metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1,10-phenanthroline)nickel(II) dichromate tetra­hydrate

aCollege of Chemistry and Chemical Engineering, Microscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: haixingliu@tom.com

(Received 18 December 2009; accepted 7 January 2010; online 13 January 2010)

The asymmetric unit of the title compound, [Ni(C12H8N2)3][Cr2O7]·4H2O, contains one cation, one anion and four water mol­ecules, three of which are disordered over two sites with equal occupancies. In the cation, the metal centre is coordinated by six N atoms from three 1,10-phenanthroline ligands in a distorted octa­hedral geometry. The [Cr2O7]2− anion exhibits a staggered conformation. The crystal packing is stabilized by inter­molecular O—H⋯O hydrogen bonds and ππ inter­actions, evidenced by short distances of 3.531 (5) Å between the centroids of aromatic rings.

Related literature

For related structures, see: Ejsmont et al. (2002[Ejsmont, K., Wasielewski, M. & Zaleski, J. (2002). Acta Cryst. E58, m200-m202.]); Suescun et al. (1999[Suescun, L., Mombrú, A. W. & Mariezcurrena, R. A. (1999). Acta Cryst. C55, 1991-1993.]); Wang et al. (2007[Wang, J.-J., Li, D.-S., Tang, L., Fu, F., Guo, L. & Zhang, Z.-L. (2007). Z. Kristallogr. New Cryst. Struct. 222, 61-63.]); Wiehl et al. (2008[Wiehl, L., Schreuer, J. & Haussuhl, E. (2008). Z. Kristallogr. New Cryst. Struct. 223, 82-84.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N2)3][Cr2O7]·4H2O

  • Mr = 887.39

  • Monoclinic, C 2/c

  • a = 26.899 (2) Å

  • b = 17.8121 (16) Å

  • c = 17.3656 (18) Å

  • β = 105.274 (2)°

  • V = 8026.5 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 298 K

  • 0.14 × 0.12 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.866, Tmax = 0.892

  • 21223 measured reflections

  • 7229 independent reflections

  • 2790 reflections with I > 2σ(I)

  • Rint = 0.129

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.218

  • S = 1.06

  • 7229 reflections

  • 532 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14D⋯O10i 0.85 2.06 2.91 (3) 177
O14—H14C⋯O10ii 0.85 1.75 2.60 (3) 176
O13—H13D⋯O14 0.85 1.76 2.61 (3) 179
O13—H13C⋯O2iii 0.85 1.98 2.83 (2) 176
O12—H12D⋯O9iv 0.85 2.16 2.99 (2) 165
O12—H12C⋯O14 0.85 2.11 2.93 (3) 165
O10—H10D⋯O11 0.85 1.93 2.78 (3) 171
O10—H10C⋯O1 0.85 1.91 2.751 (17) 172
O9—H9A⋯O12v 0.85 2.24 2.99 (2) 147
O9—H9D⋯O9vi 0.85 1.94 2.78 (3) 176
O9—H9C⋯O8 0.85 2.11 2.962 (17) 177
O8—H8D⋯O11vii 0.85 1.92 2.76 (2) 167
O8—H8C⋯O6 0.85 2.00 2.836 (11) 168
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) [-x+1, y, -z+{\script{3\over 2}}]; (vii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2000[Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes containing the chromate(VI) or dichromate(VI) anions, CrO42- or Cr2O72-, attract attention owing to their various properties (Ejsmont et al., 2002). 1,10-Phenanthroline (phen), which is the parent of an important class of chelating agents, has been widely used in the construction of supramolecular architectures. Some Nickel phenanthroline complexes have been synthesized and reported (Suescun et al., 1999; Wang et al., 2007; Wiehl et al., 2008). As a continuation of these studies, I now report the crystal structure of the title complex.

The title structure (Fig. 1) is build up of one Ni atom, three coordination phenanthroline ligand, dichromate and four free water molecules. Ni center is coordinated with six N atoms from three 1,10-phenanthroline ligands, presenting a distorted octahedral geometry. The Ni—N and Cr—O bond lengths are in the ranges 2.064 (7)–2.115 (7) and 1.583 (7)–1.786 (6) Å, respectively. The bond angles O—Cr—O, N—Ni—N are in the ranges of 107.1 (3)–111.4 (4) and 78.6 (3)–168.9 (3) °, respectively. The mean Cr—O bond lengths and O—Cr—O bond angles are similar to the reported earlier (Ejsmont et al., 2002).

The crystal packing is stabilized by intermolecular O—H···O hydrogen bonds (Table 1) and π-π interactions evidenced by short distance of 3.531 (5) Å between the centroids of aromatic rings.

Related literature top

For related structures, see: Ejsmont et al. (2002); Suescun et al. (1999); Wang et al. (2007); Wiehl et al. (2008).

Experimental top

All commercially obtained reagent-grade chemicals were used without further purication. A mixture of NiCl2 (0.1 mmol, 0.014 g), 1,10-phenanthroline (0.1 mmol, 0.018 g), K2CrO4 (0.1 mmol, 0.019 g) and H3BO3 (0.1 mmol, 0.006 g) were added into 20 ml water with 20%(v/v) ethanol and heated for 12 h at 140 °. The solution was obtained by filtration after cooling the reaction to room temperature. Yellow block single crystals suitable for X-ray measurements were obtained after a few weeks.

Refinement top

All H atoms were geometrically positioned (C—H 0.93 Å, O—H 0.85 Å) and refined using a riding model, with Uiso (H) =1.2–1.5 Ueq of the parent atom.

Structure description top

Metal complexes containing the chromate(VI) or dichromate(VI) anions, CrO42- or Cr2O72-, attract attention owing to their various properties (Ejsmont et al., 2002). 1,10-Phenanthroline (phen), which is the parent of an important class of chelating agents, has been widely used in the construction of supramolecular architectures. Some Nickel phenanthroline complexes have been synthesized and reported (Suescun et al., 1999; Wang et al., 2007; Wiehl et al., 2008). As a continuation of these studies, I now report the crystal structure of the title complex.

The title structure (Fig. 1) is build up of one Ni atom, three coordination phenanthroline ligand, dichromate and four free water molecules. Ni center is coordinated with six N atoms from three 1,10-phenanthroline ligands, presenting a distorted octahedral geometry. The Ni—N and Cr—O bond lengths are in the ranges 2.064 (7)–2.115 (7) and 1.583 (7)–1.786 (6) Å, respectively. The bond angles O—Cr—O, N—Ni—N are in the ranges of 107.1 (3)–111.4 (4) and 78.6 (3)–168.9 (3) °, respectively. The mean Cr—O bond lengths and O—Cr—O bond angles are similar to the reported earlier (Ejsmont et al., 2002).

The crystal packing is stabilized by intermolecular O—H···O hydrogen bonds (Table 1) and π-π interactions evidenced by short distance of 3.531 (5) Å between the centroids of aromatic rings.

For related structures, see: Ejsmont et al. (2002); Suescun et al. (1999); Wang et al. (2007); Wiehl et al. (2008).

Computing details top

Data collection: SMART APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. The lattice water molecules and H atoms are omitted for clarity.
Tris(1,10-phenanthroline)nickel(II) dichromate tetrahydrate top
Crystal data top
[Ni(C12H8N2)3][Cr2O7]·4H2OF(000) = 3632
Mr = 887.39Dx = 1.469 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.899 (2) ÅCell parameters from 1859 reflections
b = 17.8121 (16) Åθ = 2.5–25.1°
c = 17.3656 (18) ŵ = 1.06 mm1
β = 105.274 (2)°T = 298 K
V = 8026.5 (13) Å3Block, yellow
Z = 80.14 × 0.12 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7229 independent reflections
Radiation source: fine-focus sealed tube2790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
φ and ω scansθmax = 25.2°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3231
Tmin = 0.866, Tmax = 0.892k = 1721
21223 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0732P)2]
where P = (Fo2 + 2Fc2)/3
7229 reflections(Δ/σ)max = 0.001
532 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C12H8N2)3][Cr2O7]·4H2OV = 8026.5 (13) Å3
Mr = 887.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.899 (2) ŵ = 1.06 mm1
b = 17.8121 (16) ÅT = 298 K
c = 17.3656 (18) Å0.14 × 0.12 × 0.11 mm
β = 105.274 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7229 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2790 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.892Rint = 0.129
21223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.06Δρmax = 0.80 e Å3
7229 reflectionsΔρmin = 0.37 e Å3
532 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.82179 (6)0.55759 (10)0.64402 (9)0.0650 (5)
Cr20.72271 (6)0.63263 (9)0.68533 (9)0.0587 (5)
Ni10.63211 (4)0.33221 (7)0.65097 (6)0.0490 (4)
N10.6607 (3)0.3733 (5)0.5584 (4)0.0494 (18)
N20.6566 (3)0.2337 (4)0.6091 (4)0.0509 (19)
N30.6977 (3)0.3555 (4)0.7406 (4)0.054 (2)
N40.6129 (3)0.2824 (4)0.7479 (4)0.060 (2)
N50.5576 (3)0.3205 (5)0.5728 (4)0.058 (2)
N60.5977 (3)0.4336 (4)0.6700 (4)0.056 (2)
O10.8457 (3)0.5751 (4)0.5699 (4)0.090 (2)
O20.8657 (3)0.5494 (5)0.7250 (4)0.118 (3)
O30.7903 (3)0.4816 (4)0.6280 (5)0.110 (3)
O40.7807 (2)0.6314 (4)0.6536 (4)0.078 (2)
O50.7274 (2)0.5758 (4)0.7583 (4)0.079 (2)
O60.7148 (3)0.7165 (4)0.7117 (4)0.092 (2)
O70.6742 (2)0.6079 (4)0.6147 (4)0.084 (2)
O80.6132 (3)0.7723 (5)0.6890 (6)0.156 (4)
H8C0.64490.76230.69450.187*
H8D0.60850.81890.67910.187*
O90.5502 (5)0.7309 (8)0.7989 (9)0.099 (5)0.50
H9C0.56930.74270.76890.119*0.50
H9D0.51910.73050.77080.119*0.25
H9A0.55370.76270.83650.119*0.25
O100.9278 (6)0.5528 (10)0.5059 (12)0.149 (7)0.50
H10C0.90070.56080.52100.179*0.50
H10D0.92130.56190.45620.179*0.50
O110.9181 (7)0.5812 (11)0.3454 (13)0.161 (8)0.50
H11C0.89300.56220.31050.193*0.50
H11D0.94290.55000.35340.193*0.50
O120.5385 (6)0.1208 (10)0.3729 (11)0.142 (7)0.50
H12C0.53530.11940.42020.171*0.50
H12D0.54180.16630.36020.171*0.25
H12A0.51260.10070.34050.171*0.25
O130.5318 (8)0.0721 (11)0.6833 (14)0.187 (9)0.50
H13C0.56310.06540.70870.225*0.50
H13D0.53010.07580.63390.225*0.50
O140.5251 (8)0.0848 (12)0.5311 (14)0.189 (9)0.50
H14C0.49290.07620.52100.227*0.50
H14D0.53990.04540.52050.227*0.50
C10.6671 (3)0.4424 (6)0.5391 (6)0.059 (3)
H10.66090.48050.57200.071*
C20.6829 (3)0.4620 (6)0.4709 (6)0.067 (3)
H20.68700.51210.45870.080*
C30.6920 (3)0.4070 (7)0.4237 (6)0.063 (3)
H30.70240.41900.37820.076*
C40.6862 (3)0.3333 (6)0.4419 (5)0.055 (2)
C50.6716 (3)0.3183 (6)0.5123 (5)0.051 (2)
C60.6965 (3)0.2689 (7)0.3962 (6)0.066 (3)
H60.70620.27690.34920.079*
C70.6924 (4)0.2002 (7)0.4203 (6)0.067 (3)
H70.69850.16050.38920.080*
C80.6788 (3)0.1839 (6)0.4934 (6)0.057 (3)
C90.6681 (3)0.2430 (6)0.5386 (5)0.050 (2)
C100.6762 (3)0.1114 (6)0.5231 (6)0.069 (3)
H100.68210.07000.49410.083*
C110.6650 (4)0.1016 (6)0.5956 (6)0.070 (3)
H110.66340.05400.61660.085*
C120.6564 (3)0.1647 (7)0.6352 (6)0.064 (3)
H120.64980.15810.68480.077*
C130.7396 (4)0.3902 (5)0.7369 (6)0.062 (3)
H130.74330.40360.68690.074*
C140.7796 (4)0.4087 (6)0.8048 (6)0.073 (3)
H140.80930.43290.80010.088*
C150.7732 (4)0.3897 (6)0.8774 (6)0.073 (3)
H150.79860.40260.92320.088*
C160.7301 (4)0.3520 (6)0.8846 (6)0.065 (3)
C170.6925 (4)0.3355 (5)0.8137 (6)0.058 (2)
C180.6481 (4)0.2968 (5)0.8176 (6)0.056 (2)
C190.6411 (4)0.2738 (6)0.8903 (6)0.063 (3)
C200.6802 (5)0.2927 (6)0.9619 (6)0.076 (3)
H200.67630.27751.01120.092*
C210.7208 (5)0.3306 (6)0.9587 (6)0.081 (3)
H210.74450.34421.00610.097*
C220.5978 (5)0.2301 (6)0.8885 (6)0.075 (3)
H220.59270.21260.93630.090*
C230.5630 (4)0.2125 (6)0.8191 (6)0.075 (3)
H230.53450.18260.81800.090*
C240.5722 (4)0.2416 (6)0.7488 (6)0.071 (3)
H240.54820.23150.70050.085*
C250.5391 (4)0.2646 (6)0.5224 (6)0.066 (3)
H250.56030.22400.51960.079*
C260.4877 (4)0.2658 (7)0.4726 (6)0.074 (3)
H260.47580.22700.43670.089*
C270.4568 (4)0.3230 (7)0.4781 (6)0.070 (3)
H270.42300.32380.44630.084*
C280.4749 (4)0.3814 (6)0.5310 (6)0.060 (3)
C290.5256 (4)0.3790 (6)0.5769 (5)0.053 (2)
C300.5460 (4)0.4384 (6)0.6284 (5)0.054 (2)
C310.5155 (4)0.5002 (6)0.6345 (6)0.060 (3)
C320.4630 (4)0.4995 (7)0.5871 (7)0.073 (3)
H320.44170.53970.59080.088*
C330.4445 (4)0.4443 (7)0.5394 (7)0.075 (3)
H330.41030.44620.50980.090*
C340.5386 (4)0.5586 (6)0.6846 (6)0.070 (3)
H340.51930.60030.69140.084*
C350.5904 (4)0.5541 (6)0.7243 (6)0.072 (3)
H350.60660.59360.75610.086*
C360.6175 (4)0.4912 (6)0.7162 (6)0.063 (3)
H360.65200.48860.74480.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0721 (11)0.0780 (13)0.0503 (10)0.0063 (10)0.0256 (9)0.0105 (9)
Cr20.0673 (10)0.0675 (11)0.0454 (9)0.0016 (9)0.0223 (8)0.0058 (8)
Ni10.0473 (7)0.0651 (8)0.0354 (6)0.0018 (6)0.0123 (5)0.0019 (6)
N10.051 (4)0.058 (5)0.042 (5)0.001 (4)0.016 (4)0.003 (4)
N20.054 (5)0.058 (6)0.041 (5)0.000 (4)0.013 (4)0.003 (4)
N30.053 (5)0.067 (6)0.043 (5)0.005 (4)0.016 (4)0.002 (4)
N40.061 (5)0.076 (6)0.046 (5)0.005 (5)0.019 (4)0.002 (4)
N50.057 (5)0.073 (6)0.043 (5)0.005 (5)0.013 (4)0.003 (4)
N60.058 (5)0.069 (6)0.043 (5)0.005 (4)0.019 (4)0.003 (4)
O10.092 (5)0.115 (6)0.077 (5)0.004 (4)0.049 (4)0.003 (4)
O20.098 (6)0.171 (8)0.073 (5)0.031 (6)0.004 (5)0.021 (5)
O30.133 (7)0.097 (6)0.124 (7)0.032 (5)0.075 (6)0.032 (5)
O40.078 (4)0.090 (5)0.077 (5)0.006 (4)0.040 (4)0.002 (4)
O50.084 (5)0.097 (5)0.063 (4)0.005 (4)0.031 (4)0.014 (4)
O60.110 (6)0.071 (5)0.109 (6)0.002 (4)0.055 (5)0.014 (4)
O70.074 (5)0.104 (6)0.063 (5)0.007 (4)0.001 (4)0.005 (4)
O80.119 (7)0.154 (9)0.176 (10)0.007 (6)0.006 (7)0.031 (7)
O90.088 (10)0.107 (12)0.106 (12)0.001 (9)0.032 (9)0.014 (10)
O100.122 (14)0.174 (19)0.18 (2)0.008 (13)0.084 (14)0.032 (15)
O110.146 (16)0.156 (18)0.18 (2)0.018 (14)0.048 (15)0.010 (15)
O120.145 (15)0.133 (16)0.143 (17)0.005 (13)0.029 (13)0.005 (13)
O130.161 (19)0.18 (2)0.21 (2)0.002 (16)0.024 (18)0.033 (17)
O140.167 (19)0.17 (2)0.21 (2)0.006 (16)0.019 (18)0.003 (18)
C10.060 (6)0.069 (8)0.049 (6)0.005 (6)0.017 (5)0.003 (6)
C20.064 (7)0.076 (8)0.060 (7)0.004 (6)0.013 (6)0.010 (6)
C30.063 (7)0.081 (8)0.049 (6)0.002 (6)0.023 (5)0.010 (6)
C40.049 (5)0.071 (7)0.044 (6)0.001 (5)0.011 (5)0.006 (6)
C50.046 (5)0.070 (7)0.040 (5)0.002 (5)0.014 (4)0.003 (5)
C60.065 (7)0.089 (9)0.048 (6)0.002 (6)0.020 (5)0.002 (6)
C70.073 (7)0.079 (8)0.051 (7)0.000 (6)0.021 (5)0.014 (6)
C80.054 (6)0.068 (8)0.050 (6)0.004 (5)0.017 (5)0.003 (6)
C90.048 (6)0.064 (7)0.043 (6)0.003 (5)0.020 (5)0.002 (5)
C100.066 (7)0.075 (8)0.063 (7)0.008 (6)0.012 (6)0.013 (6)
C110.077 (7)0.066 (8)0.065 (7)0.002 (6)0.011 (6)0.005 (6)
C120.067 (6)0.075 (8)0.050 (6)0.003 (6)0.017 (5)0.004 (6)
C130.064 (7)0.069 (7)0.051 (6)0.004 (6)0.013 (6)0.003 (5)
C140.069 (7)0.075 (8)0.065 (8)0.005 (6)0.001 (6)0.006 (6)
C150.081 (8)0.072 (8)0.053 (7)0.005 (7)0.007 (6)0.009 (6)
C160.078 (7)0.065 (7)0.049 (7)0.009 (6)0.012 (6)0.004 (5)
C170.063 (6)0.064 (7)0.043 (6)0.010 (6)0.009 (5)0.006 (5)
C180.065 (7)0.067 (7)0.041 (6)0.010 (6)0.020 (5)0.002 (5)
C190.074 (7)0.066 (7)0.053 (7)0.012 (6)0.023 (6)0.000 (6)
C200.096 (9)0.083 (8)0.048 (7)0.009 (7)0.015 (7)0.001 (6)
C210.096 (9)0.084 (9)0.054 (7)0.007 (7)0.006 (7)0.004 (6)
C220.091 (8)0.087 (9)0.057 (7)0.020 (7)0.037 (7)0.005 (6)
C230.070 (7)0.090 (8)0.071 (8)0.002 (6)0.029 (7)0.020 (7)
C240.070 (7)0.088 (8)0.057 (7)0.002 (6)0.023 (6)0.004 (6)
C250.065 (7)0.079 (8)0.057 (7)0.001 (6)0.020 (6)0.000 (6)
C260.069 (8)0.092 (9)0.061 (7)0.013 (7)0.014 (6)0.004 (6)
C270.058 (7)0.092 (9)0.057 (7)0.003 (7)0.010 (6)0.016 (7)
C280.053 (7)0.075 (8)0.053 (7)0.000 (6)0.019 (6)0.009 (6)
C290.051 (6)0.069 (8)0.043 (6)0.003 (6)0.020 (5)0.006 (5)
C300.056 (7)0.067 (7)0.045 (6)0.004 (6)0.024 (5)0.006 (5)
C310.055 (7)0.074 (8)0.055 (6)0.006 (6)0.023 (6)0.001 (6)
C320.065 (8)0.088 (9)0.072 (8)0.018 (7)0.027 (7)0.007 (7)
C330.060 (7)0.094 (9)0.068 (8)0.008 (7)0.012 (6)0.012 (7)
C340.074 (8)0.081 (8)0.064 (7)0.015 (7)0.033 (6)0.003 (6)
C350.082 (8)0.070 (8)0.065 (7)0.004 (7)0.024 (7)0.012 (6)
C360.060 (6)0.073 (8)0.058 (7)0.008 (6)0.019 (5)0.004 (6)
Geometric parameters (Å, º) top
Cr1—O31.583 (7)C6—C71.307 (12)
Cr1—O21.587 (7)C6—H60.9300
Cr1—O11.614 (6)C7—C81.440 (12)
Cr1—O41.753 (6)C7—H70.9300
Cr2—O61.593 (7)C8—C91.389 (12)
Cr2—O71.599 (6)C8—C101.398 (13)
Cr2—O51.600 (6)C10—C111.381 (13)
Cr2—O41.786 (6)C10—H100.9300
Ni1—N32.064 (7)C11—C121.370 (12)
Ni1—N22.072 (7)C11—H110.9300
Ni1—N42.084 (7)C12—H120.9300
Ni1—N12.088 (7)C13—C141.411 (12)
Ni1—N62.094 (8)C13—H130.9300
Ni1—N52.115 (7)C14—C151.359 (13)
N1—C11.298 (11)C14—H140.9300
N1—C51.346 (10)C15—C161.375 (13)
N2—C121.310 (11)C15—H150.9300
N2—C91.350 (10)C16—C171.402 (12)
N3—C131.301 (10)C16—C211.426 (14)
N3—C171.361 (11)C17—C181.396 (12)
N4—C241.319 (11)C18—C191.386 (12)
N4—C181.351 (11)C19—C221.395 (13)
N5—C251.332 (11)C19—C201.442 (13)
N5—C291.364 (11)C20—C211.296 (13)
N6—C361.324 (11)C20—H200.9300
N6—C301.391 (10)C21—H210.9300
O8—H8C0.8502C22—C231.353 (13)
O8—H8D0.8500C22—H220.9300
O9—H9C0.8500C23—C241.407 (12)
O9—H9D0.8501C23—H230.9300
O9—H9A0.8500C24—H240.9300
O10—H10C0.8502C25—C261.425 (12)
O10—H10D0.8500C25—H250.9300
O11—H11C0.8500C26—C271.335 (13)
O11—H11D0.8501C26—H260.9300
O12—H12C0.8500C27—C281.388 (13)
O12—H12D0.8500C27—H270.9300
O12—H12A0.8499C28—C291.388 (12)
O13—H13C0.8498C28—C331.416 (13)
O13—H13D0.8498C29—C301.401 (12)
O14—H14C0.8500C30—C311.393 (12)
O14—H14D0.8500C31—C341.393 (13)
C1—C21.405 (12)C31—C321.434 (13)
C1—H10.9300C32—C331.298 (13)
C2—C31.342 (12)C32—H320.9300
C2—H20.9300C33—H330.9300
C3—C41.369 (12)C34—C351.386 (12)
C3—H30.9300C34—H340.9300
C4—C51.404 (11)C35—C361.364 (12)
C4—C61.463 (12)C35—H350.9300
C5—C91.428 (12)C36—H360.9300
O3—Cr1—O2108.4 (5)C8—C9—C5119.3 (8)
O3—Cr1—O1109.5 (4)C11—C10—C8119.8 (10)
O2—Cr1—O1111.4 (4)C11—C10—H10120.1
O3—Cr1—O4109.7 (4)C8—C10—H10120.1
O2—Cr1—O4109.0 (4)C12—C11—C10117.5 (10)
O1—Cr1—O4108.9 (3)C12—C11—H11121.3
O6—Cr2—O7109.6 (4)C10—C11—H11121.3
O6—Cr2—O5110.7 (4)N2—C12—C11125.4 (9)
O7—Cr2—O5108.1 (4)N2—C12—H12117.3
O6—Cr2—O4107.1 (3)C11—C12—H12117.3
O7—Cr2—O4111.3 (3)N3—C13—C14123.3 (10)
O5—Cr2—O4110.1 (3)N3—C13—H13118.4
N3—Ni1—N298.5 (3)C14—C13—H13118.4
N3—Ni1—N479.7 (3)C15—C14—C13117.6 (10)
N2—Ni1—N495.3 (3)C15—C14—H14121.2
N3—Ni1—N195.5 (3)C13—C14—H14121.2
N2—Ni1—N179.1 (3)C14—C15—C16121.5 (10)
N4—Ni1—N1172.1 (3)C14—C15—H15119.3
N3—Ni1—N691.9 (3)C16—C15—H15119.3
N2—Ni1—N6168.5 (3)C15—C16—C17116.9 (10)
N4—Ni1—N691.5 (3)C15—C16—C21124.5 (11)
N1—Ni1—N695.0 (3)C17—C16—C21118.6 (10)
N3—Ni1—N5168.9 (3)N3—C17—C18118.2 (8)
N2—Ni1—N591.5 (3)N3—C17—C16122.5 (9)
N4—Ni1—N594.7 (3)C18—C17—C16119.2 (9)
N1—Ni1—N591.1 (3)N4—C18—C19121.9 (9)
N6—Ni1—N578.6 (3)N4—C18—C17117.2 (9)
C1—N1—C5118.2 (8)C19—C18—C17120.9 (10)
C1—N1—Ni1129.1 (7)C18—C19—C22117.3 (10)
C5—N1—Ni1112.7 (6)C18—C19—C20118.2 (10)
C12—N2—C9116.9 (8)C22—C19—C20124.4 (10)
C12—N2—Ni1129.9 (7)C21—C20—C19121.0 (11)
C9—N2—Ni1112.6 (6)C21—C20—H20119.5
C13—N3—C17118.2 (8)C19—C20—H20119.5
C13—N3—Ni1129.6 (7)C20—C21—C16121.8 (11)
C17—N3—Ni1112.0 (6)C20—C21—H21119.1
C24—N4—C18118.9 (8)C16—C21—H21119.1
C24—N4—Ni1128.9 (7)C23—C22—C19121.7 (10)
C18—N4—Ni1112.3 (6)C23—C22—H22119.1
C25—N5—C29118.3 (8)C19—C22—H22119.1
C25—N5—Ni1128.4 (7)C22—C23—C24116.8 (10)
C29—N5—Ni1113.3 (6)C22—C23—H23121.6
C36—N6—C30117.0 (8)C24—C23—H23121.6
C36—N6—Ni1129.8 (7)N4—C24—C23123.3 (10)
C30—N6—Ni1113.2 (6)N4—C24—H24118.4
Cr1—O4—Cr2131.4 (4)C23—C24—H24118.4
H8C—O8—H8D108.7N5—C25—C26121.4 (10)
H9C—O9—H9D108.3N5—C25—H25119.3
H9C—O9—H9A109.9C26—C25—H25119.3
H9D—O9—H9A109.9C27—C26—C25119.5 (10)
H10C—O10—H10D108.6C27—C26—H26120.3
H11C—O11—H11D107.4C25—C26—H26120.3
H12C—O12—H12D108.8C26—C27—C28120.1 (10)
H12C—O12—H12A110.6C26—C27—H27119.9
H12D—O12—H12A110.6C28—C27—H27119.9
H13C—O13—H13D108.5C29—C28—C27118.5 (10)
H14C—O14—H14D108.3C29—C28—C33118.1 (10)
N1—C1—C2123.0 (9)C27—C28—C33123.4 (11)
N1—C1—H1118.5N5—C29—C28122.1 (9)
C2—C1—H1118.5N5—C29—C30117.6 (9)
C3—C2—C1118.5 (10)C28—C29—C30120.3 (10)
C3—C2—H2120.7N6—C30—C31122.6 (9)
C1—C2—H2120.7N6—C30—C29117.1 (9)
C2—C3—C4120.6 (9)C31—C30—C29120.3 (10)
C2—C3—H3119.7C34—C31—C30117.5 (10)
C4—C3—H3119.7C34—C31—C32125.0 (11)
C3—C4—C5117.3 (9)C30—C31—C32117.4 (10)
C3—C4—C6125.2 (9)C33—C32—C31121.7 (11)
C5—C4—C6117.4 (10)C33—C32—H32119.1
N1—C5—C4122.3 (9)C31—C32—H32119.1
N1—C5—C9116.7 (8)C32—C33—C28122.1 (11)
C4—C5—C9120.9 (9)C32—C33—H33118.9
C7—C6—C4121.0 (10)C28—C33—H33118.9
C7—C6—H6119.5C35—C34—C31119.5 (10)
C4—C6—H6119.5C35—C34—H34120.3
C6—C7—C8122.3 (10)C31—C34—H34120.3
C6—C7—H7118.9C36—C35—C34119.5 (10)
C8—C7—H7118.9C36—C35—H35120.3
C9—C8—C10117.0 (9)C34—C35—H35120.3
C9—C8—C7119.0 (9)N6—C36—C35123.9 (10)
C10—C8—C7124.0 (10)N6—C36—H36118.0
N2—C9—C8123.5 (9)C35—C36—H36118.0
N2—C9—C5117.1 (8)
N3—Ni1—N1—C174.9 (8)C10—C8—C9—N21.3 (13)
N2—Ni1—N1—C1172.5 (8)C7—C8—C9—N2177.8 (8)
N4—Ni1—N1—C1127 (2)C10—C8—C9—C5178.2 (8)
N6—Ni1—N1—C117.4 (8)C7—C8—C9—C50.9 (13)
N5—Ni1—N1—C196.1 (8)N1—C5—C9—N23.0 (11)
N3—Ni1—N1—C5107.9 (6)C4—C5—C9—N2176.4 (7)
N2—Ni1—N1—C510.3 (5)N1—C5—C9—C8179.9 (7)
N4—Ni1—N1—C556 (2)C4—C5—C9—C80.7 (13)
N6—Ni1—N1—C5159.8 (6)C9—C8—C10—C111.9 (13)
N5—Ni1—N1—C581.1 (6)C7—C8—C10—C11177.2 (9)
N3—Ni1—N2—C1283.5 (8)C8—C10—C11—C120.5 (14)
N4—Ni1—N2—C123.2 (8)C9—N2—C12—C112.5 (13)
N1—Ni1—N2—C12177.5 (8)Ni1—N2—C12—C11167.9 (7)
N6—Ni1—N2—C12122.6 (15)C10—C11—C12—N21.9 (15)
N5—Ni1—N2—C1291.7 (8)C17—N3—C13—C140.6 (14)
N3—Ni1—N2—C9105.8 (6)Ni1—N3—C13—C14173.6 (7)
N4—Ni1—N2—C9173.9 (6)N3—C13—C14—C150.9 (15)
N1—Ni1—N2—C911.8 (6)C13—C14—C15—C161.9 (15)
N6—Ni1—N2—C948.2 (17)C14—C15—C16—C171.4 (15)
N5—Ni1—N2—C979.0 (6)C14—C15—C16—C21179.8 (10)
N2—Ni1—N3—C1384.9 (8)C13—N3—C17—C18178.6 (8)
N4—Ni1—N3—C13178.7 (8)Ni1—N3—C17—C186.3 (10)
N1—Ni1—N3—C135.1 (8)C13—N3—C17—C161.1 (13)
N6—Ni1—N3—C1390.1 (8)Ni1—N3—C17—C16174.0 (7)
N5—Ni1—N3—C13121.0 (16)C15—C16—C17—N30.2 (14)
N2—Ni1—N3—C17100.7 (6)C21—C16—C17—N3178.3 (9)
N4—Ni1—N3—C176.8 (6)C15—C16—C17—C18179.5 (9)
N1—Ni1—N3—C17179.5 (6)C21—C16—C17—C182.0 (14)
N6—Ni1—N3—C1784.3 (6)C24—N4—C18—C194.1 (13)
N5—Ni1—N3—C1753.5 (19)Ni1—N4—C18—C19175.1 (7)
N3—Ni1—N4—C24174.3 (9)C24—N4—C18—C17175.5 (8)
N2—Ni1—N4—C2476.7 (8)Ni1—N4—C18—C175.3 (10)
N1—Ni1—N4—C24122 (2)N3—C17—C18—N40.6 (13)
N6—Ni1—N4—C2494.0 (8)C16—C17—C18—N4179.7 (8)
N5—Ni1—N4—C2415.3 (8)N3—C17—C18—C19179.0 (8)
N3—Ni1—N4—C186.6 (6)C16—C17—C18—C190.7 (14)
N2—Ni1—N4—C18104.2 (6)N4—C18—C19—C224.7 (14)
N1—Ni1—N4—C1859 (3)C17—C18—C19—C22174.8 (9)
N6—Ni1—N4—C1885.1 (6)N4—C18—C19—C20178.9 (8)
N5—Ni1—N4—C18163.8 (6)C17—C18—C19—C201.6 (14)
N3—Ni1—N5—C25151.4 (15)C18—C19—C20—C210.5 (15)
N2—Ni1—N5—C253.0 (8)C22—C19—C20—C21176.6 (10)
N4—Ni1—N5—C2592.4 (8)C19—C20—C21—C163.3 (17)
N1—Ni1—N5—C2582.2 (8)C15—C16—C21—C20177.5 (10)
N6—Ni1—N5—C25177.0 (8)C17—C16—C21—C204.1 (16)
N3—Ni1—N5—C2928.3 (19)C18—C19—C22—C232.0 (15)
N2—Ni1—N5—C29177.3 (6)C20—C19—C22—C23178.2 (9)
N4—Ni1—N5—C2987.3 (6)C19—C22—C23—C241.1 (15)
N1—Ni1—N5—C2998.1 (6)C18—N4—C24—C230.6 (14)
N6—Ni1—N5—C293.3 (6)Ni1—N4—C24—C23178.4 (7)
N3—Ni1—N6—C368.1 (8)C22—C23—C24—N41.9 (15)
N2—Ni1—N6—C36146.1 (13)C29—N5—C25—C261.1 (13)
N4—Ni1—N6—C3687.8 (8)Ni1—N5—C25—C26179.2 (6)
N1—Ni1—N6—C3687.6 (8)N5—C25—C26—C271.9 (14)
N5—Ni1—N6—C36177.7 (8)C25—C26—C27—C280.9 (14)
N3—Ni1—N6—C30170.3 (6)C26—C27—C28—C290.7 (14)
N2—Ni1—N6—C3035.4 (18)C26—C27—C28—C33179.3 (9)
N4—Ni1—N6—C3090.6 (6)C25—N5—C29—C280.6 (12)
N1—Ni1—N6—C3094.0 (6)Ni1—N5—C29—C28179.2 (6)
N5—Ni1—N6—C303.9 (6)C25—N5—C29—C30178.1 (8)
O3—Cr1—O4—Cr227.0 (7)Ni1—N5—C29—C302.1 (9)
O2—Cr1—O4—Cr291.5 (6)C27—C28—C29—N51.5 (13)
O1—Cr1—O4—Cr2146.8 (5)C33—C28—C29—N5179.9 (8)
O6—Cr2—O4—Cr1159.5 (5)C27—C28—C29—C30177.2 (8)
O7—Cr2—O4—Cr180.7 (6)C33—C28—C29—C301.5 (13)
O5—Cr2—O4—Cr139.1 (6)C36—N6—C30—C310.6 (12)
C5—N1—C1—C22.4 (13)Ni1—N6—C30—C31178.0 (7)
Ni1—N1—C1—C2174.6 (6)C36—N6—C30—C29177.3 (8)
N1—C1—C2—C30.2 (14)Ni1—N6—C30—C294.1 (9)
C1—C2—C3—C40.3 (14)N5—C29—C30—N61.3 (11)
C2—C3—C4—C51.4 (13)C28—C29—C30—N6177.4 (7)
C2—C3—C4—C6178.0 (8)N5—C29—C30—C31179.2 (8)
C1—N1—C5—C44.3 (12)C28—C29—C30—C310.5 (13)
Ni1—N1—C5—C4173.3 (6)N6—C30—C31—C340.1 (13)
C1—N1—C5—C9175.2 (8)C29—C30—C31—C34177.8 (8)
Ni1—N1—C5—C97.3 (9)N6—C30—C31—C32178.5 (8)
C3—C4—C5—N13.8 (13)C29—C30—C31—C320.7 (13)
C6—C4—C5—N1179.4 (7)C34—C31—C32—C33177.4 (10)
C3—C4—C5—C9175.6 (8)C30—C31—C32—C331.0 (14)
C6—C4—C5—C91.2 (12)C31—C32—C33—C280.0 (16)
C3—C4—C6—C7176.4 (9)C29—C28—C33—C321.2 (15)
C5—C4—C6—C70.1 (13)C27—C28—C33—C32177.3 (10)
C4—C6—C7—C81.5 (15)C30—C31—C34—C351.6 (14)
C6—C7—C8—C92.0 (14)C32—C31—C34—C35176.8 (9)
C6—C7—C8—C10177.0 (9)C31—C34—C35—C362.7 (15)
C12—N2—C9—C80.8 (13)C30—N6—C36—C350.5 (13)
Ni1—N2—C9—C8171.3 (7)Ni1—N6—C36—C35178.9 (7)
C12—N2—C9—C5176.2 (7)C34—C35—C36—N62.2 (15)
Ni1—N2—C9—C511.8 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14D···O10i0.852.062.91 (3)177
O14—H14C···O10ii0.851.752.60 (3)176
O13—H13D···O140.851.762.61 (3)179
O13—H13C···O2iii0.851.982.83 (2)176
O12—H12D···O9iv0.852.162.99 (2)165
O12—H12C···O140.852.112.93 (3)165
O10—H10D···O110.851.932.78 (3)171
O10—H10C···O10.851.912.751 (17)172
O9—H9A···O12v0.852.242.99 (2)147
O9—H9D···O9vi0.851.942.78 (3)176
O9—H9C···O80.852.112.962 (17)177
O8—H8D···O11vii0.851.922.76 (2)167
O8—H8C···O60.852.002.836 (11)168
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x1/2, y1/2, z; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z1/2; (v) x, y+1, z+1/2; (vi) x+1, y, z+3/2; (vii) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N2)3][Cr2O7]·4H2O
Mr887.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)26.899 (2), 17.8121 (16), 17.3656 (18)
β (°) 105.274 (2)
V3)8026.5 (13)
Z8
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.14 × 0.12 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.866, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
21223, 7229, 2790
Rint0.129
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.218, 1.06
No. of reflections7229
No. of parameters532
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.37

Computer programs: SMART APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14D···O10i0.852.062.91 (3)177.1
O14—H14C···O10ii0.851.752.60 (3)175.5
O13—H13D···O140.851.762.61 (3)178.5
O13—H13C···O2iii0.851.982.83 (2)175.8
O12—H12D···O9iv0.852.162.99 (2)165.2
O12—H12C···O140.852.112.93 (3)164.6
O10—H10D···O110.851.932.78 (3)171.1
O10—H10C···O10.851.912.751 (17)171.8
O9—H9A···O12v0.852.242.99 (2)147.4
O9—H9D···O9vi0.851.942.78 (3)176.4
O9—H9C···O80.852.112.962 (17)176.8
O8—H8D···O11vii0.851.922.76 (2)167.2
O8—H8C···O60.852.002.836 (11)167.7
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x1/2, y1/2, z; (iii) x+3/2, y1/2, z+3/2; (iv) x, y+1, z1/2; (v) x, y+1, z+1/2; (vi) x+1, y, z+3/2; (vii) x+3/2, y+3/2, z+1.
 

References

First citationBruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjsmont, K., Wasielewski, M. & Zaleski, J. (2002). Acta Cryst. E58, m200–m202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuescun, L., Mombrú, A. W. & Mariezcurrena, R. A. (1999). Acta Cryst. C55, 1991–1993.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-J., Li, D.-S., Tang, L., Fu, F., Guo, L. & Zhang, Z.-L. (2007). Z. Kristallogr. New Cryst. Struct. 222, 61–63.  CAS Google Scholar
First citationWiehl, L., Schreuer, J. & Haussuhl, E. (2008). Z. Kristallogr. New Cryst. Struct. 223, 82–84.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds