organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Eth­oxy­benzyl)-1H-tetra­zole

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bTianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: yugp2005@yahoo.com.cn

(Received 26 December 2009; accepted 28 December 2009; online 9 January 2010)

In the title mol­ecule, C10H12N4O, the tetra­zole and benzene rings form a dihedral angle of 67.52 (2)°. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into chains along the a axis. The relatively short distance of 3.760 (3) Å between the centroids of the tetra­zole rings suggests the existence of ππ inter­actions.

Related literature

For details of the biological activities of sodium-glucose co-transporter 2 (SGLT2) inhibitors, see: Arakawa et al. (2001[Arakawa, K., Ishihara, T., Oku, A., Nawano, M., Ueta, K., Kitamura, K., Matsumoto, M. & Saito, A. (2001). Br. J. Pharmacol. 132, 578-586.]); Meng et al. (2008[Meng, M., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Morrison, E. P., Biller, S. A., Zahler, R., Deshpande, P. P., Pullockaran, A., Hagan, D. L., Morgan, N. N., Taylor, J. R., Obermeier, M. T., Humphreys, W. G., Khanna, A., Discenza, L., Robertson, J. M., Wang, A., Han, S., Wetterau, J. R., Janovitz, E. B., Flint, O. P., Whaley, J. M. & Washburn, W. N. (2008). J. Med. Chem. 51, 1145-1149.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N4O

  • Mr = 204.24

  • Monoclinic, P 21 /n

  • a = 4.9291 (10) Å

  • b = 18.145 (4) Å

  • c = 11.363 (2) Å

  • β = 99.19 (3)°

  • V = 1003.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.34 × 0.06 × 0.04 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.969, Tmax = 0.996

  • 6870 measured reflections

  • 1768 independent reflections

  • 1487 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.103

  • S = 1.10

  • 1768 reflections

  • 142 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.91 (1) 1.90 (1) 2.7897 (16) 166 (1)
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors constitute a new class of antidiabetic agents (Arakawa et al., 2001; Meng et al., 2008). The title compound, (I), was prepared as an intermediate of a new class of SGLT2 inhibitors designed in our laboratories.

In (I) (Fig. 1), all bond lengths in the molecular are normal (Allen et al., 1987). Atoms O1/C2/C9/C10 lie in the benzene ring (C3—C8) plane with a maximun deviation of 0.045 (2) Å for O1 . The tetrazole ring (N1—N4/C1) forms the dihedral angle of 67.52 (2) ° with the benzene ring (C3—C8).

In the crystal structure, relatively short distance of 3.760 (3) Å between the centroids of tetrazole rings suggests an existence of ππ interactions. Intermolecular N—H···N hydrogen bonds (Table 1) link the molecules related by translation along axis a into chains.

Related literature top

For details of the biological activities of sodium-glucose co-transporter 2 (SGLT2) inhibitors, see: Arakawa et al. (2001); Meng et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

A round-bottomed flask was charged with 1.61 g (10 mmol) of 4-ethoxyphenylacetonitrile, 3.25 g (50 mmol) of sodium azide and 2.67 g (50 mmol) of ammonium chloride and 50 ml of DMF, and the resulting mixture was stirred at 120 ° C for 15 h. On complete cooling, the mixture was filtered to remove the existing solid and the filtrate was evaporated on a rotary evaporator equipped with an oil pump, and the residue was dissolved in 100 ml of water. The aqueous solution thus obtained was adjusted to pH = 2 with concentrated hydrochloric acid, when it turned turbid. This turbid mixture was cooled with ice-water bath and stirred for complete crystallization. The precipitated crystals were collected via suction filtration and dried at 60° C in vacuo to afford the title product as white crystals 1.68 g (yield 82.3%). Crystals suitable for single-crystal X-ray diffraction were obtained via slow evaporation at room temperature of a solution of the pure title compound in dichloromethane/petroleum ether.

Refinement top

All H atoms were found on difference maps. C-bound H atoms were placed in idealized positions (C—H 0.93 - 0.97 Å), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for aryl and methylene and 1.5Ueq(C) for the methyl H atoms. The N-bound H atom was refined isotropically.

Structure description top

Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors constitute a new class of antidiabetic agents (Arakawa et al., 2001; Meng et al., 2008). The title compound, (I), was prepared as an intermediate of a new class of SGLT2 inhibitors designed in our laboratories.

In (I) (Fig. 1), all bond lengths in the molecular are normal (Allen et al., 1987). Atoms O1/C2/C9/C10 lie in the benzene ring (C3—C8) plane with a maximun deviation of 0.045 (2) Å for O1 . The tetrazole ring (N1—N4/C1) forms the dihedral angle of 67.52 (2) ° with the benzene ring (C3—C8).

In the crystal structure, relatively short distance of 3.760 (3) Å between the centroids of tetrazole rings suggests an existence of ππ interactions. Intermolecular N—H···N hydrogen bonds (Table 1) link the molecules related by translation along axis a into chains.

For details of the biological activities of sodium-glucose co-transporter 2 (SGLT2) inhibitors, see: Arakawa et al. (2001); Meng et al. (2008). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atomic labels and 40% probability displacement ellipsoids.
5-(4-Ethoxybenzyl)-1H-tetrazole top
Crystal data top
C10H12N4OF(000) = 432
Mr = 204.24Dx = 1.352 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3598 reflections
a = 4.9291 (10) Åθ = 1.1–27.9°
b = 18.145 (4) ŵ = 0.09 mm1
c = 11.363 (2) ÅT = 113 K
β = 99.19 (3)°Needle, colourless
V = 1003.2 (3) Å30.34 × 0.06 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1768 independent reflections
Radiation source: rotating anode1487 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.048
Detector resolution: 14.63 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω and φ scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 2119
Tmin = 0.969, Tmax = 0.996l = 1313
6870 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.067P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.004
1768 reflectionsΔρmax = 0.24 e Å3
142 parametersΔρmin = 0.34 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.354 (18)
Crystal data top
C10H12N4OV = 1003.2 (3) Å3
Mr = 204.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9291 (10) ŵ = 0.09 mm1
b = 18.145 (4) ÅT = 113 K
c = 11.363 (2) Å0.34 × 0.06 × 0.04 mm
β = 99.19 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
1768 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1487 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.996Rint = 0.048
6870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.24 e Å3
1768 reflectionsΔρmin = 0.34 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09591 (18)0.17311 (5)0.48558 (8)0.0241 (3)
N11.0194 (2)0.48750 (6)0.33955 (10)0.0214 (3)
N20.9379 (2)0.55573 (6)0.36698 (11)0.0252 (3)
N30.6749 (2)0.55229 (5)0.36251 (11)0.0242 (3)
N40.5824 (2)0.48270 (5)0.33271 (10)0.0211 (3)
C10.8013 (2)0.44332 (7)0.31894 (11)0.0187 (3)
C20.8099 (3)0.36438 (7)0.28353 (12)0.0225 (4)
H2A0.99370.34560.31000.027*
H2B0.77440.36130.19720.027*
C30.6058 (3)0.31536 (7)0.33333 (12)0.0195 (3)
C40.5715 (3)0.32048 (7)0.45271 (12)0.0234 (3)
H40.66760.35620.50120.028*
C50.3974 (3)0.27333 (7)0.49957 (12)0.0243 (4)
H50.37390.27810.57880.029*
C60.2566 (2)0.21864 (7)0.42871 (12)0.0198 (3)
C70.2858 (2)0.21280 (7)0.30957 (11)0.0204 (3)
H70.19160.17660.26140.024*
C80.4583 (3)0.26196 (7)0.26324 (12)0.0206 (3)
H80.47480.25880.18300.025*
C90.0624 (3)0.11821 (7)0.41507 (12)0.0244 (4)
H9A0.05780.08380.38320.029*
H9B0.18190.14100.34900.029*
C100.2311 (3)0.07851 (8)0.49534 (14)0.0319 (4)
H10A0.11060.05600.56010.048*
H10B0.34070.04120.45050.048*
H10C0.34890.11310.52640.048*
H11.197 (2)0.4782 (8)0.3340 (13)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0280 (6)0.0230 (5)0.0223 (6)0.0068 (4)0.0069 (4)0.0006 (4)
N10.0145 (6)0.0227 (6)0.0272 (7)0.0000 (5)0.0042 (5)0.0004 (5)
N20.0213 (6)0.0226 (6)0.0322 (7)0.0013 (5)0.0056 (5)0.0012 (5)
N30.0212 (6)0.0227 (6)0.0292 (7)0.0017 (5)0.0062 (5)0.0001 (5)
N40.0174 (6)0.0204 (6)0.0255 (7)0.0009 (5)0.0037 (5)0.0005 (4)
C10.0161 (7)0.0232 (7)0.0170 (7)0.0019 (5)0.0033 (5)0.0031 (5)
C20.0184 (7)0.0232 (7)0.0270 (8)0.0011 (5)0.0066 (6)0.0001 (5)
C30.0165 (7)0.0185 (7)0.0239 (8)0.0030 (5)0.0042 (6)0.0025 (5)
C40.0241 (8)0.0220 (7)0.0232 (8)0.0034 (5)0.0009 (6)0.0033 (5)
C50.0292 (8)0.0262 (7)0.0177 (8)0.0028 (6)0.0047 (6)0.0009 (5)
C60.0184 (7)0.0182 (7)0.0228 (8)0.0006 (5)0.0034 (6)0.0033 (5)
C70.0200 (7)0.0195 (7)0.0211 (8)0.0007 (5)0.0017 (6)0.0020 (5)
C80.0222 (7)0.0220 (7)0.0183 (8)0.0036 (5)0.0055 (6)0.0001 (5)
C90.0237 (7)0.0204 (7)0.0284 (9)0.0029 (6)0.0022 (6)0.0011 (5)
C100.0268 (8)0.0277 (8)0.0418 (10)0.0040 (6)0.0077 (7)0.0055 (6)
Geometric parameters (Å, º) top
O1—C61.3753 (15)C4—C51.3778 (18)
O1—C91.4296 (16)C4—H40.9300
N1—C11.3313 (16)C5—C61.3914 (18)
N1—N21.3533 (15)C5—H50.9300
N1—H10.906 (9)C6—C71.3881 (18)
N2—N31.2908 (16)C7—C81.3922 (18)
N3—N41.3666 (14)C7—H70.9300
N4—C11.3244 (16)C8—H80.9300
C1—C21.4903 (18)C9—C101.5113 (18)
C2—C31.5184 (17)C9—H9A0.9700
C2—H2A0.9700C9—H9B0.9700
C2—H2B0.9700C10—H10A0.9600
C3—C81.3845 (18)C10—H10B0.9600
C3—C41.3965 (18)C10—H10C0.9600
C6—O1—C9117.34 (10)C4—C5—H5119.9
C1—N1—N2109.29 (10)C6—C5—H5119.9
C1—N1—H1129.7 (10)O1—C6—C7124.72 (12)
N2—N1—H1120.9 (10)O1—C6—C5115.34 (11)
N3—N2—N1106.26 (10)C7—C6—C5119.94 (12)
N2—N3—N4110.35 (10)C6—C7—C8118.98 (12)
C1—N4—N3106.37 (10)C6—C7—H7120.5
N4—C1—N1107.74 (11)C8—C7—H7120.5
N4—C1—C2127.53 (11)C3—C8—C7121.81 (12)
N1—C1—C2124.71 (11)C3—C8—H8119.1
C1—C2—C3114.42 (10)C7—C8—H8119.1
C1—C2—H2A108.7O1—C9—C10107.31 (11)
C3—C2—H2A108.7O1—C9—H9A110.3
C1—C2—H2B108.7C10—C9—H9A110.3
C3—C2—H2B108.7O1—C9—H9B110.3
H2A—C2—H2B107.6C10—C9—H9B110.3
C8—C3—C4118.14 (11)H9A—C9—H9B108.5
C8—C3—C2120.93 (12)C9—C10—H10A109.5
C4—C3—C2120.86 (12)C9—C10—H10B109.5
C5—C4—C3120.89 (12)H10A—C10—H10B109.5
C5—C4—H4119.6C9—C10—H10C109.5
C3—C4—H4119.6H10A—C10—H10C109.5
C4—C5—C6120.20 (13)H10B—C10—H10C109.5
C1—N1—N2—N30.13 (14)C2—C3—C4—C5176.44 (11)
N1—N2—N3—N40.10 (14)C3—C4—C5—C61.3 (2)
N2—N3—N4—C10.03 (14)C9—O1—C6—C73.22 (17)
N3—N4—C1—N10.05 (14)C9—O1—C6—C5177.21 (11)
N3—N4—C1—C2178.47 (12)C4—C5—C6—O1177.84 (11)
N2—N1—C1—N40.12 (15)C4—C5—C6—C71.75 (19)
N2—N1—C1—C2178.59 (12)O1—C6—C7—C8179.16 (11)
N4—C1—C2—C336.43 (19)C5—C6—C7—C80.39 (18)
N1—C1—C2—C3145.41 (13)C4—C3—C8—C71.88 (18)
C1—C2—C3—C8138.01 (13)C2—C3—C8—C7175.05 (11)
C1—C2—C3—C445.14 (17)C6—C7—C8—C31.45 (19)
C8—C3—C4—C50.49 (19)C6—O1—C9—C10177.01 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.91 (1)1.90 (1)2.7897 (16)166 (1)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H12N4O
Mr204.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)4.9291 (10), 18.145 (4), 11.363 (2)
β (°) 99.19 (3)
V3)1003.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.06 × 0.04
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.969, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
6870, 1768, 1487
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 1.10
No. of reflections1768
No. of parameters142
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.906 (9)1.902 (10)2.7897 (16)166.3 (14)
Symmetry code: (i) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArakawa, K., Ishihara, T., Oku, A., Nawano, M., Ueta, K., Kitamura, K., Matsumoto, M. & Saito, A. (2001). Br. J. Pharmacol. 132, 578–586.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeng, M., Ellsworth, B. A., Nirschl, A. A., McCann, P. J., Patel, M., Girotra, R. N., Wu, G., Sher, P. M., Morrison, E. P., Biller, S. A., Zahler, R., Deshpande, P. P., Pullockaran, A., Hagan, D. L., Morgan, N. N., Taylor, J. R., Obermeier, M. T., Humphreys, W. G., Khanna, A., Discenza, L., Robertson, J. M., Wang, A., Han, S., Wetterau, J. R., Janovitz, E. B., Flint, O. P., Whaley, J. M. & Washburn, W. N. (2008). J. Med. Chem. 51, 1145–1149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds