metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­copper(II)]-bis­­(μ2-di-4-pyridyl di­sulfide-κ2N:N′)] bis­­(hydrogen phthalate) monohydrate]

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Center of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn

(Received 1 January 2010; accepted 14 January 2010; online 20 January 2010)

The asymmetric unit of the title compound, {[Cu(C10H8N2S2)2(H2O)2](C8H5O4)2·H2O}n, contains one CuII ion, two bridging di-4-pyridyl disulfide (4-DPDS) ligands of the same chirality, two coordinating water mol­ecules, two hydrogen phthalate anions and one uncoordinated water mol­ecule. The polymeric structure consists of two types of polymeric chains, each composed from repeated chiral rhomboids. The CuII ions adopt a distorted octa­hedral coordination geometry and are coordinated by four pyridine N atoms and two water O atoms. The coordinated water mol­ecules and hydrogen phthalate anions are located between the repeated rhomboidal chains, and form hydrogen bonds with the coordinated water mol­ecules.

Related literature

For general background to 4,4′-dipyridyldisulfide, see Horikoshi & Mochida (2006[Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595-2609.]). For coordination complexes with the title ligand, see: Manna et al. (2005[Manna, S. C., Konar, S., Zangrando, E., Drew, M. G. B., Ribas, J. & Chaudhuri, N. R. (2005). Eur. J. Inorg. Chem. pp. 1751-1758.], 2007[Manna, S. C., Ribas, J., Zangrando, E. & Chaudhuri, N. R. (2007). Polyhedron, 26, 4923-4928.]); Luo et al. (2003[Luo, J., Hong, M., Wang, R., Yuan, D., Cao, R., Han, L., Xu, Y. & Lin, Z. (2003). Eur. J. Inorg. Chem. pp. 3623-3632.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H8N2S2)2(H2O)2](C8H5O4)2·H2O

  • Mr = 888.44

  • Orthorhombic, P n a 21

  • a = 20.253 (4) Å

  • b = 10.732 (2) Å

  • c = 17.228 (3) Å

  • V = 3744.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 295 K

  • 0.40 × 0.13 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.870, Tmax = 0.901

  • 34124 measured reflections

  • 8513 independent reflections

  • 5968 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.081

  • S = 1.02

  • 8513 reflections

  • 506 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4088 Friedel pairs

  • Flack parameter: 0.00 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HW1⋯O7 0.81 2.51 3.118 (6) 133
O1—HW2⋯O3i 0.81 1.92 2.658 (4) 153
O2—H2C⋯O7ii 0.75 2.13 2.878 (4) 174
O2—H2D⋯O9 0.80 2.05 2.841 (4) 171
O3—H3C⋯O4ii 0.81 2.02 2.800 (4) 163
O3—H3D⋯O11 0.76 2.03 2.784 (5) 172
O5—H5C⋯O6 0.85 1.51 2.358 (5) 178
O8—H8C⋯O11 0.87 1.50 2.367 (4) 178
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Over past few years, the 4,4'-dipyridyldisulfide has received considerable attention due to both its conformational flexibility and axial chirality (Horikoshi & Mochida, 2006). A large number of metal coordination networks have been reported by using these ligands only or in combination with suitable anions (Manna et al., 2005, 2007; Luo et al., 2003). In this contribution, we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound, {[Cu(4-DPDS)2(H2O)2].2(C8H5O4)-.H2O}n (4-DPDS = 4,4'-dipyridinedisulfide),contains one CuII ion, two bridging 4-DPDS ligands of the same chirality, two coordinating water molecules, two hydrogen phthalate anions and one lattice water molecule (Fig. 1). The copper atoms are each coordinated by four pyridine nitrogen atoms and two aqua ligands to complete an elongated octahedral CuN4O2 chromophore of "4 + 2" coordination type due to Jahn-Teller effect. The equatorial positions are occupied by four N toms of four 4-DPDS ligands, and the axial ones by two aqua O atoms. The Cu—O distances of 2.513 (3) Å and 2.438 (3) Å are significantly larger than those to the nitrogen atoms (Cu—N = 2.031 (3)–2.054 (3) Å), indicating a weak coordination capability of the aqua ligand. The cis and trans N—Cu—N angles fall in the regions 88.97 (9)–90.99 (9)° and 173.34 (13)–176.78 (12)°, respectively, exhibiting small deviation from the corresponding values for a regular geometry. The bond lengths (with the Cu atoms) are all within the normal ranges (Manna et al., 2007).

The Cu atoms are bridged by four 4-DPDS ligands to form one-dimensional double–stranded chains extending in the [010] direction. The one-dimensional chains with respect to the neighbour are close-packed in ···ABAB··· sequence (Fig. 2). Despite the Cu—Cu distance spanned by the two 4-DPDS are 10.732 (2) Å, but no similar mesoporous structure form, because the HL- anions and lattice H2O molecule reside in cavities in the one-dimensional chain metallacycle. The HL- anions play a role in balancing in charge, the carboxylic –COOH groups favor formation of strong intramolecular hydrogen bond to carboxylate O6 atom and O11 atom, and the lattice H2O molecule form hydrogen bonds to two HL- ainions. The distance of S—S between adjacent chains is 5.17 (1) Å, which is much greater than van der waals distance (3.7 Å), shows that there is no S—S weak interaction.The chains are linked via those interchain hydrogen bonds between the aqua ligand and the carboxylate atoms (Table 1) into two-dimensional layers (Fig. 3).

Related literature top

For general background to 4,4'-dipyridyldisulfide, see Horikoshi & Mochida (2006). For coordination complexes with the title ligand, see: Manna et al. (2005, 2007); Luo et al. (2003).

Experimental top

Dropwise addition of 0.5 ml 1.0 M NaOH to a aqueous solution of Cu(NO3)2.3H2O (0.0603 g, 0.25 mmol) in 4 ml H2O produced the blue precipitate, which was then centrifuged and washed with double-distilled water four times. The precipitate was subsequently moved to a stirred suspension of phthalic acid (0.0510 g, 0.25 mmol) and DPDS (4,4'-dipyridinedisulfide) (0.0575 g, 0.25 mmol) in 30 ml hot water. The mixture was further stirred for 30 min and the insoluble solid was filtere off. The colourless filtrate was allowed to stand at the room temperature. Slow evaporation for about a month afforded a small amount of blue block crystals.

Refinement top

H atoms bonded to C atoms were geometrically positioned and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Structure description top

Over past few years, the 4,4'-dipyridyldisulfide has received considerable attention due to both its conformational flexibility and axial chirality (Horikoshi & Mochida, 2006). A large number of metal coordination networks have been reported by using these ligands only or in combination with suitable anions (Manna et al., 2005, 2007; Luo et al., 2003). In this contribution, we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound, {[Cu(4-DPDS)2(H2O)2].2(C8H5O4)-.H2O}n (4-DPDS = 4,4'-dipyridinedisulfide),contains one CuII ion, two bridging 4-DPDS ligands of the same chirality, two coordinating water molecules, two hydrogen phthalate anions and one lattice water molecule (Fig. 1). The copper atoms are each coordinated by four pyridine nitrogen atoms and two aqua ligands to complete an elongated octahedral CuN4O2 chromophore of "4 + 2" coordination type due to Jahn-Teller effect. The equatorial positions are occupied by four N toms of four 4-DPDS ligands, and the axial ones by two aqua O atoms. The Cu—O distances of 2.513 (3) Å and 2.438 (3) Å are significantly larger than those to the nitrogen atoms (Cu—N = 2.031 (3)–2.054 (3) Å), indicating a weak coordination capability of the aqua ligand. The cis and trans N—Cu—N angles fall in the regions 88.97 (9)–90.99 (9)° and 173.34 (13)–176.78 (12)°, respectively, exhibiting small deviation from the corresponding values for a regular geometry. The bond lengths (with the Cu atoms) are all within the normal ranges (Manna et al., 2007).

The Cu atoms are bridged by four 4-DPDS ligands to form one-dimensional double–stranded chains extending in the [010] direction. The one-dimensional chains with respect to the neighbour are close-packed in ···ABAB··· sequence (Fig. 2). Despite the Cu—Cu distance spanned by the two 4-DPDS are 10.732 (2) Å, but no similar mesoporous structure form, because the HL- anions and lattice H2O molecule reside in cavities in the one-dimensional chain metallacycle. The HL- anions play a role in balancing in charge, the carboxylic –COOH groups favor formation of strong intramolecular hydrogen bond to carboxylate O6 atom and O11 atom, and the lattice H2O molecule form hydrogen bonds to two HL- ainions. The distance of S—S between adjacent chains is 5.17 (1) Å, which is much greater than van der waals distance (3.7 Å), shows that there is no S—S weak interaction.The chains are linked via those interchain hydrogen bonds between the aqua ligand and the carboxylate atoms (Table 1) into two-dimensional layers (Fig. 3).

For general background to 4,4'-dipyridyldisulfide, see Horikoshi & Mochida (2006). For coordination complexes with the title ligand, see: Manna et al. (2005, 2007); Luo et al. (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit showing the atomic numbering and 45% probability dispalcement ellipsoids [symmetry code: (i) x, y + 1, z]. Most of H-atoms omitted for clarity
[Figure 2] Fig. 2. A portion of the crystal packing viewed along axis c and showing the polymeric chains composed from the CuII ions and 4,4'-DPDS ligands. Anions and lattice water molecules were omitted for clarity.
[Figure 3] Fig. 3. A portion of the crystal packing viewed along axis b and showing O—H···O hydrogen bonds as dashed lines.
catena-Poly[[[diaquacopper(II)]-bis(µ2-di-4-pyridyl disulfide-κ2N:N')] bis(hydrogen phthalate) monohydrate] top
Crystal data top
[Cu(C10H8N2S2)2(H2O)2](C8H5O4)2·H2OF(000) = 1828
Mr = 888.44Dx = 1.576 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 34124 reflections
a = 20.253 (4) Åθ = 3.0–27.5°
b = 10.732 (2) ŵ = 0.88 mm1
c = 17.228 (3) ÅT = 295 K
V = 3744.6 (13) Å3Chip, blue
Z = 40.40 × 0.13 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8513 independent reflections
Radiation source: fine-focus sealed tube5968 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scanh = 2625
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1312
Tmin = 0.870, Tmax = 0.901l = 2222
34124 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.2143P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.004
8513 reflectionsΔρmax = 0.25 e Å3
506 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 4088 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
[Cu(C10H8N2S2)2(H2O)2](C8H5O4)2·H2OV = 3744.6 (13) Å3
Mr = 888.44Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.253 (4) ŵ = 0.88 mm1
b = 10.732 (2) ÅT = 295 K
c = 17.228 (3) Å0.40 × 0.13 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8513 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5968 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.901Rint = 0.077
34124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.25 e Å3
S = 1.02Δρmin = 0.32 e Å3
8513 reflectionsAbsolute structure: Flack (1983), 4088 Friedel pairs
506 parametersAbsolute structure parameter: 0.00 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.419363 (19)0.57242 (3)0.25910 (3)0.03533 (11)
N10.35058 (13)0.4380 (2)0.27778 (17)0.0352 (7)
C10.32045 (18)0.4283 (3)0.3466 (2)0.0414 (9)
H1A0.32990.48710.38460.050*
C20.27606 (18)0.3352 (3)0.3638 (2)0.0423 (9)
H2A0.25590.33220.41230.051*
C30.26177 (16)0.2469 (3)0.3089 (2)0.0317 (8)
C40.29200 (18)0.2565 (3)0.2372 (2)0.0422 (9)
H4A0.28330.19870.19830.051*
C50.33519 (18)0.3531 (3)0.2245 (2)0.0459 (10)
H5A0.35480.35960.17580.055*
S10.20343 (4)0.13124 (8)0.33513 (6)0.0442 (2)
S20.19610 (4)0.01528 (8)0.24265 (6)0.0455 (3)
C60.29384 (16)0.3035 (3)0.2225 (2)0.0358 (8)
H6A0.28740.37660.19450.043*
C70.24750 (15)0.2108 (3)0.2161 (2)0.0359 (9)
H7A0.21100.22040.18390.043*
C80.25621 (15)0.1028 (3)0.2586 (3)0.0337 (8)
C90.31050 (16)0.0918 (3)0.3058 (2)0.0348 (8)
H9A0.31710.02050.33560.042*
C100.35480 (16)0.1884 (3)0.3081 (2)0.0343 (8)
H10A0.39170.18020.33980.041*
N20.34792 (11)0.2942 (2)0.26704 (19)0.0323 (6)
N30.48781 (13)0.4353 (2)0.23799 (18)0.0375 (7)
C110.49242 (17)0.3287 (3)0.2780 (2)0.0442 (10)
H11A0.46670.31920.32240.053*
C120.53371 (16)0.2320 (3)0.2564 (3)0.0433 (9)
H12A0.53610.16030.28660.052*
C130.57126 (15)0.2425 (3)0.1901 (2)0.0338 (8)
C140.56681 (15)0.3531 (3)0.1478 (2)0.0350 (8)
H14A0.59120.36420.10260.042*
C150.52524 (16)0.4454 (3)0.1747 (2)0.0385 (9)
H15A0.52320.51950.14680.046*
S30.62621 (4)0.12937 (8)0.15263 (6)0.0439 (2)
S40.64454 (4)0.01289 (8)0.24275 (6)0.0450 (3)
C160.48282 (16)0.1984 (3)0.1973 (2)0.0348 (8)
H16A0.44580.19680.16530.042*
C170.52745 (17)0.1020 (3)0.1922 (2)0.0406 (9)
H17A0.52040.03640.15800.049*
C180.58314 (16)0.1044 (3)0.2391 (2)0.0350 (9)
C190.59177 (16)0.2049 (3)0.2884 (2)0.0384 (9)
H19A0.62900.20960.32000.046*
C200.54505 (16)0.2978 (3)0.2905 (2)0.0380 (9)
H20A0.55150.36510.32360.046*
N40.49040 (12)0.2948 (2)0.24643 (19)0.0328 (7)
O10.40118 (12)0.5777 (2)0.11927 (16)0.0486 (7)
HW10.42780.54120.09250.073*
HW20.37170.62340.10600.073*
O20.43965 (13)0.6061 (2)0.40149 (16)0.0542 (7)
H2C0.45760.55210.41930.081*
H2D0.41140.63750.42770.081*
O30.18807 (13)0.1902 (3)0.53050 (18)0.0614 (8)
H3C0.22460.16030.52940.092*
H3D0.19090.25820.54220.092*
O40.69101 (15)0.9223 (3)0.0056 (3)0.0932 (13)
O50.65614 (15)0.7585 (4)0.0559 (2)0.0996 (13)
H5C0.62450.70700.05090.149*
C270.6463 (2)0.8540 (4)0.0128 (3)0.0566 (11)
C210.57687 (18)0.8814 (3)0.0151 (2)0.0421 (9)
C220.52332 (18)0.7981 (3)0.0218 (2)0.0426 (9)
C230.46327 (19)0.8428 (4)0.0462 (2)0.0520 (11)
H23A0.42770.78850.04990.062*
C240.4545 (2)0.9676 (4)0.0656 (3)0.0579 (11)
H24A0.41330.99610.08160.069*
C250.5070 (2)1.0483 (4)0.0610 (3)0.0547 (11)
H25A0.50161.13180.07400.066*
C260.5675 (2)1.0050 (3)0.0370 (2)0.0499 (10)
H26A0.60311.05970.03540.060*
C280.5238 (3)0.6591 (4)0.0040 (3)0.0680 (15)
O60.56712 (19)0.6184 (4)0.0433 (3)0.1161 (17)
O70.48227 (18)0.5928 (3)0.0343 (3)0.0952 (13)
O80.30452 (14)0.5485 (3)0.52104 (19)0.0687 (9)
H8C0.27020.50890.53800.103*
O90.33393 (14)0.7296 (3)0.4778 (2)0.0710 (9)
C350.2903 (2)0.6610 (4)0.5027 (2)0.0478 (10)
C290.21993 (17)0.7079 (3)0.5099 (2)0.0379 (8)
C300.16576 (17)0.6471 (3)0.5444 (2)0.0377 (9)
C310.10515 (19)0.7074 (4)0.5451 (2)0.0482 (10)
H31A0.06960.66880.56930.058*
C320.0956 (2)0.8229 (3)0.5111 (3)0.0527 (11)
H32A0.05400.85960.51050.063*
C330.1488 (2)0.8823 (4)0.4782 (3)0.0539 (11)
H33A0.14360.96050.45580.065*
C340.2096 (2)0.8260 (3)0.4787 (2)0.0490 (10)
H34A0.24530.86830.45730.059*
C360.1630 (2)0.5172 (4)0.5815 (3)0.0543 (11)
O100.11684 (16)0.4905 (3)0.6230 (2)0.0873 (11)
O110.20996 (16)0.4401 (3)0.5653 (2)0.0775 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03143 (18)0.02371 (17)0.0508 (3)0.00042 (18)0.0054 (2)0.0016 (2)
N10.0402 (15)0.0293 (14)0.036 (2)0.0017 (13)0.0073 (14)0.0007 (14)
C10.048 (2)0.0368 (19)0.039 (2)0.0102 (18)0.0013 (18)0.0095 (18)
C20.053 (2)0.0400 (19)0.034 (2)0.0096 (18)0.0133 (18)0.0055 (17)
C30.0290 (18)0.0254 (16)0.041 (2)0.0015 (14)0.0044 (16)0.0034 (16)
C40.057 (2)0.0356 (18)0.034 (2)0.0093 (16)0.0065 (19)0.0097 (16)
C50.056 (2)0.044 (2)0.037 (2)0.0084 (19)0.0142 (19)0.0073 (18)
S10.0399 (5)0.0312 (4)0.0614 (7)0.0034 (4)0.0134 (5)0.0008 (5)
S20.0371 (5)0.0307 (4)0.0687 (8)0.0029 (4)0.0144 (5)0.0018 (5)
C60.0362 (19)0.0324 (18)0.039 (2)0.0068 (15)0.0018 (17)0.0039 (16)
C70.0314 (18)0.0315 (17)0.045 (2)0.0046 (15)0.0047 (16)0.0037 (16)
C80.0334 (16)0.0278 (16)0.040 (2)0.0037 (14)0.0005 (19)0.0023 (18)
C90.0370 (19)0.0266 (17)0.041 (2)0.0004 (15)0.0051 (16)0.0080 (16)
C100.0309 (18)0.0353 (19)0.037 (2)0.0018 (16)0.0049 (16)0.0058 (17)
N20.0307 (14)0.0301 (13)0.0362 (18)0.0018 (11)0.0018 (14)0.0007 (14)
N30.0365 (15)0.0293 (14)0.047 (2)0.0005 (12)0.0062 (14)0.0027 (14)
C110.052 (2)0.0352 (18)0.046 (3)0.0056 (17)0.0127 (19)0.0110 (17)
C120.050 (2)0.0301 (16)0.050 (2)0.0062 (15)0.009 (2)0.012 (2)
C130.0305 (18)0.0291 (16)0.042 (2)0.0005 (14)0.0045 (18)0.0031 (16)
C140.0297 (17)0.0367 (18)0.039 (2)0.0001 (14)0.0087 (16)0.0028 (16)
C150.0366 (19)0.0316 (18)0.047 (3)0.0022 (15)0.0019 (18)0.0120 (17)
S30.0418 (5)0.0314 (4)0.0584 (7)0.0026 (4)0.0124 (5)0.0026 (4)
S40.0316 (4)0.0300 (4)0.0734 (8)0.0020 (3)0.0050 (5)0.0051 (5)
C160.0304 (18)0.0295 (16)0.044 (2)0.0040 (14)0.0013 (17)0.0054 (17)
C170.041 (2)0.0324 (18)0.048 (2)0.0023 (16)0.0015 (18)0.0096 (17)
C180.0297 (15)0.0240 (14)0.051 (3)0.0028 (15)0.0039 (17)0.0019 (15)
C190.0311 (18)0.0360 (18)0.048 (2)0.0010 (15)0.0037 (16)0.0010 (17)
C200.0315 (18)0.0322 (18)0.050 (3)0.0048 (16)0.0016 (17)0.0061 (16)
N40.0312 (13)0.0237 (12)0.044 (2)0.0039 (11)0.0003 (15)0.0040 (14)
O10.0451 (14)0.0537 (16)0.0470 (17)0.0114 (12)0.0003 (13)0.0071 (14)
O20.0470 (15)0.0574 (16)0.058 (2)0.0032 (14)0.0009 (14)0.0067 (14)
O30.0564 (17)0.0610 (17)0.067 (2)0.0052 (15)0.0131 (15)0.0041 (16)
O40.0556 (19)0.0593 (19)0.165 (4)0.0057 (16)0.005 (2)0.012 (2)
O50.079 (2)0.122 (3)0.098 (3)0.011 (2)0.022 (2)0.058 (2)
C270.055 (3)0.056 (3)0.059 (3)0.013 (2)0.002 (2)0.002 (2)
C210.052 (2)0.0399 (19)0.034 (2)0.0076 (18)0.0094 (19)0.0007 (16)
C220.049 (2)0.040 (2)0.039 (2)0.0035 (18)0.0159 (19)0.0022 (18)
C230.051 (2)0.051 (2)0.054 (3)0.001 (2)0.013 (2)0.003 (2)
C240.054 (3)0.061 (3)0.059 (3)0.016 (2)0.006 (2)0.003 (2)
C250.069 (3)0.040 (2)0.055 (3)0.013 (2)0.006 (2)0.002 (2)
C260.058 (3)0.042 (2)0.050 (3)0.0017 (19)0.013 (2)0.0001 (19)
C280.068 (3)0.047 (3)0.089 (4)0.010 (3)0.045 (3)0.014 (3)
O60.095 (3)0.096 (3)0.158 (4)0.012 (2)0.014 (3)0.083 (3)
O70.084 (2)0.0428 (17)0.159 (4)0.0101 (17)0.035 (3)0.004 (2)
O80.0650 (19)0.0590 (18)0.082 (2)0.0120 (15)0.0089 (17)0.0084 (17)
O90.0537 (18)0.0671 (19)0.092 (3)0.0054 (16)0.0205 (17)0.0079 (18)
C350.052 (3)0.053 (2)0.038 (2)0.004 (2)0.001 (2)0.003 (2)
C290.046 (2)0.0341 (18)0.034 (2)0.0047 (16)0.0011 (18)0.0036 (16)
C300.046 (2)0.0342 (19)0.032 (2)0.0065 (17)0.0051 (17)0.0059 (16)
C310.046 (2)0.052 (2)0.047 (3)0.0093 (19)0.0019 (19)0.007 (2)
C320.055 (3)0.042 (2)0.062 (3)0.003 (2)0.003 (2)0.008 (2)
C330.070 (3)0.036 (2)0.055 (3)0.007 (2)0.000 (2)0.001 (2)
C340.062 (3)0.0351 (19)0.050 (3)0.0053 (19)0.014 (2)0.0015 (18)
C360.061 (3)0.043 (2)0.058 (3)0.013 (2)0.008 (2)0.008 (2)
O100.084 (2)0.074 (2)0.104 (3)0.0180 (19)0.023 (2)0.036 (2)
O110.082 (2)0.0426 (16)0.108 (3)0.0064 (16)0.002 (2)0.0206 (18)
Geometric parameters (Å, º) top
Cu—N12.031 (3)C17—H17A0.9300
Cu—N4i2.037 (2)C18—C191.384 (5)
Cu—N2i2.040 (2)C19—C201.374 (4)
Cu—N32.054 (3)C19—H19A0.9300
Cu—O12.438 (3)C20—N41.343 (4)
Cu—O22.513 (3)C20—H20A0.9300
N1—C51.330 (4)N4—Cuii2.037 (2)
N1—C11.338 (4)O1—HW10.8101
C1—C21.376 (5)O1—HW20.8061
C1—H1A0.9300O2—H2C0.7498
C2—C31.370 (5)O2—H2D0.8035
C2—H2A0.9300O3—H3C0.8067
C3—C41.383 (5)O3—H3D0.7598
C3—S11.772 (3)O4—C271.207 (5)
C4—C51.374 (5)O5—C271.281 (5)
C4—H4A0.9300O5—H5C0.8501
C5—H5A0.9300C27—C211.516 (5)
S1—S22.0271 (15)C21—C261.392 (5)
S2—C81.778 (3)C21—C221.411 (5)
C6—N21.341 (4)C22—C231.374 (5)
C6—C71.372 (4)C22—C281.523 (5)
C6—H6A0.9300C23—C241.391 (5)
C7—C81.382 (4)C23—H23A0.9300
C7—H7A0.9300C24—C251.374 (5)
C8—C91.373 (5)C24—H24A0.9300
C9—C101.372 (4)C25—C261.373 (5)
C9—H9A0.9300C25—H25A0.9300
C10—N21.346 (4)C26—H26A0.9300
C10—H10A0.9300C28—O71.219 (6)
N2—Cuii2.040 (2)C28—O61.275 (6)
N3—C151.332 (4)O8—C351.281 (4)
N3—C111.339 (4)O8—H8C0.8655
C11—C121.384 (4)O9—C351.228 (4)
C11—H11A0.9300C35—C291.516 (5)
C12—C131.378 (5)C29—C341.393 (5)
C12—H12A0.9300C29—C301.408 (5)
C13—C141.396 (4)C30—C311.388 (5)
C13—S31.769 (3)C30—C361.535 (5)
C14—C151.381 (4)C31—C321.385 (5)
C14—H14A0.9300C31—H31A0.9300
C15—H15A0.9300C32—C331.374 (5)
S3—S42.0275 (14)C32—H32A0.9300
S4—C181.771 (3)C33—C341.372 (5)
C16—N41.346 (4)C33—H33A0.9300
C16—C171.376 (4)C34—H34A0.9300
C16—H16A0.9300C36—O101.211 (5)
C17—C181.388 (5)C36—O111.291 (5)
N1—Cu—N4i176.78 (12)N4—C16—H16A118.6
N1—Cu—N2i90.08 (10)C17—C16—H16A118.6
N4i—Cu—N2i90.99 (9)C16—C17—C18118.9 (3)
N1—Cu—N388.97 (9)C16—C17—H17A120.6
N4i—Cu—N390.31 (10)C18—C17—H17A120.6
N2i—Cu—N3173.34 (13)C19—C18—C17118.3 (3)
N1—Cu—O193.99 (10)C19—C18—S4116.3 (3)
N4i—Cu—O189.11 (11)C17—C18—S4125.3 (2)
N2i—Cu—O186.72 (11)C20—C19—C18119.6 (3)
N3—Cu—O186.78 (10)C20—C19—H19A120.2
N1—Cu—O293.42 (10)C18—C19—H19A120.2
N4i—Cu—O283.60 (11)N4—C20—C19122.4 (3)
N2i—Cu—O287.10 (11)N4—C20—H20A118.8
N3—Cu—O299.53 (10)C19—C20—H20A118.8
O1—Cu—O2170.35 (8)C20—N4—C16117.9 (3)
C5—N1—C1116.8 (3)C20—N4—Cuii120.3 (2)
C5—N1—Cu122.5 (2)C16—N4—Cuii121.7 (2)
C1—N1—Cu120.6 (2)Cu—O1—HW1116.8
N1—C1—C2123.0 (3)Cu—O1—HW2114.0
N1—C1—H1A118.5HW1—O1—HW2128.7
C2—C1—H1A118.5Cu—O2—H2C111.5
C3—C2—C1119.5 (4)Cu—O2—H2D119.5
C3—C2—H2A120.3H2C—O2—H2D116.1
C1—C2—H2A120.3H3C—O3—H3D108.6
C2—C3—C4118.1 (3)C27—O5—H5C110.2
C2—C3—S1116.7 (3)O4—C27—O5121.5 (4)
C4—C3—S1125.1 (3)O4—C27—C21119.6 (4)
C5—C4—C3118.7 (3)O5—C27—C21118.9 (4)
C5—C4—H4A120.6C26—C21—C22118.5 (3)
C3—C4—H4A120.6C26—C21—C27113.5 (4)
N1—C5—C4123.8 (3)C22—C21—C27128.1 (3)
N1—C5—H5A118.1C23—C22—C21119.0 (3)
C4—C5—H5A118.1C23—C22—C28114.2 (4)
C3—S1—S2106.16 (13)C21—C22—C28126.8 (4)
C8—S2—S1105.40 (14)C22—C23—C24121.5 (4)
N2—C6—C7123.4 (3)C22—C23—H23A119.2
N2—C6—H6A118.3C24—C23—H23A119.2
C7—C6—H6A118.3C25—C24—C23119.6 (4)
C6—C7—C8118.6 (3)C25—C24—H24A120.2
C6—C7—H7A120.7C23—C24—H24A120.2
C8—C7—H7A120.7C26—C25—C24119.6 (4)
C9—C8—C7119.2 (3)C26—C25—H25A120.2
C9—C8—S2125.4 (2)C24—C25—H25A120.2
C7—C8—S2115.3 (3)C25—C26—C21121.7 (4)
C10—C9—C8118.4 (3)C25—C26—H26A119.1
C10—C9—H9A120.8C21—C26—H26A119.1
C8—C9—H9A120.8O7—C28—O6123.2 (5)
N2—C10—C9123.7 (3)O7—C28—C22118.7 (5)
N2—C10—H10A118.1O6—C28—C22118.0 (5)
C9—C10—H10A118.1C35—O8—H8C111.4
C6—N2—C10116.6 (3)O9—C35—O8119.2 (4)
C6—N2—Cuii119.3 (2)O9—C35—C29120.4 (3)
C10—N2—Cuii123.7 (2)O8—C35—C29120.3 (4)
C15—N3—C11116.8 (3)C34—C29—C30117.9 (3)
C15—N3—Cu118.1 (2)C34—C29—C35114.3 (3)
C11—N3—Cu124.6 (2)C30—C29—C35127.8 (3)
N3—C11—C12123.0 (3)C31—C30—C29118.5 (3)
N3—C11—H11A118.5C31—C30—C36112.8 (3)
C12—C11—H11A118.5C29—C30—C36128.7 (3)
C13—C12—C11119.7 (3)C32—C31—C30122.5 (4)
C13—C12—H12A120.2C32—C31—H31A118.8
C11—C12—H12A120.2C30—C31—H31A118.8
C12—C13—C14117.9 (3)C33—C32—C31118.7 (4)
C12—C13—S3126.4 (2)C33—C32—H32A120.6
C14—C13—S3115.7 (3)C31—C32—H32A120.6
C15—C14—C13118.3 (3)C34—C33—C32119.8 (4)
C15—C14—H14A120.9C34—C33—H33A120.1
C13—C14—H14A120.9C32—C33—H33A120.1
N3—C15—C14124.3 (3)C33—C34—C29122.6 (4)
N3—C15—H15A117.8C33—C34—H34A118.7
C14—C15—H15A117.8C29—C34—H34A118.7
C13—S3—S4105.02 (13)O10—C36—O11123.0 (4)
C18—S4—S3106.42 (13)O10—C36—C30119.3 (4)
N4—C16—C17122.9 (3)O11—C36—C30117.7 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HW1···O70.812.513.118 (6)133
O1—HW2···O3iii0.811.922.658 (4)153
O2—H2C···O7iv0.752.132.878 (4)174
O2—H2D···O90.802.052.841 (4)171
O3—H3C···O4iv0.812.022.800 (4)163
O3—H3D···O110.762.032.784 (5)172
O5—H5C···O60.851.512.358 (5)178
O8—H8C···O110.871.502.367 (4)178
Symmetry codes: (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N2S2)2(H2O)2](C8H5O4)2·H2O
Mr888.44
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)20.253 (4), 10.732 (2), 17.228 (3)
V3)3744.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.40 × 0.13 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.870, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
34124, 8513, 5968
Rint0.077
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.081, 1.02
No. of reflections8513
No. of parameters506
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.32
Absolute structureFlack (1983), 4088 Friedel pairs
Absolute structure parameter0.00 (7)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HW1···O70.812.513.118 (6)133
O1—HW2···O3i0.811.922.658 (4)153
O2—H2C···O7ii0.752.132.878 (4)174
O2—H2D···O90.802.052.841 (4)171
O3—H3C···O4ii0.812.022.800 (4)163
O3—H3D···O110.762.032.784 (5)172
O5—H5C···O60.851.512.358 (5)178
O8—H8C···O110.871.502.367 (4)178
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1/2.
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (grant No. 20072022), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105) and the Education Department of Zhejiang Province. Grateful thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHorikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595–2609.  Web of Science CrossRef CAS Google Scholar
First citationLuo, J., Hong, M., Wang, R., Yuan, D., Cao, R., Han, L., Xu, Y. & Lin, Z. (2003). Eur. J. Inorg. Chem. pp. 3623–3632.  Web of Science CSD CrossRef Google Scholar
First citationManna, S. C., Konar, S., Zangrando, E., Drew, M. G. B., Ribas, J. & Chaudhuri, N. R. (2005). Eur. J. Inorg. Chem. pp. 1751–1758.  Web of Science CSD CrossRef Google Scholar
First citationManna, S. C., Ribas, J., Zangrando, E. & Chaudhuri, N. R. (2007). Polyhedron, 26, 4923–4928.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds