metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­pyridine­nickel(II)]-trans-di-μ-chlorido] from powder data

aUniversity of Frankfurt, Institute of Inorganic and Analytical Chemistry, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany, and bMersin Universitesi, Ciftlikkoy Kampusu Fen-Edebiyat Fakultesi Kimya Bolumu, Mersin, Turkey
*Correspondence e-mail: fink@chemie.uni-frankfurt.de

(Received 22 December 2009; accepted 14 January 2010; online 30 January 2010)

The asymetric unit of the title compound, [NiCl2(C5H5N)2]n, contains two NiII ions located on different twofold rotational axes, two chloride anions and two pyridine rings in general positions. Each NiII ion is coordinated by two pyridine rings, which form dihedral angles of 33.0 (2) and 11.0 (2)° for the two centers, and four chloride anions in a distorted octa­hedral geometry. The chloride anions bridge NiII ions related by translation along the short b axes into two crystallographically independent polymeric chains.

Related literature

For the preparation of related compounds, see: Liptay et al. (1986[Liptay, G., Wadsten, T. & Borbély-Kuszmann, A. (1986). J. Therm. Anal. 31, 845-852.]). For related polymeric chains of octa­hedrally coordinated transition metal ions, see: Hu et al. (2003[Hu, C., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519-529.]) and McConnell & Nuttall (1978[McConnell, A. A. & Nuttall, R. H. (1978). J. Mol. Struct. 49, 207-209.]). For the isostructural compound [CoCl2(C5H5N)2] with a detailed discussion of the pseudo-ortho­rhom­bic symmetry, see: Dunitz (1957[Dunitz, J. D. (1957). Acta Cryst. 10, 307-313.]). For details of the indexing algorithm, see: Boultif & Louër (1991[Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987-993.]). For details of Rietveld refinement, see: Young (1993[Young, R. A. (1993). The Rietveld Method. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C5H5N)2]

  • Mr = 287.79

  • Monoclinic, P 2/c

  • a = 19.2483 (4) Å

  • b = 3.62535 (4) Å

  • c = 17.3504 (2) Å

  • β = 116.883 (2)°

  • V = 1079.91 (3) Å3

  • Z = 4

  • Cu Kα1 radiation

  • λ = 1.54056 Å

  • μ = 6.85 mm−1

  • T = 298 K

  • Cylinder, 12 × 0.5 mm

Data collection
  • Stoe Stadi-P diffractometer

  • Specimen mounting: specimen was sealed in a 0.5 mm diameter borosilicate glass capillary

  • Data collection mode: transmission

  • Scan method: step

  • 2θmin = 2°, 2θmax = 110°, 2θstep = 0.01°

Refinement
  • Rp = 0.024

  • Rwp = 0.032

  • Rexp = 0.028

  • RBragg = 0.009

  • χ2 = 1.357

  • 10599 data points

  • 126 parameters

  • 61 restraints

  • H-atom parameters constrained

Data collection: WinXPOW (Stoe & Cie, 2004[Stoe & Cie (2004). WinXPOW. Stoe & Cie, Darmstadt, Germany.]); cell refinement: DASH (David et al., 2004); data reduction: WinXPOW (Stoe & Cie, 2004[Stoe & Cie (2004). WinXPOW. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS (Coelho, 2007[Coelho, A. A. (2007). TOPAS Academic User Manual. Coelho Software, Brisbane, Australia.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) was prepared by thermal decomposition of [NiCl2(C5H5N)4]. The product, [NiCl2(C5H5N)2], is isotypic with trans-[CoCl2(C5H5N)2] (Dunitz, 1957). The space group of the title compound was determined to P2/c with a = 19.24 Å, b= 3.63 Å, c = 17.35 Å, β = 116.82 ° and Z = 4. The four nickel atoms are located on two special positions (the twofold axes; Wyckoff positions 2e and 2f). Each nickel atom is coordinated by four chlorine atoms in the equatorial plane and two nitrogen atoms of the pyridine rings in axial positions. This leads to two different distorted coordination octahedra which are connected by edge sharing via bridging Cl atoms to build up two different one-dimensional chains. The distance between neighboured nickel atoms in each chain is equal to the lattice parameter b= 3.63 Å. An orthorhombic unit cell, found by DICVOL (Boultif & Louër, 1991), is related to the pseudo-orthorhombic cell for the isostructural compound trans-[CoCl2(C5H5N)2], which was discussed by Dunitz (1957). Similar as for the last compound, we found that the structure solution and refinement in orthorhombic symmetry does not lead to satisfying results.

Related literature top

For the preparation of related compounds, see: Liptay et al. (1986). For related polymeric chains of octahedrally coordinated transition metal ions, see: Hu et al. (2003) and McConnell et al. (1978). For the isostructural compound [CoCl2(C5H5N)2] with a detailed discussion of the pseudo-orthorhombic symmetry, see: Dunitz (1957). For details of the indexing algorithm, see: Boultif & Louër (1991). For details of Rietveld refinement, see: Young (1993).

Experimental top

[NiCl2(C5H5N)4] was heated to 400 K for 17 h (capillary, diameter: 0.5 mm).

Refinement top

Indexing with DICVOL (Boultif & Louër, 1991) led to two possible unit cells, a monoclinic and an orthorhombic one. The Pawley fit calculates nearly identical profile χ2 values for both cells. The structure solution was carried out using simulated annealing with DASH (David et al., 2004) and a modified molecular structure model based on [CoCl2(C5H5N)2] (Dunitz, 1957). The structure solution was tried in both crystal systems: monoclinic in P2/c with a = 19.24 Å, b = 3.63 Å, c = 17.35 Å, β = 116.82 ° and Z = 4 and several orthorhombic space groups with C-centered cells with a = 17.35 Å, b = 34.34 Å, c = 3.63 Å and Z = 8. As for [CoCl2(C5H5N)2] (Dunitz, 1957) the structure solution was succesful only for the monoclinic cell. The Rietveld refinement was carried out using TOPAS (Coelho, 2007) with Chebychev polynomial background correction and the pyridine rings restrained to be flat. Thermal parameters of non-hydrogen atoms were combined refined, except Ni. Thermal parameters of hydrogen atoms were constrained to those of the non-hydrogen atoms. The smooth difference curve (Fig. 2) shows that the structure is correct.

Structure description top

The title compound (I) was prepared by thermal decomposition of [NiCl2(C5H5N)4]. The product, [NiCl2(C5H5N)2], is isotypic with trans-[CoCl2(C5H5N)2] (Dunitz, 1957). The space group of the title compound was determined to P2/c with a = 19.24 Å, b= 3.63 Å, c = 17.35 Å, β = 116.82 ° and Z = 4. The four nickel atoms are located on two special positions (the twofold axes; Wyckoff positions 2e and 2f). Each nickel atom is coordinated by four chlorine atoms in the equatorial plane and two nitrogen atoms of the pyridine rings in axial positions. This leads to two different distorted coordination octahedra which are connected by edge sharing via bridging Cl atoms to build up two different one-dimensional chains. The distance between neighboured nickel atoms in each chain is equal to the lattice parameter b= 3.63 Å. An orthorhombic unit cell, found by DICVOL (Boultif & Louër, 1991), is related to the pseudo-orthorhombic cell for the isostructural compound trans-[CoCl2(C5H5N)2], which was discussed by Dunitz (1957). Similar as for the last compound, we found that the structure solution and refinement in orthorhombic symmetry does not lead to satisfying results.

For the preparation of related compounds, see: Liptay et al. (1986). For related polymeric chains of octahedrally coordinated transition metal ions, see: Hu et al. (2003) and McConnell et al. (1978). For the isostructural compound [CoCl2(C5H5N)2] with a detailed discussion of the pseudo-orthorhombic symmetry, see: Dunitz (1957). For details of the indexing algorithm, see: Boultif & Louër (1991). For details of Rietveld refinement, see: Young (1993).

Computing details top

Data collection: WINXPOW (Stoe & Cie, 2004); cell refinement: DASH (David et al., 2004); data reduction: WINXPOW (Stoe & Cie, 2004; program(s) used to solve structure: DASH (David et al., 2004); program(s) used to refine structure: TOPAS (Coelho, 2007); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing the atomic numbering of independent atoms and 50% probability displacement spheres.
[Figure 2] Fig. 2. Experimental (black) and calculated (red) powder profiles of (I) with difference plot (blue).
catena-Poly[[dipyridinenickel(II)]-trans-di-µ-chlorido] top
Crystal data top
[NiCl2(C5H5N)2]F(000) = 584.0
Mr = 287.79Dx = 1.770 Mg m3
Monoclinic, P2/cCu Kα1 radiation, λ = 1.54056 Å
Hall symbol: -P 2ycµ = 6.85 mm1
a = 19.2483 (4) ÅT = 298 K
b = 3.62535 (4) ÅParticle morphology: no specific habit
c = 17.3504 (2) Ålight green
β = 116.883 (2)°cylinder, 12 × 0.5 mm
V = 1079.91 (3) Å3Specimen preparation: Prepared at 400 K
Z = 4
Data collection top
Stoe Stadi-P
diffractometer
Data collection mode: transmission
Radiation source: X-ray tubeScan method: step
Primary focussing, Ge 111 monochromator2θmin = 2°, 2θmax = 110°, 2θstep = 0.01°
Specimen mounting: Specimen was sealed in a 0.5 mm diameter borosilicate glass capillary
Refinement top
Least-squares matrix: full with fixed elements per cycle126 parameters
Rp = 0.02461 restraints
Rwp = 0.0323 constraints
Rexp = 0.028H-atom parameters constrained
RBragg = 0.009Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2
10599 data points(Δ/σ)max = 0.001
Excluded region(s): noneBackground function: Chebychev polynomial
Profile function: modified Thompson–Cox–Hastings pseudo-Voigt (Young, 1993)Preferred orientation correction: none
Crystal data top
[NiCl2(C5H5N)2]V = 1079.91 (3) Å3
Mr = 287.79Z = 4
Monoclinic, P2/cCu Kα1 radiation, λ = 1.54056 Å
a = 19.2483 (4) ŵ = 6.85 mm1
b = 3.62535 (4) ÅT = 298 K
c = 17.3504 (2) Åcylinder, 12 × 0.5 mm
β = 116.883 (2)°
Data collection top
Stoe Stadi-P
diffractometer
Scan method: step
Specimen mounting: Specimen was sealed in a 0.5 mm diameter borosilicate glass capillary2θmin = 2°, 2θmax = 110°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Rp = 0.02410599 data points
Rwp = 0.032126 parameters
Rexp = 0.02861 restraints
RBragg = 0.009H-atom parameters constrained
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.08340 (13)0.5786 (4)0.19907 (14)0.01963 (5)*
Ni100.5639 (4)0.250.02118 (10)*
C110.15787 (11)0.4942 (5)0.25223 (11)0.01963 (5)*
C150.06141 (11)0.6731 (5)0.11471 (12)0.01963 (5)*
Cl10.07443 (14)1.0643 (6)0.14865 (16)0.01963 (5)*
H110.1719 (7)0.428 (3)0.3113 (6)0.02356 (6)*
C120.21450 (11)0.5012 (4)0.22198 (12)0.01963 (5)*
C140.11707 (11)0.6807 (5)0.08359 (12)0.01963 (5)*
H150.0088 (6)0.737 (4)0.0767 (7)0.02356 (6)*
H120.2662 (6)0.443 (3)0.2583 (7)0.02356 (6)*
C130.19366 (11)0.5934 (5)0.13910 (12)0.01963 (5)*
H140.1030 (5)0.740 (4)0.0275 (7)0.02356 (6)*
H130.2309 (6)0.599 (4)0.1200 (7)0.02356 (6)*
N20.58174 (12)0.1488 (4)0.37857 (14)0.01963 (5)*
Ni20.50.1713 (5)0.250.01780 (10)*
C210.55807 (11)0.1700 (5)0.44079 (12)0.01963 (5)*
C250.65861 (11)0.1073 (5)0.39945 (12)0.01963 (5)*
Cl20.42724 (14)0.6650 (5)0.27908 (17)0.01963 (5)*
H210.5032 (6)0.202 (4)0.4254 (6)0.02356 (6)*
C220.61220 (10)0.1492 (5)0.52776 (12)0.01963 (5)*
C240.71442 (11)0.0859 (5)0.48673 (12)0.01963 (5)*
H250.6734 (6)0.098 (4)0.3546 (7)0.02356 (6)*
H220.5945 (6)0.162 (4)0.5697 (7)0.02356 (6)*
C230.68985 (11)0.1072 (5)0.55017 (12)0.01963 (5)*
H240.7656 (6)0.057 (4)0.5017 (7)0.02356 (6)*
H230.7259 (6)0.097 (4)0.6068 (7)0.02356 (6)*
Geometric parameters (Å, º) top
Ni1—Cl12.481 (2)C12—C131.349 (3)
Ni2—Cl22.461 (3)C14—C131.385 (2)
N1—Ni12.155 (3)C14—H140.91 (1)
N1—C111.343 (2)C13—H130.92 (1)
N1—C151.371 (3)C21—H210.97 (1)
N2—Ni22.070 (2)C21—C221.395 (2)
N2—C211.350 (4)C25—C241.408 (2)
N2—C251.363 (3)C25—H250.94 (1)
C11—H110.96 (1)C22—H220.93 (1)
C11—C121.408 (3)C22—C231.372 (3)
C15—C141.401 (4)C24—C231.383 (4)
C15—H150.954 (9)C24—H240.90 (1)
C12—H120.93 (1)C23—H230.912 (9)
Ni1—N1—C15121.1 (2)C11—C12—H12121.0 (7)
Ni1—Cl1—Ni193.8 (1)C11—C12—C13119.7 (2)
Ni1—N1—C11118.3 (2)C11—N1—C15120.6 (2)
Ni2—N2—C21119.5 (2)C12—C13—C14120.3 (2)
Ni2—N2—C25119.7 (2)C12—C13—H13119.2 (7)
Ni2—Cl2—Ni294.0 (1)C13—C14—H14120.4 (7)
N1—Ni1—Cl189.4 (1)C14—C15—H15119.1 (7)
N1—Ni1—N1177.1 (1)C14—C13—H13120.3 (7)
N1—C11—C12120.4 (2)C15—C14—C13119.0 (2)
N1—C15—C14119.7 (2)C15—C14—H14120.5 (7)
N1—C15—H15121.2 (7)C21—N2—C25120.8 (2)
N1—C11—H11119.0 (7)C21—C22—H22118.9 (8)
N2—C21—H21120.3 (7)C21—C22—C23119.84 (19)
N2—C21—C22120.3 (2)C22—C23—C24120.1 (2)
N2—C25—C24120.0 (2)C22—C23—H23120.7 (8)
N2—C25—H25118.8 (8)C23—C24—H24120.6 (8)
N2—Ni2—Cl291.9 (1)C23—C24—H24120.6 (8)
N2—Ni2—N2175.5 (1)C24—C25—H25120.5 (8)
Cl1—Ni1—Cl186.1 (1)C24—C23—H23119.2 (8)
Cl1—Ni1—Cl1179.9 (1)C25—C24—C23118.9 (2)
Cl1—Ni1—Cl193.8 (1)C25—C24—H24120.8 (8)
Cl1—Ni1—Cl186.2 (1)H11—C11—C12119.7 (7)
Cl2—Ni2—Cl286.7 (1)H12—C12—C13119.3 (7)
Cl2—Ni2—Cl2179.3 (1)H22—C22—C23121.3 (8)
Cl2—Ni2—Cl294.0 (1)H21—C21—C22119.1 (7)
Cl2—Ni2—Cl285.3 (1)

Experimental details

Crystal data
Chemical formula[NiCl2(C5H5N)2]
Mr287.79
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)19.2483 (4), 3.62535 (4), 17.3504 (2)
β (°) 116.883 (2)
V3)1079.91 (3)
Z4
Radiation typeCu Kα1, λ = 1.54056 Å
µ (mm1)6.85
Specimen shape, size (mm)Cylinder, 12 × 0.5
Data collection
DiffractometerStoe Stadi-P
Specimen mountingSpecimen was sealed in a 0.5 mm diameter borosilicate glass capillary
Data collection modeTransmission
Scan methodStep
2θ values (°)2θmin = 2 2θmax = 110 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.024, Rwp = 0.032, Rexp = 0.028, RBragg = 0.009, χ2 = 1.357
No. of parameters126
No. of restraints61
H-atom treatmentH-atom parameters constrained

Computer programs: WINXPOW (Stoe & Cie, 2004), DASH (David et al., 2004), WINXPOW (Stoe & Cie, 2004, DASH (David et al., 2004), TOPAS (Coelho, 2007), Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Sonja Hammer, Jürgen Glinnemann and Martin U. Schmidt for helpful discussions.

References

First citationBoultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987–993.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoelho, A. A. (2007). TOPAS Academic User Manual. Coelho Software, Brisbane, Australia.  Google Scholar
First citationDavid, W. I. F., Shankland, K., Van de Streek, J., Pidcock, E. & Motherwell, S. (2004). DASH. Cambridge Crystallographic Data Centre, Cambridge, England  Google Scholar
First citationDunitz, J. D. (1957). Acta Cryst. 10, 307–313.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHu, C., Li, Q. & Englert, U. (2003). CrystEngComm, 5, 519–529.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiptay, G., Wadsten, T. & Borbély-Kuszmann, A. (1986). J. Therm. Anal. 31, 845–852.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcConnell, A. A. & Nuttall, R. H. (1978). J. Mol. Struct. 49, 207–209.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2004). WinXPOW. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYoung, R. A. (1993). The Rietveld Method. New York: Oxford University Press Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds