organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1-Benzo­furan-2-yl)-3-(4-chloro­phen­yl)prop-2-en-1-one

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Physics, Sri D. Devaraj urs. First Grade College, Hunsur 571 105, Karnataka, India, and cDepartment of Chemistry, St. Philomena's College, Mysore 570 015, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 22 January 2010; accepted 25 January 2010; online 30 January 2010)

In the title compound, C17H11ClO2, the benzofuran ring system is almost planar (r.m.s. deviation = 0.011 Å) and forms a dihedral angle of 10.53 (6)° with the chloro­phenyl ring. No significant inter­molecular inter­actions are observed.

Related literature

For general background to chalcone, see: Dhar (1981[Dhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]). For the biological properties of benzofuran derivatives, see: Nasef et al. (1992[Nasef, A. M., El-Naem, S. I. & El-Shabrawy, O. A. (1992). Egypt. J. Pharm. Sci. 34, 463-467.]); Bogolyubsakaya & Perovich (1964[Bogolyubsakaya, L. T. & Perovich, M. (1964). Zh. Obshch. Khim. 34, 3119-3122.]); Deshmukh et al. (2004[Deshmukh, M., Kharade, D. & Shirke, S. D. (2004). Monatsh. Chem. 125, 971-976.]); Stanislav et al. (2000[Stanislav, R., Petr, H., Petr, K. & Ivan, K. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.]); Brady et al. (1973[Brady, B., Kenndey, J. & Sullivan, W. (1973). Tetrahedron, 29, 359-362.]); Kamal et al. (2006[Kamal, M., Hassan, A., Eman, A., Mohey, E. & Hanan, A. (2006). Bioorg. Med. Chem. 14, 3672-3680.]); Alejandro et al. (2008[Alejandro, U., Javier, E., Marcos, R. & Marcela, W. (2008). Molecules, 13, 2385-2393.]); Rajesh et al. (2006[Rajesh, K., Rajendra, P., Mayur, Y., Shanta, K. & Raju, M. (2006). Indian J. Heterocycl. Chem. 15, 245-253.]). For related structures, see: Devarajegowda et al. (2001[Devarajegowda, H. C., Sridhar, M. A., Shashidhara Prasad, J., Indira, J., Sooryanarayanarao, B. & Prakash, P. K. (2001). Mol. Cryst. Liq. Cryst. 369, 145-152.]); Kant et al. (2009[Kant, R., Kamni, Narayana, B., Veena, K. & Yathirajan, H. S. (2009). Acta Cryst. E65, o836.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11ClO2

  • Mr = 282.71

  • Monoclinic, P 21 /c

  • a = 15.9034 (12) Å

  • b = 14.1393 (12) Å

  • c = 5.9572 (5) Å

  • β = 93.039 (4)°

  • V = 1337.67 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.972

  • 12871 measured reflections

  • 3323 independent reflections

  • 2665 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.02

  • 3323 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcones have been recognized as a significant field of study for a long time because of a variety of biological activities as well as they serve as intermediates in the synthesis of a variety of heterocyclic compounds. Several heterocyclic analogues of chalcones have been reported to possess antibacterial, bacteriostatic tuberculostatic, insecticidal, antiparasitic, coronary vasodilating and choleretic activities (Dhar, 1981). Further, benzofuran derivatives have been reported to possess sedative and hypnotic (Nasef et al., 1992), antiinflammatory (Bogolyubsakaya & Perovich, 1964), antidepressant (Deshmukh et al., 2004), analgesic (Stanislav et al., 2000), hypoglycemic (Brady et al., 1973), anticonvulsant (Kamal et al., 2006), antibacterial (Alejandro et al., 2008) and antifungal activities (Rajesh et al., 2006). Owing to these biological activities of benzofuran propenones and in an attempt to study the structure-activity relationship of benzofuran and related systems, it was contemplated to synthesize benzofuryl propenones and the crystal structure of one of them, the title compound, is reported.

The benzofuran ring system is almost planar (r.m.s. deviation 0.011 Å). The dihedral angle between the benzofuran ring system and the chlorophenyl ring is 10.53 (6)°. Bond distances within the aromatic rings are in agreement with those observed in related structures (Devarajegowda et al., 2001; Kant et al., 2009).

Related literature top

For general background to chalcone, see: Dhar (1981). For the biological properties of benzofuran derivatives, see: Nasef et al. (1992); Bogolyubsakaya & Perovich (1964); Deshmukh et al. (2004); Stanislav et al. (2000); Brady et al. (1973); Kamal et al. (2006); Alejandro et al. (2008); Rajesh et al. (2006). For related structures, see: Devarajegowda et al. (2001); Kant et al. (2009).

Experimental top

A mixture of 2-acetylbenzofuran (0.01 mol) and p-chlorobenzaldehyde (0.01 mol) in ethanol (20 ml) was stirred for 24 h in aqueous NaOH (8 ml). It was then diluted with water (100 ml) and acidified with concentrated HCl. The course of the reaction was monitored by TLC using chloroform-carbon disulfide (1:1). The product obtained was filtered, washed with water and recrystallised from ethanol (m.p. 398 K). Spectral data IR (KBr) cm-1: 1650 (CO), 1620 (CC stretching in aromatic), 1080 (C-O-C of benzofuran). 1H NMR (CDCl3): 6.67-7.2 (m, 9H, Ar-H), 6.70 (d, 1H, -COCH=), 8.60 (d, 1H, =CH-Ar).

Refinement top

H atoms were positioned at calculated positions [C-H = 0.93 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

Chalcones have been recognized as a significant field of study for a long time because of a variety of biological activities as well as they serve as intermediates in the synthesis of a variety of heterocyclic compounds. Several heterocyclic analogues of chalcones have been reported to possess antibacterial, bacteriostatic tuberculostatic, insecticidal, antiparasitic, coronary vasodilating and choleretic activities (Dhar, 1981). Further, benzofuran derivatives have been reported to possess sedative and hypnotic (Nasef et al., 1992), antiinflammatory (Bogolyubsakaya & Perovich, 1964), antidepressant (Deshmukh et al., 2004), analgesic (Stanislav et al., 2000), hypoglycemic (Brady et al., 1973), anticonvulsant (Kamal et al., 2006), antibacterial (Alejandro et al., 2008) and antifungal activities (Rajesh et al., 2006). Owing to these biological activities of benzofuran propenones and in an attempt to study the structure-activity relationship of benzofuran and related systems, it was contemplated to synthesize benzofuryl propenones and the crystal structure of one of them, the title compound, is reported.

The benzofuran ring system is almost planar (r.m.s. deviation 0.011 Å). The dihedral angle between the benzofuran ring system and the chlorophenyl ring is 10.53 (6)°. Bond distances within the aromatic rings are in agreement with those observed in related structures (Devarajegowda et al., 2001; Kant et al., 2009).

For general background to chalcone, see: Dhar (1981). For the biological properties of benzofuran derivatives, see: Nasef et al. (1992); Bogolyubsakaya & Perovich (1964); Deshmukh et al. (2004); Stanislav et al. (2000); Brady et al. (1973); Kamal et al. (2006); Alejandro et al. (2008); Rajesh et al. (2006). For related structures, see: Devarajegowda et al. (2001); Kant et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
1-(1-Benzofuran-2-yl)-3-(4-chlorophenyl)prop-2-en-1-one top
Crystal data top
C17H11ClO2F(000) = 584
Mr = 282.71Dx = 1.404 Mg m3
Monoclinic, P21/cMelting point: 398 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.9034 (12) ÅCell parameters from 3323 reflections
b = 14.1393 (12) Åθ = 1.3–28.4°
c = 5.9572 (5) ŵ = 0.28 mm1
β = 93.039 (4)°T = 293 K
V = 1337.67 (19) Å3Plate, white
Z = 40.22 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3323 independent reflections
Radiation source: fine-focus sealed tube2665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 28.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2120
Tmin = 0.940, Tmax = 0.972k = 1818
12871 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.3221P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3323 reflectionsΔρmax = 0.21 e Å3
182 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0117 (16)
Crystal data top
C17H11ClO2V = 1337.67 (19) Å3
Mr = 282.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.9034 (12) ŵ = 0.28 mm1
b = 14.1393 (12) ÅT = 293 K
c = 5.9572 (5) Å0.22 × 0.20 × 0.10 mm
β = 93.039 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3323 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2665 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.972Rint = 0.026
12871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
3323 reflectionsΔρmin = 0.24 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.22464 (9)0.64723 (11)0.5466 (3)0.0508 (4)
H11.19090.66710.42320.061*
C21.31402 (10)0.64001 (11)0.5583 (2)0.0497 (3)
C31.37837 (12)0.65858 (13)0.4117 (3)0.0628 (4)
H31.36600.68200.26790.075*
C41.45972 (12)0.64125 (15)0.4865 (3)0.0717 (5)
H41.50310.65350.39200.086*
C51.47890 (11)0.60577 (15)0.7004 (3)0.0692 (5)
H51.53490.59390.74470.083*
C61.41797 (10)0.58781 (13)0.8476 (3)0.0595 (4)
H61.43110.56440.99110.071*
C71.33559 (9)0.60625 (11)0.7727 (2)0.0485 (3)
C81.19823 (9)0.62016 (11)0.7456 (3)0.0517 (4)
C91.11355 (10)0.61170 (12)0.8310 (3)0.0540 (4)
C101.04368 (10)0.62421 (13)0.6625 (3)0.0560 (4)
H101.05460.65080.52420.067*
C110.96572 (9)0.59891 (11)0.7013 (3)0.0493 (3)
H110.95720.57190.84070.059*
C120.89149 (8)0.60906 (10)0.5471 (2)0.0440 (3)
C130.81273 (9)0.58296 (11)0.6193 (2)0.0480 (3)
H130.80900.55490.75960.058*
C140.74015 (9)0.59803 (11)0.4862 (3)0.0501 (3)
H140.68790.58120.53680.060*
C150.74645 (9)0.63839 (11)0.2773 (2)0.0473 (3)
C160.82376 (9)0.66272 (11)0.1978 (2)0.0493 (3)
H160.82710.68880.05530.059*
C170.89576 (9)0.64786 (11)0.3322 (2)0.0489 (3)
H170.94790.66380.27920.059*
O11.26490 (6)0.59456 (8)0.89122 (17)0.0552 (3)
O21.10294 (8)0.59470 (11)1.0286 (2)0.0755 (4)
Cl10.65624 (3)0.66004 (4)0.10847 (8)0.06940 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0515 (8)0.0488 (8)0.0506 (8)0.0031 (6)0.0110 (6)0.0007 (6)
C20.0542 (8)0.0455 (8)0.0481 (8)0.0008 (6)0.0081 (6)0.0025 (6)
C30.0775 (11)0.0621 (10)0.0489 (8)0.0026 (8)0.0042 (8)0.0027 (7)
C40.0633 (11)0.0824 (13)0.0706 (11)0.0021 (9)0.0149 (9)0.0053 (10)
C50.0491 (8)0.0854 (13)0.0723 (11)0.0035 (8)0.0041 (8)0.0112 (10)
C60.0537 (8)0.0719 (11)0.0515 (8)0.0067 (8)0.0108 (7)0.0022 (8)
C70.0486 (7)0.0495 (8)0.0466 (7)0.0014 (6)0.0050 (6)0.0008 (6)
C80.0480 (7)0.0488 (8)0.0567 (8)0.0013 (6)0.0114 (6)0.0001 (7)
C90.0519 (8)0.0550 (9)0.0541 (9)0.0010 (7)0.0061 (6)0.0060 (7)
C100.0483 (8)0.0646 (10)0.0544 (9)0.0013 (7)0.0038 (6)0.0095 (7)
C110.0496 (7)0.0517 (8)0.0462 (7)0.0034 (6)0.0015 (6)0.0019 (6)
C120.0445 (7)0.0425 (7)0.0450 (7)0.0025 (6)0.0014 (5)0.0011 (6)
C130.0502 (7)0.0496 (8)0.0444 (7)0.0016 (6)0.0041 (6)0.0045 (6)
C140.0442 (7)0.0533 (9)0.0530 (8)0.0057 (6)0.0052 (6)0.0002 (7)
C150.0456 (7)0.0467 (8)0.0490 (7)0.0011 (6)0.0042 (6)0.0034 (6)
C160.0529 (8)0.0536 (8)0.0414 (7)0.0046 (6)0.0013 (6)0.0026 (6)
C170.0444 (7)0.0559 (9)0.0468 (7)0.0025 (6)0.0061 (6)0.0008 (6)
O10.0499 (6)0.0655 (7)0.0491 (6)0.0006 (5)0.0073 (4)0.0076 (5)
O20.0602 (7)0.1083 (11)0.0573 (7)0.0042 (7)0.0050 (5)0.0175 (7)
Cl10.0526 (2)0.0844 (3)0.0690 (3)0.00645 (19)0.01679 (19)0.0098 (2)
Geometric parameters (Å, º) top
C1—C81.335 (2)C9—C101.468 (2)
C1—C21.423 (2)C10—C111.323 (2)
C1—H10.93C10—H100.93
C2—C71.389 (2)C11—C121.4641 (19)
C2—C31.405 (2)C11—H110.93
C3—C41.368 (3)C12—C131.3954 (19)
C3—H30.93C12—C171.398 (2)
C4—C51.388 (3)C13—C141.382 (2)
C4—H40.93C13—H130.93
C5—C61.365 (3)C14—C151.377 (2)
C5—H50.93C14—H140.93
C6—C71.386 (2)C15—C161.384 (2)
C6—H60.93C15—Cl11.7352 (15)
C7—O11.3690 (18)C16—C171.378 (2)
C8—O11.3820 (17)C16—H160.93
C8—C91.469 (2)C17—H170.93
C9—O21.2216 (19)
C8—C1—C2107.24 (13)C10—C9—C8115.33 (14)
C8—C1—H1126.4C11—C10—C9122.03 (15)
C2—C1—H1126.4C11—C10—H10119.0
C7—C2—C3118.89 (14)C9—C10—H10119.0
C7—C2—C1105.49 (14)C10—C11—C12126.58 (15)
C3—C2—C1135.61 (15)C10—C11—H11116.7
C4—C3—C2118.14 (16)C12—C11—H11116.7
C4—C3—H3120.9C13—C12—C17118.30 (13)
C2—C3—H3120.9C13—C12—C11119.20 (13)
C3—C4—C5121.44 (17)C17—C12—C11122.45 (13)
C3—C4—H4119.3C14—C13—C12121.23 (13)
C5—C4—H4119.3C14—C13—H13119.4
C6—C5—C4121.88 (17)C12—C13—H13119.4
C6—C5—H5119.1C15—C14—C13118.93 (13)
C4—C5—H5119.1C15—C14—H14120.5
C5—C6—C7116.70 (16)C13—C14—H14120.5
C5—C6—H6121.7C14—C15—C16121.37 (13)
C7—C6—H6121.7C14—C15—Cl1119.95 (12)
O1—C7—C6126.81 (14)C16—C15—Cl1118.68 (11)
O1—C7—C2110.25 (12)C17—C16—C15119.29 (13)
C6—C7—C2122.94 (15)C17—C16—H16120.4
C1—C8—O1111.44 (14)C15—C16—H16120.4
C1—C8—C9131.92 (14)C16—C17—C12120.83 (13)
O1—C8—C9116.62 (14)C16—C17—H17119.6
O2—C9—C10122.98 (15)C12—C17—H17119.6
O2—C9—C8121.69 (14)C7—O1—C8105.57 (12)
C8—C1—C2—C70.86 (17)O2—C9—C10—C1114.3 (3)
C8—C1—C2—C3178.91 (18)C8—C9—C10—C11165.10 (16)
C7—C2—C3—C40.8 (2)C9—C10—C11—C12179.27 (15)
C1—C2—C3—C4179.41 (18)C10—C11—C12—C13176.76 (16)
C2—C3—C4—C50.4 (3)C10—C11—C12—C170.4 (3)
C3—C4—C5—C61.0 (3)C17—C12—C13—C142.4 (2)
C4—C5—C6—C70.4 (3)C11—C12—C13—C14174.96 (14)
C5—C6—C7—O1179.32 (16)C12—C13—C14—C150.9 (2)
C5—C6—C7—C20.9 (3)C13—C14—C15—C160.9 (2)
C3—C2—C7—O1178.67 (14)C13—C14—C15—Cl1178.88 (12)
C1—C2—C7—O11.15 (17)C14—C15—C16—C171.2 (2)
C3—C2—C7—C61.5 (2)Cl1—C15—C16—C17178.57 (12)
C1—C2—C7—C6178.64 (15)C15—C16—C17—C120.3 (2)
C2—C1—C8—O10.28 (18)C13—C12—C17—C162.0 (2)
C2—C1—C8—C9179.04 (16)C11—C12—C17—C16175.20 (14)
C1—C8—C9—O2172.20 (18)C6—C7—O1—C8178.80 (16)
O1—C8—C9—O29.1 (2)C2—C7—O1—C80.98 (16)
C1—C8—C9—C108.3 (3)C1—C8—O1—C70.42 (17)
O1—C8—C9—C10170.36 (14)C9—C8—O1—C7178.55 (13)

Experimental details

Crystal data
Chemical formulaC17H11ClO2
Mr282.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.9034 (12), 14.1393 (12), 5.9572 (5)
β (°) 93.039 (4)
V3)1337.67 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.22 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.940, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
12871, 3323, 2665
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.02
No. of reflections3323
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors thank Professor T. N. Guru Row and Miss Brinda Selvaraj, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

References

First citationAlejandro, U., Javier, E., Marcos, R. & Marcela, W. (2008). Molecules, 13, 2385–2393.  Web of Science PubMed Google Scholar
First citationBogolyubsakaya, L. T. & Perovich, M. (1964). Zh. Obshch. Khim. 34, 3119–3122.  Google Scholar
First citationBrady, B., Kenndey, J. & Sullivan, W. (1973). Tetrahedron, 29, 359–362.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeshmukh, M., Kharade, D. & Shirke, S. D. (2004). Monatsh. Chem. 125, 971–976.  CrossRef Web of Science Google Scholar
First citationDevarajegowda, H. C., Sridhar, M. A., Shashidhara Prasad, J., Indira, J., Sooryanarayanarao, B. & Prakash, P. K. (2001). Mol. Cryst. Liq. Cryst. 369, 145–152.  Web of Science CrossRef CAS Google Scholar
First citationDhar, D. N. (1981). In The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKamal, M., Hassan, A., Eman, A., Mohey, E. & Hanan, A. (2006). Bioorg. Med. Chem. 14, 3672–3680.  Web of Science PubMed Google Scholar
First citationKant, R., Kamni, Narayana, B., Veena, K. & Yathirajan, H. S. (2009). Acta Cryst. E65, o836.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasef, A. M., El-Naem, S. I. & El-Shabrawy, O. A. (1992). Egypt. J. Pharm. Sci. 34, 463–467.  Google Scholar
First citationRajesh, K., Rajendra, P., Mayur, Y., Shanta, K. & Raju, M. (2006). Indian J. Heterocycl. Chem. 15, 245–253.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanislav, R., Petr, H., Petr, K. & Ivan, K. (2000). Collect. Czech. Chem. Commun. 65, 1093–1108.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds