.97 (11)
C2A—C1A—H1AA119.8C10—C9—C8117.84 (10)
C6A—C1A—H1AA119.8C9—C10—C11121.42 (11)
C3A—C2A—C1A120.00 (12)C9—C10—H10A119.3
C3A—C2A—H2AA120.0C11—C10—H10A119.3
C1A—C2A—H2AA120.0C12—C11—C10119.13 (11)
C4A—C3A—C2A119.88 (12)C12—C11—H11A120.4
C4A—C3A—H3AA120.1C10—C11—H11A120.4
C2A—C3A—H3AA120.1C11—C12—N1119.45 (11)
C3A—C4A—C5A120.38 (12)C11—C12—H12A120.3
C3A—C4A—H4AA119.8N1—C12—H12A120.3
C5A—C4A—H4AA119.8C7B—O1B—H1OB108.7 (13)
C6A—C5A—C4A120.13 (11)C2B—C1B—C6B119.86 (14)
C6A—C5A—H5AA119.9C2B—C1B—H1BA120.1
C4A—C5A—H5AA119.9C6B—C1B—H1BA120.1
C5A—C6A—C1A119.22 (11)C3B—C2B—C1B120.22 (15)
C5A—C6A—C7A120.19 (10)C3B—C2B—H2BA119.9
C1A—C6A—C7A120.58 (10)C1B—C2B—H2BA119.9
O2A—C7A—O1A122.65 (11)C2B—C3B—C4B120.18 (14)
O2A—C7A—C6A119.96 (10)C2B—C3B—H3BA119.9
O1A—C7A—C6A117.38 (10)C4B—C3B—H3BA119.9
C8—N1—C12124.11 (11)C3B—C4B—C5B120.23 (15)
C8—N1—H1N1119.3 (10)C3B—C4B—H4BA119.9
C12—N1—H1N1116.6 (10)C5B—C4B—H4BA119.9
C8—N2—H1N2121.0 (11)C4B—C5B—C6B119.88 (13)
C8—N2—H2N2116.6 (11)C4B—C5B—H5BA120.1
H1N2—N2—H2N2120.2 (15)C6B—C5B—H5BA120.1
C9—N3—H1N3122.8 (10)C5B—C6B—C1B119.62 (12)
C9—N3—H2N3116.8 (10)C5B—C6B—C7B118.18 (11)
H1N3—N3—H2N3120.3 (14)C1B—C6B—C7B122.19 (11)
N2—C8—N1118.79 (11)O2B—C7B—O1B122.94 (11)
N2—C8—C9123.18 (10)O2B—C7B—C6B122.38 (11)
N1—C8—C9118.03 (10)O1B—C7B—C6B114.68 (10)
N3—C9—C10123.18 (11)
C6A—C1A—C2A—C3A2.2 (2)N3—C9—C10—C11179.41 (12)
C1A—C2A—C3A—C4A1.6 (2)C8—C9—C10—C111.28 (17)
C2A—C3A—C4A—C5A0.6 (2)C9—C10—C11—C120.60 (18)
C3A—C4A—C5A—C6A2.1 (2)C10—C11—C12—N10.01 (18)
C4A—C5A—C6A—C1A1.49 (18)C8—N1—C12—C110.18 (18)
C4A—C5A—C6A—C7A177.79 (11)C6B—C1B—C2B—C3B0.4 (2)
C2A—C1A—C6A—C5A0.64 (18)C1B—C2B—C3B—C4B0.9 (2)
C2A—C1A—C6A—C7A179.92 (11)C2B—C3B—C4B—C5B0.3 (2)
C5A—C6A—C7A—O2A20.53 (16)C3B—C4B—C5B—C6B0.7 (2)
C1A—C6A—C7A—O2A160.20 (11)C4B—C5B—C6B—C1B1.17 (19)
C5A—C6A—C7A—O1A160.22 (11)C4B—C5B—C6B—C7B179.87 (11)
C1A—C6A—C7A—O1A19.05 (16)C2B—C1B—C6B—C5B0.6 (2)
C12—N1—C8—N2179.66 (11)C2B—C1B—C6B—C7B179.24 (12)
C12—N1—C8—C90.88 (17)C5B—C6B—C7B—O2B9.93 (17)
N2—C8—C9—N30.17 (18)C1B—C6B—C7B—O2B168.74 (12)
N1—C8—C9—N3179.27 (11)C5B—C6B—C7B—O1B170.02 (11)
N2—C8—C9—C10179.17 (11)C1B—C6B—C7B—O1B11.31 (17)
N1—C8—C9—C101.39 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1OB···O1A0.93 (2)1.66 (2)2.5796 (13)173 (2)
N1—H1N1···O1A0.89 (2)2.35 (2)3.0786 (13)140 (1)
N1—H1N1···O2A0.89 (2)2.01 (2)2.8514 (13)158 (2)
N2—H1N2···O2Ai0.87 (2)2.07 (2)2.9370 (14)173 (2)
N2—H2N2···O1A0.87 (2)2.08 (2)2.9038 (14)157 (2)
N3—H1N3···O2Ai0.88 (2)2.18 (2)3.0543 (15)175 (2)
N3—H2N3···O1Aii0.86 (2)2.59 (2)3.0649 (14)116 (1)
N3—H2N3···O2Bii0.86 (2)2.16 (2)2.9912 (15)162 (1)
C10—H10A···O2Bii0.932.583.3375 (14)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H5O2·C7H6O2
Mr353.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)12.5822 (2), 11.0826 (1), 12.5615 (2)
β (°) 96.345 (1)
V3)1740.89 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.964, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
36881, 5104, 3848
Rint0.037
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.05
No. of reflections5104
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1OB···O1A0.93 (2)1.66 (2)2.5796 (13)173 (2)
N1—H1N1···O1A0.89 (2)2.35 (2)3.0786 (13)140 (1)
N1—H1N1···O2A0.89 (2)2.01 (2)2.8514 (13)158 (2)
N2—H1N2···O2Ai0.87 (2)2.07 (2)2.9370 (14)173 (2)
N2—H2N2···O1A0.87 (2)2.08 (2)2.9038 (14)157 (2)
N3—H1N3···O2Ai0.88 (2)2.18 (2)3.0543 (15)175 (2)
N3—H2N3···O1Aii0.86 (2)2.59 (2)3.0649 (14)116 (1)
N3—H2N3···O2Bii0.86 (2)2.16 (2)2.9912 (15)162 (1)
C10—H10A···O2Bii0.932.583.3375 (14)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBalasubramani, K. & Fun, H.-K. (2009a). Acta Cryst. E65, o1511–o1512.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBalasubramani, K. & Fun, H.-K. (2009b). Acta Cryst. E65, o1519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1496–o1497.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds