organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[(3,5-di­chloro­anilino)carbon­yl]propionate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 10 January 2010; accepted 12 January 2010; online 16 January 2010)

In the title compound, C11H11Cl2NO3, the amide O atom and the carbonyl O atom of the ester segment are anti to each other and anti to the H atoms of the adjacent –CH2 groups. In the crystal structure, mol­ecules are packed into centrosymmetric dimers through inter­molecular N—H⋯O hydrogen bonds. The dimers are linked into a layer structure extending parallel to ([\overline{1}]02) by C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o2039.],b[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009b). Acta Cryst. E65, o3064.],c[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11Cl2NO3

  • Mr = 276.11

  • Monoclinic, C 2/c

  • a = 12.865 (2) Å

  • b = 14.753 (3) Å

  • c = 14.114 (2) Å

  • β = 109.59 (2)°

  • V = 2523.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 299 K

  • 0.50 × 0.16 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.785, Tmax = 0.941

  • 4503 measured reflections

  • 2259 independent reflections

  • 1453 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.166

  • S = 1.09

  • 2259 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (2) 2.17 (2) 3.017 (4) 172 (4)
C4—H4⋯O1ii 0.93 2.45 3.379 (5) 174
Symmetry codes: (i) [-x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the structures of biologically significant compounds (Gowda et al., 2009a,b,c), the crystal structure of N-(3,5-dichlorophenyl)methylsuccinamate [systematic name: 3-[(3,5-dichloro)-aminocarbonyl]propionate] has been determined.

The conformation of the amide O atom and the carbonyl O atom of the ester segment are anti to each other and both are anti to the H atoms of the adjacent -CH2 groups (Fig. 1), similar to that observed in N-(3,5-dichlorophenyl)methylsuccinamic acid (Gowda et al., 2009c) and N-(3,5-dimethylphenyl)ethylsuccinamate (Gowda et al., 2009a).

In the crystal, molecules are packed into centrosymmetric dimers through intermolecular N—H···O hydrogen bonds (Table 1 and Fig.2).

Related literature top

For related structures, see: Gowda et al. (2009a,b,c).

Experimental top

A solution of succinic anhydride (0.02 mol) in toluene (25 ml) was treated dropwise with a solution of 3,5-dichloroaniline (0.02 mol) in toluene (20 ml) with constant stirring. The resulting mixture was stirred for 1 h and set aside for an additional 1 hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dichloroaniline. The resultant solid N-(3,5-dichlorophenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from methanol. Pure N-(3,5-dichlorophenyl)succinamic acid in methanol was refluxed with 2 ml of conc. sulfuric acid for 2 h and was subjected to slow evaporation. The resulting N-(3,5-dichlorophenyl)methylsuccinamate was recrystallized from methanol. The purity of the compound was checked and characterized by its IR and NMR spectra. Single crystals were grown in a methanol solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and refined with a N–H distance restraint of 0.86 (2) Å. The remaining H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

As a part of studying the effect of ring and side chain substitutions on the structures of biologically significant compounds (Gowda et al., 2009a,b,c), the crystal structure of N-(3,5-dichlorophenyl)methylsuccinamate [systematic name: 3-[(3,5-dichloro)-aminocarbonyl]propionate] has been determined.

The conformation of the amide O atom and the carbonyl O atom of the ester segment are anti to each other and both are anti to the H atoms of the adjacent -CH2 groups (Fig. 1), similar to that observed in N-(3,5-dichlorophenyl)methylsuccinamic acid (Gowda et al., 2009c) and N-(3,5-dimethylphenyl)ethylsuccinamate (Gowda et al., 2009a).

In the crystal, molecules are packed into centrosymmetric dimers through intermolecular N—H···O hydrogen bonds (Table 1 and Fig.2).

For related structures, see: Gowda et al. (2009a,b,c).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing hydrogen-bonded (dashed lines) dimers.
Methyl 3-[(3,5-dichloroanilino)carbonyl]propionate top
Crystal data top
C11H11Cl2NO3F(000) = 1136
Mr = 276.11Dx = 1.453 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1000 reflections
a = 12.865 (2) Åθ = 3.0–28.1°
b = 14.753 (3) ŵ = 0.51 mm1
c = 14.114 (2) ÅT = 299 K
β = 109.59 (2)°Needle, colourless
V = 2523.7 (7) Å30.50 × 0.16 × 0.12 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2259 independent reflections
Radiation source: fine-focus sealed tube1453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Rotation method data acquisition using ω and φ scans.θmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1115
Tmin = 0.785, Tmax = 0.941k = 1710
4503 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0595P)2 + 4.6291P]
where P = (Fo2 + 2Fc2)/3
2259 reflections(Δ/σ)max = 0.002
157 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C11H11Cl2NO3V = 2523.7 (7) Å3
Mr = 276.11Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.865 (2) ŵ = 0.51 mm1
b = 14.753 (3) ÅT = 299 K
c = 14.114 (2) Å0.50 × 0.16 × 0.12 mm
β = 109.59 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2259 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1453 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.941Rint = 0.035
4503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.37 e Å3
2259 reflectionsΔρmin = 0.21 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0757 (3)0.6059 (3)0.6618 (3)0.0532 (9)
C20.0482 (3)0.5146 (3)0.6460 (3)0.0591 (10)
H20.02430.49750.61160.071*
C30.1280 (3)0.4501 (3)0.6814 (3)0.0616 (11)
C40.2370 (3)0.4721 (3)0.7337 (3)0.0627 (11)
H40.29060.42760.75800.075*
C50.2620 (3)0.5621 (3)0.7481 (3)0.0583 (10)
C60.1848 (3)0.6306 (3)0.7149 (3)0.0565 (10)
H60.20480.69110.72750.068*
C70.0024 (3)0.7610 (3)0.6273 (3)0.0560 (10)
C80.1087 (3)0.8104 (3)0.5736 (3)0.0603 (11)
H8A0.13690.79100.50400.072*
H8B0.16320.79530.60470.072*
C90.0911 (3)0.9108 (3)0.5778 (3)0.0624 (11)
H9A0.03240.92450.55120.075*
H9B0.06650.92980.64770.075*
C100.1908 (3)0.9652 (3)0.5209 (3)0.0551 (10)
C110.2543 (4)1.1146 (3)0.4756 (4)0.0849 (15)
H11A0.30941.11030.50740.102*
H11B0.28661.09980.40560.102*
H11C0.22581.17530.48240.102*
N10.0090 (2)0.6699 (2)0.6230 (3)0.0569 (9)
H1N0.072 (2)0.645 (3)0.595 (3)0.068*
O10.0828 (2)0.8016 (2)0.6710 (3)0.0875 (11)
O20.2818 (2)0.93505 (18)0.4784 (2)0.0668 (8)
O30.1659 (2)1.05231 (19)0.5228 (2)0.0754 (9)
Cl10.09280 (11)0.33629 (8)0.66222 (11)0.0926 (5)
Cl20.39797 (8)0.59326 (9)0.81343 (10)0.0845 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (19)0.062 (2)0.051 (2)0.0079 (18)0.0133 (17)0.0045 (19)
C20.057 (2)0.059 (3)0.058 (2)0.0010 (19)0.0150 (18)0.001 (2)
C30.067 (2)0.056 (3)0.064 (3)0.010 (2)0.024 (2)0.004 (2)
C40.061 (2)0.067 (3)0.061 (3)0.019 (2)0.021 (2)0.008 (2)
C50.048 (2)0.070 (3)0.056 (2)0.0104 (19)0.0149 (18)0.002 (2)
C60.048 (2)0.061 (2)0.056 (2)0.0050 (19)0.0113 (18)0.0050 (19)
C70.044 (2)0.053 (2)0.061 (3)0.0037 (18)0.0048 (17)0.0035 (19)
C80.045 (2)0.057 (2)0.066 (3)0.0019 (18)0.0017 (18)0.004 (2)
C90.045 (2)0.058 (3)0.072 (3)0.0013 (18)0.0032 (19)0.005 (2)
C100.052 (2)0.054 (2)0.055 (2)0.0041 (18)0.0130 (18)0.0002 (19)
C110.096 (4)0.058 (3)0.101 (4)0.018 (3)0.033 (3)0.010 (3)
N10.0402 (16)0.055 (2)0.065 (2)0.0013 (15)0.0040 (15)0.0031 (16)
O10.0455 (16)0.0632 (19)0.125 (3)0.0082 (14)0.0102 (16)0.0064 (18)
O20.0458 (15)0.0670 (18)0.075 (2)0.0014 (13)0.0035 (13)0.0041 (15)
O30.0653 (18)0.0543 (18)0.095 (2)0.0024 (14)0.0120 (16)0.0036 (16)
Cl10.0935 (9)0.0592 (7)0.1195 (12)0.0048 (6)0.0283 (8)0.0022 (7)
Cl20.0464 (6)0.0885 (9)0.1033 (10)0.0137 (5)0.0047 (6)0.0017 (7)
Geometric parameters (Å, º) top
C1—C21.391 (5)C7—C81.510 (5)
C1—C61.401 (5)C8—C91.496 (5)
C1—N11.407 (5)C8—H8A0.97
C2—C31.366 (5)C8—H8B0.97
C2—H20.93C9—C101.499 (5)
C3—C41.387 (6)C9—H9A0.97
C3—Cl11.736 (4)C9—H9B0.97
C4—C51.365 (6)C10—O21.207 (4)
C4—H40.93C10—O31.322 (4)
C5—C61.384 (5)C11—O31.440 (5)
C5—Cl21.743 (4)C11—H11A0.96
C6—H60.93C11—H11B0.96
C7—O11.219 (4)C11—H11C0.96
C7—N11.347 (5)N1—H1N0.850 (19)
C2—C1—C6119.5 (4)C7—C8—H8A109.4
C2—C1—N1117.8 (3)C9—C8—H8B109.4
C6—C1—N1122.7 (4)C7—C8—H8B109.4
C3—C2—C1119.8 (4)H8A—C8—H8B108.0
C3—C2—H2120.1C8—C9—C10114.7 (3)
C1—C2—H2120.1C8—C9—H9A108.6
C2—C3—C4122.2 (4)C10—C9—H9A108.6
C2—C3—Cl1119.4 (3)C8—C9—H9B108.6
C4—C3—Cl1118.3 (3)C10—C9—H9B108.6
C5—C4—C3116.9 (4)H9A—C9—H9B107.6
C5—C4—H4121.5O2—C10—O3123.8 (4)
C3—C4—H4121.5O2—C10—C9125.6 (4)
C4—C5—C6123.6 (4)O3—C10—C9110.6 (3)
C4—C5—Cl2118.7 (3)O3—C11—H11A109.5
C6—C5—Cl2117.7 (3)O3—C11—H11B109.5
C5—C6—C1117.9 (4)H11A—C11—H11B109.5
C5—C6—H6121.1O3—C11—H11C109.5
C1—C6—H6121.1H11A—C11—H11C109.5
O1—C7—N1123.0 (4)H11B—C11—H11C109.5
O1—C7—C8121.8 (4)C7—N1—C1128.6 (3)
N1—C7—C8115.2 (3)C7—N1—H1N119 (3)
C9—C8—C7111.0 (3)C1—N1—H1N113 (3)
C9—C8—H8A109.4C10—O3—C11117.5 (3)
C6—C1—C2—C30.8 (6)O1—C7—C8—C93.2 (6)
N1—C1—C2—C3179.3 (4)N1—C7—C8—C9176.8 (4)
C1—C2—C3—C40.4 (6)C7—C8—C9—C10176.4 (4)
C1—C2—C3—Cl1179.5 (3)C8—C9—C10—O24.0 (6)
C2—C3—C4—C50.6 (6)C8—C9—C10—O3175.6 (4)
Cl1—C3—C4—C5179.6 (3)O1—C7—N1—C12.7 (7)
C3—C4—C5—C61.1 (6)C8—C7—N1—C1177.3 (4)
C3—C4—C5—Cl2180.0 (3)C2—C1—N1—C7178.9 (4)
C4—C5—C6—C11.5 (6)C6—C1—N1—C71.2 (6)
Cl2—C5—C6—C1179.6 (3)O2—C10—O3—C113.3 (6)
C2—C1—C6—C51.3 (6)C9—C10—O3—C11177.0 (4)
N1—C1—C6—C5178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.17 (2)3.017 (4)172 (4)
C4—H4···O1ii0.932.453.379 (5)174
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H11Cl2NO3
Mr276.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)12.865 (2), 14.753 (3), 14.114 (2)
β (°) 109.59 (2)
V3)2523.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.50 × 0.16 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.785, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
4503, 2259, 1453
Rint0.035
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.166, 1.09
No. of reflections2259
No. of parameters157
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.17 (2)3.017 (4)172 (4)
C4—H4···O1ii0.932.453.379 (5)174
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

BSS thanks the University Grants Commission (UGC), New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009a). Acta Cryst. E65, o2039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009b). Acta Cryst. E65, o3064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds