organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano­anilinium perchlorate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 22 January 2010; accepted 25 January 2010; online 30 January 2010)

In the title compound, C7H7N2+·ClO4, the cation is almost planar (r.m.s. deviation = 0.042 Å). In the crystal structure, the cations and anions are linked into a two-dimensional network parallel to (100) by N—H⋯O hydrogen bonds.

Related literature

For the crystal structure of 2-cyano­anilinium chloride, see: Oueslati et al. (2005[Oueslati, A., Kefi, R., Akriche, S. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 365-366.]). For Cl—O distances, see: Messai et al. (2009[Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2+·ClO4

  • Mr = 218.60

  • Monoclinic, P 21 /c

  • a = 11.089 (2) Å

  • b = 7.4561 (15) Å

  • c = 13.872 (5) Å

  • β = 128.454 (18)°

  • V = 898.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 298 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.90, Tmax = 1.00

  • 9026 measured reflections

  • 2070 independent reflections

  • 1761 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.11

  • 2070 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.89 2.14 2.936 (2) 148
N2—H2B⋯O4ii 0.89 2.24 3.007 (3) 144
N2—H2C⋯O1iii 0.89 1.98 2.842 (2) 161
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aniline derivatives attracted more attention as phase transition dielectric materials for their applications in micro-electronics and memory storage. With the purpose of obtaining phase transition crystals of 2-aminobenzonitrile salts, its interaction with various acids has been studied and we have obtained a series of new materials with this organic molecule. In this paper, we describe the crystal structure of the title compound, 2-cyanoanilinium perchlorate.

The asymmetric unit is composed of a 2-cyanoanilinium cation and a perchlorate anion (Fig.1). The anion displays a typical tetrahedral geometry around Cl atom and the Cl—O distances compare well with previously reported values (Messai et al., 2009). The cation is almost planar (r.m.s. deviation 0.042 Å; maximum atomic deviation from coplanarity is 0.073 (2) Å by atom N1). The C—NH3 [1.466 (2) Å] and CN [1.143 (3) Å] distances in the 2-cyanoanilinium cation are longer compared to the corresponding distances in the crystal structure of 2-cyanoanilinium chloride (1.457 (4) Å, 1.137 (4) Å; Oueslati et al., 2005).

In the crystal structure, all the amine group H atoms are involved in N—H···O hydrogen bonds (Table 1). The N—H···O hydrogen bonds link the ionic units into a two-dimensional network parallel to the ac plane (Fig. 2).

Related literature top

For the crystal structure of 2-cyanoanilinium chloride, see: Oueslati et al. (2005). For Cl—O distances, see: Messai et al. (2009).

Experimental top

The commercial 2-aminobenzonitrile (3 mmol, 324 mg) was dissolved in a water-HClO4 (50:1 v/v) solution. The solvent was slowly evaporated in air affording colourless crystals of the title compound suitable for X-ray analysis.

While the permittivity measurement shows that there is no phase transition within the temperature range (from 100 K to 400 K), and the permittivity is 7.8 at 1 MHz at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. They were then constrained to an ideal geometry, with C–H = 0.93 Å, N–H = 0.89 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N). A rotating-group model was used for the -NH3 group.

Structure description top

Aniline derivatives attracted more attention as phase transition dielectric materials for their applications in micro-electronics and memory storage. With the purpose of obtaining phase transition crystals of 2-aminobenzonitrile salts, its interaction with various acids has been studied and we have obtained a series of new materials with this organic molecule. In this paper, we describe the crystal structure of the title compound, 2-cyanoanilinium perchlorate.

The asymmetric unit is composed of a 2-cyanoanilinium cation and a perchlorate anion (Fig.1). The anion displays a typical tetrahedral geometry around Cl atom and the Cl—O distances compare well with previously reported values (Messai et al., 2009). The cation is almost planar (r.m.s. deviation 0.042 Å; maximum atomic deviation from coplanarity is 0.073 (2) Å by atom N1). The C—NH3 [1.466 (2) Å] and CN [1.143 (3) Å] distances in the 2-cyanoanilinium cation are longer compared to the corresponding distances in the crystal structure of 2-cyanoanilinium chloride (1.457 (4) Å, 1.137 (4) Å; Oueslati et al., 2005).

In the crystal structure, all the amine group H atoms are involved in N—H···O hydrogen bonds (Table 1). The N—H···O hydrogen bonds link the ionic units into a two-dimensional network parallel to the ac plane (Fig. 2).

For the crystal structure of 2-cyanoanilinium chloride, see: Oueslati et al. (2005). For Cl—O distances, see: Messai et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a two-dimensional network parallel to the (100). H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
2-Cyanoanilinium perchlorate top
Crystal data top
C7H7N2+·ClO4F(000) = 448
Mr = 218.60Dx = 1.617 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1761 reflections
a = 11.089 (2) Åθ = 3.3–27.5°
b = 7.4561 (15) ŵ = 0.42 mm1
c = 13.872 (5) ÅT = 298 K
β = 128.454 (18)°Needle, colourless
V = 898.2 (4) Å30.40 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2070 independent reflections
Radiation source: fine-focus sealed tube1761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD profile fitting scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.90, Tmax = 1.00l = 1818
9026 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.522P]
where P = (Fo2 + 2Fc2)/3
2070 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C7H7N2+·ClO4V = 898.2 (4) Å3
Mr = 218.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.089 (2) ŵ = 0.42 mm1
b = 7.4561 (15) ÅT = 298 K
c = 13.872 (5) Å0.40 × 0.05 × 0.05 mm
β = 128.454 (18)°
Data collection top
Rigaku Mercury2
diffractometer
2070 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1761 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 1.00Rint = 0.041
9026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.11Δρmax = 0.32 e Å3
2070 reflectionsΔρmin = 0.30 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.10356 (18)0.1622 (2)0.40630 (16)0.0351 (4)
H2A0.06660.05230.37840.053*
H2B0.07430.23320.34350.053*
H2C0.06750.20530.44380.053*
N10.2247 (3)0.4407 (3)0.2725 (2)0.0647 (7)
C70.2722 (2)0.1553 (3)0.49390 (19)0.0327 (4)
C10.2853 (3)0.3504 (3)0.3573 (2)0.0472 (6)
C50.5007 (3)0.0559 (4)0.6835 (2)0.0629 (8)
H50.54930.00640.75720.075*
C20.3588 (2)0.2429 (3)0.4665 (2)0.0386 (5)
C60.3415 (3)0.0628 (3)0.6013 (2)0.0469 (6)
H60.28270.00540.61890.056*
C40.5883 (3)0.1403 (4)0.6574 (3)0.0662 (8)
H40.69520.13430.71330.079*
C30.5183 (3)0.2326 (4)0.5496 (3)0.0547 (7)
H30.57750.28860.53200.066*
Cl10.91401 (6)0.33466 (7)0.57188 (4)0.03477 (17)
O40.8898 (2)0.2197 (2)0.64175 (15)0.0471 (4)
O30.7769 (2)0.4305 (3)0.48297 (16)0.0681 (6)
O21.0336 (2)0.4577 (2)0.65476 (18)0.0610 (5)
O10.9559 (2)0.2236 (3)0.51274 (17)0.0574 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0340 (9)0.0349 (9)0.0403 (10)0.0018 (7)0.0250 (8)0.0023 (7)
N10.0733 (16)0.0653 (15)0.0617 (14)0.0195 (13)0.0451 (13)0.0017 (12)
C70.0326 (10)0.0306 (10)0.0365 (10)0.0049 (8)0.0223 (9)0.0081 (8)
C10.0499 (13)0.0460 (13)0.0576 (15)0.0166 (11)0.0393 (13)0.0111 (12)
C50.0518 (15)0.0571 (16)0.0415 (13)0.0008 (13)0.0101 (12)0.0004 (12)
C20.0391 (11)0.0351 (11)0.0491 (12)0.0064 (9)0.0311 (10)0.0094 (9)
C60.0476 (13)0.0474 (13)0.0384 (12)0.0070 (11)0.0232 (11)0.0029 (10)
C40.0314 (12)0.0587 (16)0.0718 (19)0.0030 (12)0.0140 (13)0.0145 (15)
C30.0393 (13)0.0495 (14)0.0762 (18)0.0111 (11)0.0364 (14)0.0166 (13)
Cl10.0407 (3)0.0312 (3)0.0334 (3)0.0017 (2)0.0235 (2)0.00068 (19)
O40.0561 (10)0.0436 (9)0.0532 (10)0.0028 (8)0.0397 (9)0.0023 (8)
O30.0669 (12)0.0745 (14)0.0424 (10)0.0332 (11)0.0238 (9)0.0151 (9)
O20.0660 (12)0.0423 (10)0.0638 (11)0.0212 (9)0.0349 (10)0.0126 (8)
O10.0724 (12)0.0587 (11)0.0635 (11)0.0041 (9)0.0534 (11)0.0085 (9)
Geometric parameters (Å, º) top
N2—C71.466 (2)C5—H50.93
N2—H2A0.89C2—C31.388 (3)
N2—H2B0.89C6—H60.93
N2—H2C0.89C4—C31.367 (4)
N1—C11.143 (3)C4—H40.93
C7—C61.364 (3)C3—H30.93
C7—C21.396 (3)Cl1—O31.4181 (18)
C1—C21.437 (4)Cl1—O21.4233 (18)
C5—C41.381 (4)Cl1—O11.4315 (17)
C5—C61.385 (4)Cl1—O41.4385 (17)
C7—N2—H2A109.5C7—C6—C5118.8 (2)
C7—N2—H2B109.5C7—C6—H6120.6
H2A—N2—H2B109.5C5—C6—H6120.6
C7—N2—H2C109.5C3—C4—C5120.2 (2)
H2A—N2—H2C109.5C3—C4—H4119.9
H2B—N2—H2C109.5C5—C4—H4119.9
C6—C7—C2121.2 (2)C4—C3—C2120.0 (2)
C6—C7—N2118.99 (19)C4—C3—H3120.0
C2—C7—N2119.78 (19)C2—C3—H3120.0
N1—C1—C2177.1 (3)O3—Cl1—O2109.53 (13)
C4—C5—C6120.8 (3)O3—Cl1—O1110.35 (12)
C4—C5—H5119.6O2—Cl1—O1111.38 (12)
C6—C5—H5119.6O3—Cl1—O4109.75 (12)
C3—C2—C7119.0 (2)O2—Cl1—O4108.07 (11)
C3—C2—C1120.1 (2)O1—Cl1—O4107.72 (11)
C7—C2—C1120.8 (2)
C6—C7—C2—C31.0 (3)C4—C5—C6—C70.3 (4)
N2—C7—C2—C3179.0 (2)C6—C5—C4—C30.2 (4)
C6—C7—C2—C1175.6 (2)C5—C4—C3—C20.5 (4)
N2—C7—C2—C14.4 (3)C7—C2—C3—C41.1 (4)
C2—C7—C6—C50.3 (4)C1—C2—C3—C4175.5 (2)
N2—C7—C6—C5179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.892.142.936 (2)148
N2—H2B···O4ii0.892.243.007 (3)144
N2—H2C···O1iii0.891.982.842 (2)161
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1/2, z1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H7N2+·ClO4
Mr218.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.089 (2), 7.4561 (15), 13.872 (5)
β (°) 128.454 (18)
V3)898.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.90, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9026, 2070, 1761
Rint0.041
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.11
No. of reflections2070
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.30

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.892.142.936 (2)148
N2—H2B···O4ii0.892.243.007 (3)144
N2—H2C···O1iii0.891.982.842 (2)161
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1/2, z1/2; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Innovative Dissertation Fund of Southeast University.

References

First citationMessai, A., Direm, A., Benali-Cherif, N., Luneau, D. & Jeanneau, E. (2009). Acta Cryst. E65, o460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOueslati, A., Kefi, R., Akriche, S. & Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 365–366.  CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds