organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N-(3-methyl­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 17 January 2010; accepted 18 January 2010; online 23 January 2010)

In the title compound, C15H15NO3S, the sulfonyl and amide-bound benzene rings are oriented at dihedral angles of 83.1 (1) and 22.5 (3)°, respectively, with the almost planar S—N—C=O segment (r.m.s. deviation = 0.003 Å). The dihedral angle between the two benzene rings is 74.8 (1)°. In the crystal structure, pairs of mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds.

Related literature

For background literature and similar structures, see: Gowda et al. (2009a[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.],b[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.]); Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o327.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO3S

  • Mr = 289.34

  • Monoclinic, C 2/c

  • a = 18.023 (4) Å

  • b = 12.045 (3) Å

  • c = 17.335 (4) Å

  • β = 127.67 (1)°

  • V = 2978.7 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 299 K

  • 0.30 × 0.18 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 10158 measured reflections

  • 2654 independent reflections

  • 2219 reflections with I > 2σ(I)

  • Rint = 0.072

  • 3 standard reflections every 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.176

  • S = 1.08

  • 2654 reflections

  • 187 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.06 (2) 2.884 (4) 179 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009a,b; Suchetan et al., 2010), in the present work, the structure of N-(3-methylbenzoyl)-2-methylbenzenesulfonamide (I) has been determined (Fig.1). The conformation of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the CO bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009a) and N-(3-chlorobenzoyl)- benzenesulfonamide (III)(Gowda et al., 2009b). The molecule is twisted at the S atom with a dihedral angle of 83.1 (1)° between the sulfonyl-bound benzene ring and the S-NH-CO segment, compared to the values of 86.5 (1) in (II) and 89.9 (1)° in (III). Furthermore, the dihedral angle between the two benzene rings is 74.8 (1)° in (I) and 80.3(0.1) in (II) and 87.5 (1)° in (III).

The molecules are linked into dimers by N—H···O(S) hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For background literature and similar structures, see: Gowda et al. (2009a,b); Suchetan et al. (2010).

Experimental top

The title compound was prepared by refluxing a mixture of 3-methylbenzoic acid, 2-methylbenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid, N-(3-methylbenzoyl)2-methylbenzenesulfonamide, was separated, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point. Prism like colourless single crystals of the title compound were grown by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its positional parameters were refined with the N-H distance restrained to 0.86 (3) Å. The remaining H atoms were positioned with idealized geometry and refined using a riding model with C–H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Structure description top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of a study of the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009a,b; Suchetan et al., 2010), in the present work, the structure of N-(3-methylbenzoyl)-2-methylbenzenesulfonamide (I) has been determined (Fig.1). The conformation of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the CO bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009a) and N-(3-chlorobenzoyl)- benzenesulfonamide (III)(Gowda et al., 2009b). The molecule is twisted at the S atom with a dihedral angle of 83.1 (1)° between the sulfonyl-bound benzene ring and the S-NH-CO segment, compared to the values of 86.5 (1) in (II) and 89.9 (1)° in (III). Furthermore, the dihedral angle between the two benzene rings is 74.8 (1)° in (I) and 80.3(0.1) in (II) and 87.5 (1)° in (III).

The molecules are linked into dimers by N—H···O(S) hydrogen bonds (Table 1 and Fig. 2).

For background literature and similar structures, see: Gowda et al. (2009a,b); Suchetan et al. (2010).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
2-Methyl-N-(3-methylbenzoyl)benzenesulfonamide top
Crystal data top
C15H15NO3SF(000) = 1216
Mr = 289.34Dx = 1.290 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 18.023 (4) Åθ = 4.8–20.5°
b = 12.045 (3) ŵ = 1.99 mm1
c = 17.335 (4) ÅT = 299 K
β = 127.67 (1)°Prism, colourless
V = 2978.7 (12) Å30.30 × 0.18 × 0.18 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.072
Radiation source: fine-focus sealed tubeθmax = 67.0°, θmin = 4.6°
Graphite monochromatorh = 2121
ω/2θ scansk = 1414
10158 measured reflectionsl = 2020
2654 independent reflections3 standard reflections every 120 min
2219 reflections with I > 2σ(I) intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0835P)2 + 3.6838P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.007
2654 reflectionsΔρmax = 0.41 e Å3
187 parametersΔρmin = 0.28 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (2)
Crystal data top
C15H15NO3SV = 2978.7 (12) Å3
Mr = 289.34Z = 8
Monoclinic, C2/cCu Kα radiation
a = 18.023 (4) ŵ = 1.99 mm1
b = 12.045 (3) ÅT = 299 K
c = 17.335 (4) Å0.30 × 0.18 × 0.18 mm
β = 127.67 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.072
10158 measured reflections3 standard reflections every 120 min
2654 independent reflections intensity decay: 1.5%
2219 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.176H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.41 e Å3
2654 reflectionsΔρmin = 0.28 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39278 (5)0.37414 (6)0.48527 (5)0.0536 (3)
O10.41777 (17)0.48868 (19)0.50971 (18)0.0718 (7)
O20.39810 (16)0.3050 (2)0.55495 (15)0.0708 (7)
O30.41415 (18)0.15139 (19)0.4361 (2)0.0767 (7)
N10.46572 (18)0.3289 (2)0.4653 (2)0.0586 (7)
H1N0.499 (2)0.381 (2)0.472 (3)0.070*
C10.2810 (2)0.3633 (2)0.3733 (2)0.0499 (7)
C20.2518 (2)0.4330 (2)0.2951 (2)0.0592 (8)
C30.1604 (3)0.4177 (3)0.2116 (3)0.0777 (10)
H30.13810.46250.15780.093*
C40.1016 (3)0.3391 (3)0.2053 (3)0.0773 (10)
H40.04070.33190.14800.093*
C50.1322 (2)0.2713 (3)0.2829 (3)0.0715 (9)
H50.09240.21820.27870.086*
C60.2223 (2)0.2827 (3)0.3672 (2)0.0590 (8)
H60.24400.23640.42000.071*
C70.4670 (2)0.2184 (3)0.4415 (2)0.0600 (8)
C80.5356 (2)0.1891 (3)0.4240 (2)0.0605 (8)
C90.5736 (2)0.2662 (3)0.3972 (2)0.0674 (9)
H90.55890.34110.39330.081*
C100.6332 (3)0.2327 (4)0.3764 (3)0.0878 (12)
C110.6549 (4)0.1236 (5)0.3850 (5)0.1154 (19)
H110.69350.10000.36950.138*
C120.6215 (4)0.0456 (4)0.4160 (5)0.1150 (18)
H120.64070.02800.42510.138*
C130.5602 (3)0.0787 (3)0.4328 (3)0.0810 (11)
H130.53480.02660.45030.097*
C140.3103 (3)0.5223 (3)0.2966 (3)0.0810 (11)
H14A0.37140.49340.32370.097*
H14B0.31610.58310.33570.097*
H14C0.28090.54760.23130.097*
C150.6712 (4)0.3156 (5)0.3441 (4)0.1154 (17)
H15A0.73280.33810.39910.138*
H15B0.63080.37930.31680.138*
H15C0.67440.28260.29580.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0517 (5)0.0539 (5)0.0577 (5)0.0039 (3)0.0348 (4)0.0060 (3)
O10.0712 (14)0.0582 (13)0.0930 (16)0.0136 (11)0.0538 (14)0.0249 (12)
O20.0653 (14)0.0888 (17)0.0578 (12)0.0003 (12)0.0374 (11)0.0127 (11)
O30.0791 (16)0.0542 (13)0.1081 (19)0.0074 (11)0.0629 (15)0.0032 (12)
N10.0540 (15)0.0563 (15)0.0753 (16)0.0050 (11)0.0445 (13)0.0054 (13)
C10.0525 (16)0.0454 (15)0.0561 (15)0.0004 (12)0.0353 (14)0.0020 (12)
C20.0656 (19)0.0518 (16)0.0650 (18)0.0056 (14)0.0423 (16)0.0049 (14)
C30.081 (2)0.079 (2)0.0598 (19)0.013 (2)0.0361 (19)0.0094 (17)
C40.061 (2)0.081 (2)0.064 (2)0.0008 (18)0.0243 (17)0.0085 (18)
C50.0584 (19)0.068 (2)0.080 (2)0.0135 (16)0.0380 (18)0.0138 (18)
C60.0602 (18)0.0550 (17)0.0639 (18)0.0037 (14)0.0391 (15)0.0003 (14)
C70.0608 (18)0.0506 (17)0.0637 (18)0.0005 (14)0.0355 (16)0.0008 (14)
C80.0585 (17)0.0582 (18)0.0635 (18)0.0009 (14)0.0367 (15)0.0061 (14)
C90.075 (2)0.0611 (19)0.074 (2)0.0045 (16)0.0503 (19)0.0077 (16)
C100.090 (3)0.103 (3)0.092 (3)0.013 (2)0.067 (2)0.021 (2)
C110.116 (4)0.110 (4)0.173 (5)0.014 (3)0.115 (4)0.047 (4)
C120.118 (4)0.086 (3)0.170 (5)0.006 (3)0.103 (4)0.031 (3)
C130.084 (3)0.057 (2)0.107 (3)0.0001 (18)0.062 (2)0.0099 (19)
C140.093 (3)0.067 (2)0.095 (3)0.0019 (19)0.063 (2)0.019 (2)
C150.120 (4)0.144 (5)0.127 (4)0.023 (3)0.099 (4)0.009 (3)
Geometric parameters (Å, º) top
S1—O21.421 (2)C7—C81.484 (4)
S1—O11.433 (2)C8—C131.381 (5)
S1—N11.643 (3)C8—C91.391 (5)
S1—C11.750 (3)C9—C101.386 (5)
O3—C71.209 (4)C9—H90.93
N1—C71.398 (4)C10—C111.353 (7)
N1—H1N0.83 (2)C10—C151.499 (6)
C1—C61.392 (4)C11—C121.387 (7)
C1—C21.396 (4)C11—H110.93
C2—C31.388 (5)C12—C131.364 (6)
C2—C141.494 (5)C12—H120.93
C3—C41.376 (6)C13—H130.93
C3—H30.93C14—H14A0.96
C4—C51.368 (5)C14—H14B0.96
C4—H40.93C14—H14C0.96
C5—C61.375 (5)C15—H15A0.96
C5—H50.93C15—H15B0.96
C6—H60.93C15—H15C0.96
O2—S1—O1117.85 (15)C13—C8—C9119.3 (3)
O2—S1—N1109.70 (15)C13—C8—C7117.2 (3)
O1—S1—N1103.55 (14)C9—C8—C7123.4 (3)
O2—S1—C1109.46 (14)C10—C9—C8120.7 (4)
O1—S1—C1109.93 (14)C10—C9—H9119.7
N1—S1—C1105.55 (14)C8—C9—H9119.7
C7—N1—S1122.6 (2)C11—C10—C9118.2 (4)
C7—N1—H1N128 (3)C11—C10—C15121.4 (4)
S1—N1—H1N109 (3)C9—C10—C15120.4 (4)
C6—C1—C2121.9 (3)C10—C11—C12122.4 (4)
C6—C1—S1116.3 (2)C10—C11—H11118.8
C2—C1—S1121.9 (2)C12—C11—H11118.8
C3—C2—C1115.8 (3)C13—C12—C11119.0 (4)
C3—C2—C14119.3 (3)C13—C12—H12120.5
C1—C2—C14124.9 (3)C11—C12—H12120.5
C4—C3—C2122.7 (3)C12—C13—C8120.3 (4)
C4—C3—H3118.6C12—C13—H13119.8
C2—C3—H3118.6C8—C13—H13119.8
C5—C4—C3120.3 (3)C2—C14—H14A109.5
C5—C4—H4119.9C2—C14—H14B109.5
C3—C4—H4119.9H14A—C14—H14B109.5
C4—C5—C6119.3 (3)C2—C14—H14C109.5
C4—C5—H5120.3H14A—C14—H14C109.5
C6—C5—H5120.3H14B—C14—H14C109.5
C5—C6—C1120.0 (3)C10—C15—H15A109.5
C5—C6—H6120.0C10—C15—H15B109.5
C1—C6—H6120.0H15A—C15—H15B109.5
O3—C7—N1120.2 (3)C10—C15—H15C109.5
O3—C7—C8122.8 (3)H15A—C15—H15C109.5
N1—C7—C8117.0 (3)H15B—C15—H15C109.5
O2—S1—N1—C751.6 (3)C2—C1—C6—C51.1 (5)
O1—S1—N1—C7178.3 (3)S1—C1—C6—C5177.6 (3)
C1—S1—N1—C766.2 (3)S1—N1—C7—O31.1 (5)
O2—S1—C1—C67.5 (3)S1—N1—C7—C8179.1 (2)
O1—S1—C1—C6138.4 (2)O3—C7—C8—C1320.9 (5)
N1—S1—C1—C6110.5 (2)N1—C7—C8—C13158.9 (3)
O2—S1—C1—C2171.3 (2)O3—C7—C8—C9157.4 (3)
O1—S1—C1—C240.4 (3)N1—C7—C8—C922.8 (5)
N1—S1—C1—C270.7 (3)C13—C8—C9—C102.1 (5)
C6—C1—C2—C30.8 (5)C7—C8—C9—C10176.3 (3)
S1—C1—C2—C3178.0 (2)C8—C9—C10—C111.5 (6)
C6—C1—C2—C14179.1 (3)C8—C9—C10—C15177.8 (4)
S1—C1—C2—C140.4 (5)C9—C10—C11—C121.6 (8)
C1—C2—C3—C40.0 (5)C15—C10—C11—C12179.1 (5)
C14—C2—C3—C4178.5 (4)C10—C11—C12—C134.1 (9)
C2—C3—C4—C50.3 (6)C11—C12—C13—C83.3 (8)
C3—C4—C5—C60.0 (6)C9—C8—C13—C120.4 (6)
C4—C5—C6—C10.7 (5)C7—C8—C13—C12178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.06 (2)2.884 (4)179 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H15NO3S
Mr289.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)18.023 (4), 12.045 (3), 17.335 (4)
β (°) 127.67 (1)
V3)2978.7 (12)
Z8
Radiation typeCu Kα
µ (mm1)1.99
Crystal size (mm)0.30 × 0.18 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10158, 2654, 2219
Rint0.072
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.176, 1.08
No. of reflections2654
No. of parameters187
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.28

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.06 (2)2.884 (4)179 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o327.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds