organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N′-(5-hydr­­oxy-2-nitro­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
*Correspondence e-mail: zhoucongsh@gmail.com

(Received 10 January 2010; accepted 11 January 2010; online 16 January 2010)

The mol­ecule of the title Schiff base compound, C14H10ClN3O4, exists in a trans configuration with respect to the acyclic C=N bond. The dihedral angle between the two benzene rings is 62.37 (9)°. An intra­molecular C—H⋯O hydrogen bond is observed. In the crystal structure, adjacent mol­ecules are linked into a ribbon along [1[\overline{1}]0] by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the biological properties of Schiff bases, see: Mohamed et al. (2009[Mohamed, G. G., Omar, M. M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801-4812.]); Ritter et al. (2009[Ritter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 241-249.]); Bagihalli et al. (2008[Bagihalli, G. B., Avaji, P. G., Patil, S. A. & Badami, P. S. (2008). Eur. J. Med. Chem. 43, 2639-2649.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Jana, S., Hazra, A. & Goswami, S. (2008). Acta Cryst. E64, o175-o176.]); Shafiq et al. (2009[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501.]); Goh et al. (2010[Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, o24.]); Zhou et al. (2009[Zhou, C.-S., Hou, H.-Y. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct. 224, 37-38.]); Zhou & Yang (2009[Zhou, C.-S. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct. 224, 39-40.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClN3O4

  • Mr = 319.70

  • Triclinic, [P \overline 1]

  • a = 7.2490 (2) Å

  • b = 9.4719 (3) Å

  • c = 10.4749 (4) Å

  • α = 100.623 (2)°

  • β = 97.433 (2)°

  • γ = 96.127 (2)°

  • V = 694.64 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.]) Tmin = 0.951, Tmax = 0.957

  • 4097 measured reflections

  • 2900 independent reflections

  • 2332 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.03

  • 2900 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.89 (1) 2.09 (1) 2.9591 (18) 165 (2)
O4—H4⋯O1ii 0.82 1.85 2.6708 (17) 176
C7—H7⋯O2 0.93 2.22 2.817 (2) 122
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases usually possess excellent biological properties, such as antibacterial, antimicrobial, and antitumor (Mohamed et al., 2009; Ritter et al., 2009; Bagihalli et al., 2008). Recently, a large number of Schiff bases derived from the reaction of aldehydes with benzohydrazides have been reported (Fun et al., 2008; Shafiq et al., 2009; Goh et al., 2010). In this paper, the crystal structure of the title new Schiff base derived from the condensing of 5-hydroxy-2-nitrobenzaldehyde with 2-chlorobenzohydrazide in methanol is reported.

Bond lengths in the title molecule (Fig. 1) are comparable to those observed in related structures (Zhou et al., 2009; Zhou & Yang, 2009). The molecule exists in a trans configuration with respect to the acyclic CN bond. The dihedral angle between the two benzene rings is 62.37 (9)°. An intramolecular C—H···O hydrogen bond is observed.

In the crystal structure, intermolecular N—H···O and O—H···O hydrogen bonds link adjacent molecules into a ribbon along [110] (Table 1 and Fig. 2).

Related literature top

For the biological properties of Schiff bases, see: Mohamed et al. (2009); Ritter et al. (2009); Bagihalli et al. (2008). For related structures, see: Fun et al. (2008); Shafiq et al. (2009); Goh et al. (2010); Zhou et al. (2009); Zhou & Yang (2009).

Experimental top

5-Hydroxy-2-nitrobenzaldehyde (1.0 mmol, 167.1 mg) and 2-chlorobenzohydrazide (1.0 mmol, 170.0 mg) were dissolved in a methanol solution (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding colourless block-shaped crystals.

Refinement top

Atom H2 was located in a difference map and refined with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically [C–H = 0.93 Å and O–H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

Schiff bases usually possess excellent biological properties, such as antibacterial, antimicrobial, and antitumor (Mohamed et al., 2009; Ritter et al., 2009; Bagihalli et al., 2008). Recently, a large number of Schiff bases derived from the reaction of aldehydes with benzohydrazides have been reported (Fun et al., 2008; Shafiq et al., 2009; Goh et al., 2010). In this paper, the crystal structure of the title new Schiff base derived from the condensing of 5-hydroxy-2-nitrobenzaldehyde with 2-chlorobenzohydrazide in methanol is reported.

Bond lengths in the title molecule (Fig. 1) are comparable to those observed in related structures (Zhou et al., 2009; Zhou & Yang, 2009). The molecule exists in a trans configuration with respect to the acyclic CN bond. The dihedral angle between the two benzene rings is 62.37 (9)°. An intramolecular C—H···O hydrogen bond is observed.

In the crystal structure, intermolecular N—H···O and O—H···O hydrogen bonds link adjacent molecules into a ribbon along [110] (Table 1 and Fig. 2).

For the biological properties of Schiff bases, see: Mohamed et al. (2009); Ritter et al. (2009); Bagihalli et al. (2008). For related structures, see: Fun et al. (2008); Shafiq et al. (2009); Goh et al. (2010); Zhou et al. (2009); Zhou & Yang (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-Chloro-N'-(5-hydroxy-2-nitrobenzylidene)benzohydrazide top
Crystal data top
C14H10ClN3O4Z = 2
Mr = 319.70F(000) = 328
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2490 (2) ÅCell parameters from 1937 reflections
b = 9.4719 (3) Åθ = 2.6–28.4°
c = 10.4749 (4) ŵ = 0.30 mm1
α = 100.623 (2)°T = 298 K
β = 97.433 (2)°Block, colourless
γ = 96.127 (2)°0.17 × 0.15 × 0.15 mm
V = 694.64 (4) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2900 independent reflections
Radiation source: fine-focus sealed tube2332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.951, Tmax = 0.957k = 1112
4097 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.2231P]
where P = (Fo2 + 2Fc2)/3
2900 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C14H10ClN3O4γ = 96.127 (2)°
Mr = 319.70V = 694.64 (4) Å3
Triclinic, P1Z = 2
a = 7.2490 (2) ÅMo Kα radiation
b = 9.4719 (3) ŵ = 0.30 mm1
c = 10.4749 (4) ÅT = 298 K
α = 100.623 (2)°0.17 × 0.15 × 0.15 mm
β = 97.433 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2900 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2332 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.957Rint = 0.016
4097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
2900 reflectionsΔρmin = 0.25 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21511 (7)0.78685 (7)0.05703 (5)0.06308 (19)
N10.2273 (2)0.77176 (15)0.47983 (14)0.0378 (3)
N20.3525 (2)0.78387 (15)0.39232 (15)0.0387 (3)
N30.3042 (2)0.46714 (16)0.72546 (17)0.0469 (4)
O10.30056 (19)1.01035 (13)0.37374 (13)0.0487 (3)
O20.3739 (2)0.42683 (16)0.62639 (16)0.0618 (4)
O30.3681 (2)0.44819 (19)0.83292 (17)0.0740 (5)
O40.33418 (18)0.74516 (14)0.71890 (14)0.0501 (3)
H40.32060.81880.68850.075*
C10.1112 (2)0.63648 (17)0.62866 (16)0.0356 (4)
C20.1367 (2)0.54064 (17)0.71438 (17)0.0370 (4)
C30.0078 (3)0.51237 (18)0.79603 (18)0.0427 (4)
H30.02900.44800.85180.051*
C40.1514 (3)0.57918 (19)0.79491 (18)0.0418 (4)
H4A0.24070.55750.84710.050*
C50.1775 (2)0.67960 (18)0.71488 (17)0.0381 (4)
C60.0480 (2)0.70698 (18)0.63260 (17)0.0372 (4)
H60.06790.77370.57900.045*
C70.2412 (2)0.66589 (18)0.53720 (18)0.0396 (4)
H70.33360.60680.52140.047*
C80.3786 (2)0.90324 (17)0.34225 (16)0.0342 (4)
C90.5138 (2)0.89383 (17)0.24509 (17)0.0352 (4)
C100.4520 (2)0.84446 (18)0.11239 (18)0.0391 (4)
C110.5744 (3)0.8381 (2)0.02143 (19)0.0480 (5)
H110.53020.80600.06770.058*
C120.7634 (3)0.8801 (2)0.0653 (2)0.0551 (5)
H120.84730.87700.00510.066*
C130.8291 (3)0.9268 (2)0.1973 (2)0.0598 (6)
H130.95710.95370.22600.072*
C140.7048 (3)0.9337 (2)0.2875 (2)0.0497 (5)
H140.74950.96510.37670.060*
H20.421 (3)0.713 (2)0.373 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0402 (3)0.0935 (4)0.0521 (3)0.0016 (2)0.0072 (2)0.0100 (3)
N10.0386 (8)0.0387 (7)0.0418 (8)0.0101 (6)0.0200 (6)0.0102 (6)
N20.0396 (8)0.0373 (7)0.0475 (8)0.0143 (6)0.0243 (7)0.0128 (6)
N30.0455 (9)0.0406 (8)0.0619 (11)0.0148 (7)0.0141 (8)0.0196 (7)
O10.0609 (8)0.0432 (7)0.0561 (8)0.0249 (6)0.0327 (7)0.0191 (6)
O20.0643 (10)0.0625 (9)0.0756 (10)0.0356 (7)0.0338 (8)0.0261 (8)
O30.0729 (11)0.0925 (12)0.0715 (11)0.0404 (9)0.0110 (9)0.0382 (9)
O40.0463 (7)0.0567 (8)0.0628 (9)0.0224 (6)0.0302 (6)0.0280 (7)
C10.0368 (9)0.0324 (8)0.0399 (9)0.0056 (6)0.0127 (7)0.0077 (7)
C20.0363 (9)0.0340 (8)0.0438 (9)0.0088 (7)0.0106 (7)0.0103 (7)
C30.0490 (10)0.0395 (9)0.0454 (10)0.0083 (8)0.0141 (8)0.0176 (8)
C40.0428 (10)0.0447 (9)0.0441 (10)0.0073 (7)0.0198 (8)0.0149 (8)
C50.0382 (9)0.0376 (8)0.0419 (9)0.0089 (7)0.0143 (7)0.0086 (7)
C60.0394 (9)0.0371 (8)0.0411 (9)0.0100 (7)0.0154 (7)0.0138 (7)
C70.0382 (9)0.0384 (9)0.0489 (10)0.0135 (7)0.0182 (8)0.0134 (8)
C80.0334 (8)0.0372 (8)0.0349 (9)0.0093 (7)0.0112 (7)0.0078 (7)
C90.0366 (9)0.0319 (8)0.0410 (9)0.0083 (6)0.0163 (7)0.0079 (7)
C100.0363 (9)0.0426 (9)0.0426 (10)0.0083 (7)0.0141 (7)0.0124 (7)
C110.0512 (11)0.0585 (11)0.0399 (10)0.0129 (9)0.0199 (9)0.0123 (8)
C120.0499 (12)0.0622 (12)0.0601 (13)0.0098 (9)0.0338 (10)0.0110 (10)
C130.0373 (10)0.0655 (13)0.0723 (15)0.0002 (9)0.0225 (10)0.0031 (11)
C140.0407 (10)0.0555 (11)0.0484 (11)0.0057 (8)0.0121 (8)0.0047 (9)
Geometric parameters (Å, º) top
Cl1—C101.7346 (18)C4—C51.391 (2)
N1—C71.267 (2)C4—H4A0.93
N1—N21.3814 (18)C5—C61.390 (2)
N2—C81.337 (2)C6—H60.93
N2—H20.891 (10)C7—H70.93
N3—O31.213 (2)C8—C91.500 (2)
N3—O21.228 (2)C9—C101.381 (2)
N3—C21.465 (2)C9—C141.387 (3)
O1—C81.2268 (19)C10—C111.381 (2)
O4—C51.353 (2)C11—C121.378 (3)
O4—H40.82C11—H110.93
C1—C61.395 (2)C12—C131.376 (3)
C1—C21.399 (2)C12—H120.93
C1—C71.470 (2)C13—C141.385 (3)
C2—C31.384 (2)C13—H130.93
C3—C41.374 (2)C14—H140.93
C3—H30.93
C7—N1—N2114.29 (13)C1—C6—H6119.3
C8—N2—N1121.18 (13)N1—C7—C1120.03 (14)
C8—N2—H2119.8 (16)N1—C7—H7120.0
N1—N2—H2119.0 (16)C1—C7—H7120.0
O3—N3—O2122.61 (16)O1—C8—N2123.19 (14)
O3—N3—C2118.25 (16)O1—C8—C9123.39 (14)
O2—N3—C2119.14 (16)N2—C8—C9113.42 (13)
C5—O4—H4109.5C10—C9—C14118.64 (15)
C6—C1—C2116.75 (14)C10—C9—C8121.08 (15)
C6—C1—C7119.39 (14)C14—C9—C8120.28 (16)
C2—C1—C7123.86 (15)C9—C10—C11121.74 (17)
C3—C2—C1122.08 (15)C9—C10—Cl1119.70 (12)
C3—C2—N3115.99 (15)C11—C10—Cl1118.56 (15)
C1—C2—N3121.91 (15)C12—C11—C10118.78 (18)
C4—C3—C2120.15 (15)C12—C11—H11120.6
C4—C3—H3119.9C10—C11—H11120.6
C2—C3—H3119.9C13—C12—C11120.62 (17)
C3—C4—C5119.29 (15)C13—C12—H12119.7
C3—C4—H4A120.4C11—C12—H12119.7
C5—C4—H4A120.4C12—C13—C14120.08 (19)
O4—C5—C6122.39 (15)C12—C13—H13120.0
O4—C5—C4117.36 (15)C14—C13—H13120.0
C6—C5—C4120.23 (15)C13—C14—C9120.11 (19)
C5—C6—C1121.40 (15)C13—C14—H14119.9
C5—C6—H6119.3C9—C14—H14119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (1)2.09 (1)2.9591 (18)165 (2)
O4—H4···O1ii0.821.852.6708 (17)176
C7—H7···O20.932.222.817 (2)122
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H10ClN3O4
Mr319.70
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2490 (2), 9.4719 (3), 10.4749 (4)
α, β, γ (°)100.623 (2), 97.433 (2), 96.127 (2)
V3)694.64 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
4097, 2900, 2332
Rint0.016
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.03
No. of reflections2900
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (1)2.09 (1)2.9591 (18)165 (2)
O4—H4···O1ii0.821.852.6708 (17)176
C7—H7···O20.932.222.817 (2)122
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1.
 

Acknowledgements

The authors acknowledge the Hunan Provincial Natural Science Foundation of China (grant No. 09 J J6022) and the Scientific Research Fund of Hunan Provincial Education Department (grant No. 08B031), China, for financial support.

References

First citationBagihalli, G. B., Avaji, P. G., Patil, S. A. & Badami, P. S. (2008). Eur. J. Med. Chem. 43, 2639–2649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chantrapromma, S., Jana, S., Hazra, A. & Goswami, S. (2008). Acta Cryst. E64, o175–o176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, o24.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, G. G., Omar, M. M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801–4812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRitter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 241–249.  Web of Science CrossRef CAS Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, C.-S., Hou, H.-Y. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct. 224, 37–38.  CAS Google Scholar
First citationZhou, C.-S. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct. 224, 39–40.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds