metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Tetra­kis-μ-L-alanine-κ8O:O′-bis­­[tetra­aqua­terbium(III)] hexa­perchlorate

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, bDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 023, India, cDepartment of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bangalore 560 027, Karnataka, India, and dSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: dchopra@iiserbhopal.ac.in

(Received 11 January 2010; accepted 19 January 2010; online 23 January 2010)

The asymmetric unit of the title compound, [Tb2(C3H7NO2)4(H2O)8](ClO4)6, contains a dinuclear cation and six perchlorate anions, one of which is disordered. In the cation, the four L-alanine mol­ecules are present in their zwitterionic form and bridge two Tb3+ ions through their carboxyl­ate O atoms. Each Tb atom is also coordinated by four water mol­ecules in a square-anti­prismatic geometry. In the crystal structure, the cations and anions are held together via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For applications of terbium complexes, see: Ropp (2004[Ropp, R. C. (2004). Luminescence and the Solid State. Amsterdam: Elsevier.]). For complexes of rare-earth ions, see: Ngoan et al. (1988[Ngoan, D. C., Glowiak, T., Huskowska, E. & Legendziewicz, J. (1988). J. Less Common Met. 136, 339-347.]); Glowiak et al. (1991[Glowiak, T., Legandziewicz, J., Dao, C. N. & Huskowska, E. (1991). J. Less Common Met. 168, 237-248.], 1996[Glowiak, T., Legendziewicz, J., Huskowska, E. & Gawryszewska, P. (1996). Polyhedron, 15, 2939-2947.]); Hu et al. (1995[Hu, N.-H., Wang, Z.-L., Niu, C.-J. & Ni, J.-Z. (1995). Acta Cryst. C51, 1565-1568.]); Tianzhu et al. (1987[Tianzhu, J., Song, G., Chunhui, H., Yuzhen, H., Guangxian, X. & Guangdi, Y. (1987). J. Chin. Rare Earth Soc. 5, 1-3.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb2(C3H7NO2)4(H2O)8](ClO4)6

  • Mr = 1415.05

  • Triclinic, P 1

  • a = 10.7703 (3) Å

  • b = 10.7766 (2) Å

  • c = 11.3521 (3) Å

  • α = 79.345 (2)°

  • β = 65.390 (3)°

  • γ = 67.658 (2)°

  • V = 1107.44 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.65 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Oxford Diffraction Excalibur2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.637, Tmax = 0.780

  • 11115 measured reflections

  • 8505 independent reflections

  • 8128 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.107

  • S = 1.09

  • 8505 reflections

  • 639 parameters

  • 47 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.42 e Å−3

  • Δρmin = −2.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 770 Friedel pairs

  • Flack parameter: 0.006 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H23⋯O12S 0.91 2.20 2.928 (15) 136
N3—H31⋯O17S 0.91 2.32 3.032 (15) 136
O14—H14B⋯O25S 0.85 (10) 2.01 (9) 2.754 (15) 145 (6)
O5—H5A⋯O3Si 0.86 (4) 2.00 (4) 2.809 (10) 156 (3)
O4—H4B⋯O9Si 0.85 (5) 2.37 (6) 3.05 (2) 137 (3)
N2—H22⋯O4Sii 0.91 2.23 3.022 (12) 145
N2—H21⋯O15Sii 0.91 2.11 2.768 (19) 129
N1—H13⋯O16Sii 0.91 2.02 2.906 (13) 163
N2—H22⋯O2Sii 0.91 2.22 3.016 (12) 147
N4—H42⋯O7SBiii 0.91 2.10 2.98 (5) 163
N3—H33⋯O22Siii 0.91 1.94 2.822 (19) 164
N4—H41⋯O24Siii 0.91 2.18 3.033 (12) 156
N4—H42⋯O5Siii 0.91 2.31 3.049 (13) 139
N1—H11⋯O6Siv 0.91 2.20 3.002 (15) 147
O3—H3B⋯O6Siv 0.85 (5) 2.33 (7) 3.149 (15) 161 (4)
N1—H12⋯O4Sv 0.91 2.09 2.981 (11) 165
N2—H21⋯O23Svi 0.91 2.30 2.924 (10) 125
O3—H3A⋯O23Svi 0.85 (6) 2.04 (5) 2.882 (10) 171 (4)
O4—H4A⋯O20Svi 0.86 (6) 2.01 (4) 2.826 (10) 158 (5)
N4—H43⋯O19Svii 0.91 2.16 3.017 (11) 156
O16—H16B⋯O20Svii 0.84 (10) 2.16 (5) 2.794 (11) 133 (4)
N3—H32⋯O5Sviii 0.91 2.06 2.926 (12) 159
O13—H13A⋯O8ix 0.86 (3) 2.01 (3) 2.863 (10) 174 (5)
Symmetry codes: (i) x, y, z-1; (ii) x, y-1, z; (iii) x, y+1, z; (iv) x+1, y, z-1; (v) x, y-1, z-1; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x, y+1, z-1; (ix) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Structural determinations of complexes of rare-earth metals with amino acids are of interest to understand the coordination chemistry of these important class of compounds and to utilize in different optical devices (Ropp, 2004).

In this regard, different complexes, with DL-alanine as the amino acid, containing chloride ions as the counter-ion with the rare-earth metal ion being holmium (Ngoan et al., 1988) and dysprosium (Glowiak et al., 1991) have been synthesized and characterized structurally. The commonly observed inorganic counterions are either perchlorate or chloride anions. It has been observed that depending on the counterion present, the crystal structure contains motifs forming either dimers, chains or network structure in the crystal lattice (Hu et al., 1995, and references therein). Keeping in mind the structural diversity associated with these complexes, we report here the structure of a terbium complex with L-alanine, (I), as extension of the already determined crystal structures.

The title compound (I) crystallizes in the triclinic non-centrosymmetric space group P1. Analogous complexes of neodymium (existing as dimorphs; Glowiak et al., 1996), yttrium (Tianzhu et al., 1987),and erbium (Hu et al., 1995) have also been characterized structurally. The present complex is isostructural with the triclinic form of the neodynium complex which also crystallizes in the triclinic space group P1. The dimeric structure of the complex is depicted in Fig.1. The terbium atom exists in a distorted square-antiprism geometry, having a coordination number of eight. The complex contains two eight-membered rings in the dinuclear cluster, the dihedral angles between these being 88.1 (1)°.

The crystal structure is composed of discrete dinuclear clusters of terbium metal atoms bridged by the carboxyl group of the L-alanine ligand. The ligand exists in the zwitterionic form. The Tb–O(carboxyl) distances lie in the range of 2.274 (6)-2.376 (6)Å while those of Tb–O(water) between 2.358 (8)Å and 2.539 (6)Å. The Tb—Tb distance is 4.367 (3)Å. The dinuclear cations are separated by perchlorate ions, which form hydrogen bonds between coordinated water molecules and the amino groups (Table 1).

Related literature top

For applications of terbium complexes, see Ropp (2004). For complexes of rare-earth ions, see: Ngoan et al. (1988); Glowiak et al. (1991, 1996); Hu et al. (1995); Tianzhu et al. (1987).

Experimental top

An aqueous solution of terbium perchlorate was prepared by digesting (0.15 gm) terbium oxide in concentrated perchloric acid (2 ml), a suitable concentration of terbium perchlorate (0.33 g, 2 mmol) was achieved by diluting the concentrated solution with 4 ml distilled water. L-alanine (0.10 g, 1 mmol) was added as solid to the above aqueous solution of terbium perchlorate. The mixture was stirred at about 80C on a heating plate while an aqueous solution of NaOH (0.5M) was added dropwise to cause an incipient but permanent precipitate, pH=4. The mixture was then filtered, and the filtrate was then reduced to about 4 ml. The hot solution was tightly covered and allowed to evaporate gradually at room temperature. The crystalline precipitate appeared in about 7 days. The solid was collected by filtration, washed with cold diethyl ether/THF 1:1 v/v, and dried under vacuum in a desiccator charged with silica gel. The melting point is 241C. The presence of terbium metal was detected by xylenol orange indicator.

Refinement top

All the amino, methine and methyl hydrogen atoms were positioned geometrically and refined using a riding model with d(N—H) = 0.91Å, Uiso(H) = 1.2Ueq (N) and d(C—H) = 0.96Å and 0.98Å, Uiso(H)=1.5Ueq(C).

All the hydrogen atoms of the water molecule coordinated to the metal ion, were refined using geometrical bond restraints, the d(O—H) = 0.85 (5)Å and d(H···H) = 1.37 (2) Å, respectively.

The number of perchlorate ions present in the asymmetric unit is six, out of which one is disordered, the occupancies of the disoredred oxygen atom refined to 0.71 (10) and 0.29 (10), respectively. The Cl—O bond distances lie in the range of acceptable bond lengths, between 1.392 (10)-1.52 (5)Å.

Structure description top

Structural determinations of complexes of rare-earth metals with amino acids are of interest to understand the coordination chemistry of these important class of compounds and to utilize in different optical devices (Ropp, 2004).

In this regard, different complexes, with DL-alanine as the amino acid, containing chloride ions as the counter-ion with the rare-earth metal ion being holmium (Ngoan et al., 1988) and dysprosium (Glowiak et al., 1991) have been synthesized and characterized structurally. The commonly observed inorganic counterions are either perchlorate or chloride anions. It has been observed that depending on the counterion present, the crystal structure contains motifs forming either dimers, chains or network structure in the crystal lattice (Hu et al., 1995, and references therein). Keeping in mind the structural diversity associated with these complexes, we report here the structure of a terbium complex with L-alanine, (I), as extension of the already determined crystal structures.

The title compound (I) crystallizes in the triclinic non-centrosymmetric space group P1. Analogous complexes of neodymium (existing as dimorphs; Glowiak et al., 1996), yttrium (Tianzhu et al., 1987),and erbium (Hu et al., 1995) have also been characterized structurally. The present complex is isostructural with the triclinic form of the neodynium complex which also crystallizes in the triclinic space group P1. The dimeric structure of the complex is depicted in Fig.1. The terbium atom exists in a distorted square-antiprism geometry, having a coordination number of eight. The complex contains two eight-membered rings in the dinuclear cluster, the dihedral angles between these being 88.1 (1)°.

The crystal structure is composed of discrete dinuclear clusters of terbium metal atoms bridged by the carboxyl group of the L-alanine ligand. The ligand exists in the zwitterionic form. The Tb–O(carboxyl) distances lie in the range of 2.274 (6)-2.376 (6)Å while those of Tb–O(water) between 2.358 (8)Å and 2.539 (6)Å. The Tb—Tb distance is 4.367 (3)Å. The dinuclear cations are separated by perchlorate ions, which form hydrogen bonds between coordinated water molecules and the amino groups (Table 1).

For applications of terbium complexes, see Ropp (2004). For complexes of rare-earth ions, see: Ngoan et al. (1988); Glowiak et al. (1991, 1996); Hu et al. (1995); Tianzhu et al. (1987).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the cation in (I) showing the atomic numbering and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
Tetrakis-µ-L-alanine-κ8O:O'-bis[tetraaquaterbium(III)] hexaperchlorate top
Crystal data top
[Tb2(C3H7NO2)4(H2O)8](ClO4)6Z = 1
Mr = 1415.05F(000) = 696
Triclinic, P1Dx = 2.122 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7703 (3) ÅCell parameters from 665 reflections
b = 10.7766 (2) Åθ = 1.7–25.9°
c = 11.3521 (3) ŵ = 3.65 mm1
α = 79.345 (2)°T = 100 K
β = 65.390 (3)°Block, colourless
γ = 67.658 (2)°0.40 × 0.40 × 0.40 mm
V = 1107.44 (5) Å3
Data collection top
Oxford Diffraction Excalibur2 CCD
diffractometer
8505 independent reflections
Radiation source: fine-focus sealed tube8128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and 2θ scansθmax = 32.1°, θmin = 2.8°
Absorption correction: multi-scan
(Blessing, 1995, 1997)
h = 1515
Tmin = 0.637, Tmax = 0.780k = 1115
11115 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0814P)2 + 0.8066P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
8505 reflectionsΔρmax = 1.42 e Å3
639 parametersΔρmin = 2.57 e Å3
47 restraintsAbsolute structure: Flack (1983), 770 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (9)
Crystal data top
[Tb2(C3H7NO2)4(H2O)8](ClO4)6γ = 67.658 (2)°
Mr = 1415.05V = 1107.44 (5) Å3
Triclinic, P1Z = 1
a = 10.7703 (3) ÅMo Kα radiation
b = 10.7766 (2) ŵ = 3.65 mm1
c = 11.3521 (3) ÅT = 100 K
α = 79.345 (2)°0.40 × 0.40 × 0.40 mm
β = 65.390 (3)°
Data collection top
Oxford Diffraction Excalibur2 CCD
diffractometer
8505 independent reflections
Absorption correction: multi-scan
(Blessing, 1995, 1997)
8128 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.780Rint = 0.027
11115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 1.42 e Å3
S = 1.09Δρmin = 2.57 e Å3
8505 reflectionsAbsolute structure: Flack (1983), 770 Friedel pairs
639 parametersAbsolute structure parameter: 0.006 (9)
47 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4190 (9)0.6940 (9)0.1555 (8)0.0145 (14)
C20.5789 (9)0.3191 (9)0.1630 (7)0.0140 (14)
C30.4097 (9)0.6629 (9)0.1672 (8)0.0150 (14)
C40.6005 (9)0.3273 (9)0.1564 (8)0.0168 (15)
C50.6141 (7)0.2316 (8)0.2732 (7)0.0170 (12)
H50.59230.29410.34450.020*
C60.6109 (8)0.2245 (8)0.2672 (7)0.0193 (14)
H60.58860.14720.25430.023*
C70.3826 (7)0.7421 (8)0.2844 (6)0.0158 (12)
H70.40930.67590.34950.019*
C80.3880 (7)0.8167 (8)0.2267 (7)0.0158 (11)
H80.40130.89180.16160.019*
N10.7733 (8)0.1558 (9)0.3250 (8)0.0223 (16)
H110.82290.21390.34590.033*
H120.79760.11210.39700.033*
H130.79660.09500.26370.033*
N20.7634 (9)0.1745 (9)0.2602 (8)0.0240 (15)
H210.82520.14030.18080.036*
H220.77300.10930.32250.036*
H230.78500.24360.27300.036*
C90.4869 (8)0.7915 (9)0.2993 (7)0.0246 (14)
H9A0.46920.72340.36840.037*
H9C0.46660.87510.33720.037*
H9B0.58840.75990.23900.037*
C100.4726 (9)0.8325 (9)0.3490 (8)0.0291 (16)
H10A0.44060.90540.29130.044*
H10B0.46020.87040.43040.044*
H10C0.57510.78030.36710.044*
N30.2240 (8)0.8194 (9)0.2458 (8)0.0215 (14)
H310.17270.76260.20740.032*
H320.20550.85960.31750.032*
H330.19730.88320.18910.032*
N40.2318 (8)0.8572 (8)0.3187 (7)0.0176 (13)
H410.17400.87180.27400.026*
H420.20820.93370.35820.026*
H430.21850.79050.37970.026*
C110.5048 (9)0.2818 (10)0.3982 (7)0.0303 (17)
H11A0.40540.30850.40230.045*
H11B0.52220.36040.41070.045*
H11C0.51790.21370.46630.045*
C120.5248 (8)0.1422 (8)0.2365 (8)0.0259 (14)
H12A0.42200.19730.21190.039*
H12B0.53900.08290.16310.039*
H12C0.55510.08800.31050.039*
O10.7135 (7)0.3573 (7)0.0837 (6)0.0216 (12)
Cl2S0.8570 (2)0.8811 (2)0.4648 (2)0.0180 (4)
O20.5450 (7)0.6491 (7)0.0736 (6)0.0228 (13)
O2S0.7578 (8)0.9092 (8)0.4010 (7)0.0311 (14)
Cl5S0.1466 (2)0.0542 (2)0.0312 (2)0.0203 (4)
O5S0.1243 (8)0.0075 (8)0.5644 (8)0.0317 (15)
O60.5399 (6)0.6135 (7)0.1774 (6)0.0229 (12)
O6S0.0345 (10)0.2428 (10)0.5709 (11)0.045 (3)
O70.6865 (6)0.3358 (7)0.1563 (6)0.0198 (11)
O30.9611 (7)0.3441 (8)0.1569 (6)0.0239 (14)
H3A0.992 (7)0.293 (7)0.101 (4)0.029*
H3B1.002 (7)0.310 (8)0.231 (4)0.029*
O40.8468 (7)0.5258 (8)0.3247 (6)0.0254 (14)
H4A0.940 (2)0.494 (10)0.364 (4)0.030*
H4B0.808 (4)0.550 (11)0.381 (3)0.030*
O50.7415 (7)0.7271 (7)0.1561 (6)0.0208 (12)
H5A0.780 (10)0.754 (5)0.235 (2)0.025*
H5B0.712 (10)0.790 (4)0.106 (4)0.025*
O80.8528 (7)0.5495 (7)0.0278 (6)0.0198 (12)
H8A0.853 (10)0.629 (4)0.016 (7)0.024*
H8B0.817 (9)0.529 (8)0.108 (3)0.024*
O130.1579 (7)0.4609 (8)0.0296 (6)0.0237 (14)
H13A0.065 (2)0.488 (10)0.007 (5)0.028*
H13B0.196 (5)0.446 (11)0.110 (3)0.028*
O140.2390 (11)0.2843 (8)0.1615 (8)0.0385 (19)
H14A0.277 (12)0.234 (6)0.214 (9)0.046*
H14B0.243 (13)0.241 (6)0.104 (6)0.046*
O150.0449 (6)0.6566 (7)0.1651 (6)0.0201 (12)
H15A0.028 (5)0.740 (2)0.152 (9)0.024*
H15B0.034 (3)0.641 (4)0.196 (9)0.024*
O160.1667 (7)0.4676 (8)0.3269 (6)0.0219 (13)
H16A0.085 (6)0.456 (11)0.359 (5)0.026*
H16B0.181 (8)0.506 (9)0.375 (4)0.026*
O90.3161 (6)0.6520 (7)0.1832 (6)0.0193 (12)
O20S0.1478 (6)0.4809 (7)0.4224 (6)0.0237 (12)
O100.4811 (7)0.3768 (7)0.1443 (6)0.0263 (13)
Cl3S0.7685 (2)0.4507 (2)0.41047 (19)0.0217 (4)
O110.3020 (7)0.6551 (7)0.0709 (6)0.0230 (13)
O120.4490 (7)0.3679 (7)0.0932 (6)0.0214 (12)
O9S0.8749 (14)0.5005 (13)0.4016 (16)0.090 (5)
Cl6S0.8241 (2)0.9367 (2)0.0224 (2)0.0245 (4)
O13S0.6832 (9)0.9455 (9)0.0124 (10)0.048 (2)
O14S0.9066 (9)0.7981 (7)0.0050 (9)0.0415 (17)
O17S0.0746 (7)0.6455 (8)0.2755 (7)0.0395 (16)
O18S0.2996 (7)0.4729 (8)0.3200 (6)0.0281 (13)
O15S0.8045 (12)1.0152 (12)0.0727 (13)0.064 (4)
O23S0.0356 (7)0.1853 (7)0.0532 (7)0.0356 (14)
O24S0.0912 (7)0.0414 (7)0.1209 (6)0.0329 (13)
O25S0.2664 (8)0.0614 (8)0.0544 (9)0.0421 (18)
O12S0.8133 (8)0.3067 (7)0.4314 (7)0.0385 (15)
O10S0.7326 (11)0.4879 (9)0.2992 (7)0.045 (2)
Cl1S0.1624 (2)0.1275 (2)0.5306 (2)0.0220 (4)
O7SA0.255 (5)0.1305 (19)0.3977 (15)0.057 (11)0.71 (10)
O7SB0.181 (10)0.130 (3)0.390 (3)0.037 (17)0.29 (10)
O16S0.9019 (9)0.9741 (11)0.1509 (8)0.066 (3)
O19S0.2652 (8)0.6408 (9)0.4749 (7)0.0414 (16)
O8S0.2530 (13)0.1202 (11)0.5942 (15)0.072 (4)
O22S0.1939 (15)0.0213 (13)0.0991 (10)0.060 (3)
O26S0.6419 (13)0.5062 (8)0.5196 (8)0.078 (4)
Tb10.28195 (2)0.48987 (2)0.094542 (19)0.01289 (8)
Tb20.719556 (19)0.510671 (19)0.093565 (17)0.01263 (8)
Cl4S0.1964 (2)0.5602 (2)0.37293 (18)0.0218 (4)
O1S0.9780 (8)0.7615 (8)0.4134 (7)0.0265 (15)
O3S0.7844 (8)0.8652 (9)0.6027 (7)0.0308 (16)
O4S0.9085 (7)0.9956 (7)0.4380 (6)0.0219 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.018 (3)0.011 (3)0.017 (3)0.005 (3)0.008 (3)0.002 (3)
C20.019 (3)0.019 (4)0.005 (3)0.008 (3)0.004 (2)0.001 (3)
C30.020 (3)0.015 (3)0.015 (3)0.005 (3)0.012 (3)0.002 (3)
C40.019 (3)0.017 (3)0.013 (3)0.001 (3)0.007 (2)0.006 (3)
C50.015 (3)0.022 (3)0.012 (3)0.005 (2)0.003 (2)0.005 (2)
C60.019 (3)0.020 (3)0.018 (3)0.006 (3)0.009 (2)0.005 (3)
C70.013 (3)0.021 (3)0.013 (3)0.006 (2)0.005 (2)0.004 (2)
C80.012 (3)0.021 (3)0.013 (3)0.007 (2)0.001 (2)0.003 (2)
N10.018 (3)0.029 (4)0.020 (3)0.005 (3)0.006 (3)0.011 (3)
N20.026 (4)0.025 (4)0.016 (3)0.002 (3)0.011 (3)0.001 (3)
C90.022 (3)0.035 (4)0.021 (3)0.010 (3)0.010 (2)0.007 (3)
C100.030 (4)0.029 (4)0.026 (3)0.013 (3)0.011 (3)0.012 (3)
N30.014 (3)0.024 (3)0.027 (3)0.001 (3)0.012 (2)0.003 (3)
N40.015 (3)0.018 (3)0.018 (3)0.002 (3)0.005 (2)0.002 (3)
C110.022 (3)0.046 (5)0.016 (3)0.012 (3)0.002 (3)0.000 (3)
C120.023 (3)0.026 (3)0.028 (3)0.011 (3)0.005 (3)0.005 (3)
O10.024 (3)0.021 (3)0.020 (3)0.008 (2)0.009 (2)0.001 (2)
Cl2S0.0172 (8)0.0215 (9)0.0129 (7)0.0069 (7)0.0037 (6)0.0006 (7)
O20.017 (3)0.024 (3)0.019 (3)0.005 (2)0.0014 (19)0.000 (2)
O2S0.033 (3)0.037 (3)0.036 (3)0.019 (3)0.023 (3)0.010 (3)
Cl5S0.0198 (8)0.0230 (8)0.0198 (7)0.0055 (6)0.0099 (6)0.0024 (6)
O5S0.041 (4)0.026 (3)0.037 (3)0.016 (3)0.020 (3)0.001 (3)
O60.021 (3)0.025 (3)0.029 (3)0.008 (2)0.018 (2)0.003 (2)
O6S0.026 (4)0.029 (4)0.078 (7)0.001 (3)0.019 (4)0.017 (4)
O70.019 (2)0.024 (3)0.019 (2)0.005 (2)0.0081 (19)0.006 (2)
O30.016 (3)0.029 (4)0.017 (3)0.000 (3)0.003 (2)0.004 (3)
O40.020 (3)0.036 (4)0.011 (2)0.006 (3)0.001 (2)0.006 (2)
O50.028 (3)0.026 (3)0.012 (2)0.015 (2)0.007 (2)0.004 (2)
O80.019 (3)0.024 (3)0.020 (3)0.006 (2)0.011 (2)0.003 (2)
O130.017 (3)0.041 (4)0.015 (3)0.010 (3)0.006 (2)0.004 (3)
O140.070 (6)0.028 (4)0.030 (4)0.028 (4)0.022 (4)0.004 (3)
O150.014 (3)0.021 (3)0.023 (3)0.003 (2)0.008 (2)0.000 (2)
O160.026 (3)0.025 (3)0.015 (3)0.008 (3)0.010 (2)0.001 (2)
O90.013 (2)0.027 (3)0.021 (3)0.008 (2)0.0069 (19)0.006 (2)
O20S0.023 (3)0.034 (3)0.020 (2)0.010 (2)0.0084 (19)0.011 (2)
O100.021 (3)0.031 (3)0.028 (3)0.001 (2)0.016 (2)0.003 (2)
Cl3S0.0247 (9)0.0269 (9)0.0205 (9)0.0134 (7)0.0129 (7)0.0034 (7)
O110.023 (3)0.024 (3)0.013 (2)0.003 (2)0.004 (2)0.003 (2)
O120.017 (2)0.028 (3)0.020 (3)0.007 (2)0.006 (2)0.007 (2)
O9S0.085 (8)0.076 (8)0.163 (13)0.062 (7)0.094 (9)0.064 (9)
Cl6S0.0279 (10)0.0223 (9)0.0229 (8)0.0021 (7)0.0127 (7)0.0064 (7)
O13S0.045 (5)0.039 (4)0.071 (6)0.004 (4)0.035 (4)0.014 (4)
O14S0.054 (5)0.024 (3)0.063 (5)0.011 (3)0.043 (4)0.007 (3)
O17S0.019 (3)0.047 (4)0.050 (4)0.005 (3)0.007 (2)0.026 (3)
O18S0.030 (3)0.040 (4)0.020 (3)0.012 (3)0.015 (2)0.000 (2)
O15S0.054 (6)0.067 (7)0.088 (9)0.000 (5)0.039 (6)0.054 (7)
O23S0.030 (3)0.028 (3)0.034 (3)0.004 (3)0.011 (3)0.004 (3)
O24S0.036 (3)0.033 (3)0.034 (3)0.017 (3)0.017 (3)0.009 (3)
O25S0.029 (4)0.035 (4)0.068 (5)0.004 (3)0.027 (4)0.010 (4)
O12S0.041 (4)0.028 (3)0.036 (3)0.005 (3)0.014 (3)0.005 (3)
O10S0.079 (6)0.040 (4)0.024 (3)0.023 (4)0.026 (4)0.002 (3)
Cl1S0.0220 (9)0.0201 (9)0.0185 (8)0.0027 (7)0.0064 (7)0.0012 (7)
O7SA0.08 (2)0.034 (6)0.014 (5)0.010 (8)0.006 (7)0.007 (4)
O7SB0.07 (3)0.014 (10)0.009 (9)0.015 (14)0.005 (12)0.003 (7)
O16S0.042 (4)0.068 (6)0.041 (4)0.009 (4)0.005 (3)0.020 (4)
O19S0.039 (4)0.053 (4)0.035 (3)0.029 (3)0.014 (3)0.023 (3)
O8S0.074 (7)0.051 (6)0.136 (10)0.032 (5)0.084 (8)0.023 (6)
O22S0.105 (9)0.054 (6)0.023 (3)0.035 (6)0.018 (4)0.007 (3)
O26S0.105 (8)0.028 (4)0.042 (4)0.009 (5)0.021 (5)0.011 (3)
Tb10.01223 (14)0.01682 (17)0.01058 (14)0.00513 (12)0.00486 (11)0.00088 (12)
Tb20.01099 (14)0.01639 (16)0.01099 (14)0.00412 (12)0.00485 (11)0.00105 (11)
Cl4S0.0213 (8)0.0299 (9)0.0168 (8)0.0127 (7)0.0065 (6)0.0006 (7)
O1S0.023 (3)0.025 (4)0.027 (3)0.005 (3)0.004 (2)0.011 (3)
O3S0.029 (4)0.033 (4)0.019 (3)0.009 (3)0.001 (3)0.002 (3)
O4S0.028 (3)0.022 (3)0.020 (2)0.012 (2)0.009 (2)0.001 (2)
Geometric parameters (Å, º) top
C1—O21.247 (10)O2—Tb22.304 (7)
C1—O91.254 (10)Cl5S—O22S1.415 (10)
C1—C81.533 (11)Cl5S—O24S1.424 (6)
C2—O121.238 (10)Cl5S—O23S1.444 (7)
C2—O71.272 (10)Cl5S—O25S1.451 (7)
C2—C51.539 (10)O5S—Cl1S1.442 (8)
C3—O111.238 (10)O6—Tb22.322 (6)
C3—O61.258 (10)O6S—Cl1S1.426 (9)
C3—C71.516 (10)O7—Tb22.324 (6)
C4—O101.247 (10)O3—Tb22.424 (7)
C4—O11.278 (11)O3—H3A0.85 (6)
C4—C61.525 (12)O3—H3B0.85 (5)
C5—N11.492 (10)O4—Tb22.410 (6)
C5—C121.500 (11)O4—H4A0.86 (6)
C5—H51.0000O4—H4B0.85 (6)
C6—N21.493 (11)O5—Tb22.380 (7)
C6—C111.512 (11)O5—H5A0.86 (2)
C6—H61.0000O5—H5B0.84 (5)
C7—N31.495 (10)O8—Tb22.539 (6)
C7—C101.513 (11)O8—H8A0.84 (6)
C7—H71.0000O8—H8B0.85 (2)
C8—N41.504 (9)O13—Tb12.432 (6)
C8—C91.521 (10)O13—H13A0.86 (6)
C8—H81.0000O13—H13B0.85 (2)
N1—H110.9100O14—Tb12.358 (8)
N1—H120.9100O14—H14A0.86 (11)
N1—H130.9100O14—H14B0.84 (6)
N2—H210.9100O15—Tb12.394 (6)
N2—H220.9100O15—H15A0.85 (2)
N2—H230.9100O15—H15B0.84 (6)
C9—H9A0.9800O16—Tb12.413 (6)
C9—H9C0.9800O16—H16A0.85 (8)
C9—H9B0.9800O16—H16B0.83 (8)
C10—H10A0.9800O9—Tb12.376 (6)
C10—H10B0.9800O20S—Cl4S1.442 (6)
C10—H10C0.9800O10—Tb12.274 (6)
N3—H310.9100Cl3S—O9S1.402 (9)
N3—H320.9100Cl3S—O26S1.414 (8)
N3—H330.9100Cl3S—O10S1.417 (8)
N4—H410.9100Cl3S—O12S1.444 (7)
N4—H420.9100O11—Tb12.337 (7)
N4—H430.9100O12—Tb12.356 (7)
C11—H11A0.9800Cl6S—O15S1.392 (10)
C11—H11B0.9800Cl6S—O16S1.419 (8)
C11—H11C0.9800Cl6S—O13S1.441 (8)
C12—H12A0.9800Cl6S—O14S1.445 (7)
C12—H12B0.9800O17S—Cl4S1.429 (7)
C12—H12C0.9800O18S—Cl4S1.426 (7)
O1—Tb22.352 (7)Cl1S—O8S1.410 (9)
Cl2S—O1S1.438 (8)Cl1S—O7SA1.422 (17)
Cl2S—O3S1.441 (7)Cl1S—O7SB1.52 (5)
Cl2S—O2S1.441 (7)O19S—Cl4S1.430 (6)
Cl2S—O4S1.470 (7)
O2—C1—O9127.5 (8)Tb2—O5—H5A125 (3)
O2—C1—C8115.2 (7)Tb2—O5—H5B126 (3)
O9—C1—C8117.3 (7)H5A—O5—H5B109 (5)
O12—C2—O7127.5 (7)Tb2—O8—H8A111 (4)
O12—C2—C5116.4 (7)Tb2—O8—H8B111 (4)
O7—C2—C5116.1 (7)H8A—O8—H8B112 (5)
O11—C3—O6126.7 (8)Tb1—O13—H13A125 (3)
O11—C3—C7117.0 (7)Tb1—O13—H13B125 (3)
O6—C3—C7116.3 (7)H13A—O13—H13B107 (5)
O10—C4—O1124.7 (9)Tb1—O14—H14A117 (5)
O10—C4—C6117.3 (8)Tb1—O14—H14B117 (5)
O1—C4—C6118.0 (7)H14A—O14—H14B114 (5)
N1—C5—C12112.6 (7)Tb1—O15—H15A125 (3)
N1—C5—C2108.5 (6)Tb1—O15—H15B125 (3)
C12—C5—C2114.1 (6)H15A—O15—H15B110 (5)
N1—C5—H5107.0Tb1—O16—H16A119 (3)
C12—C5—H5107.0Tb1—O16—H16B120 (4)
C2—C5—H5107.0H16A—O16—H16B115 (5)
N2—C6—C11111.0 (7)C1—O9—Tb1134.3 (5)
N2—C6—C4108.3 (6)C4—O10—Tb1170.1 (7)
C11—C6—C4112.3 (7)O9S—Cl3S—O26S108.3 (9)
N2—C6—H6108.4O9S—Cl3S—O10S111.4 (7)
C11—C6—H6108.4O26S—Cl3S—O10S108.1 (7)
C4—C6—H6108.4O9S—Cl3S—O12S111.3 (6)
N3—C7—C10111.4 (7)O26S—Cl3S—O12S106.9 (5)
N3—C7—C3109.0 (6)O10S—Cl3S—O12S110.6 (5)
C10—C7—C3113.9 (6)C3—O11—Tb1129.8 (6)
N3—C7—H7107.4C2—O12—Tb1145.5 (5)
C10—C7—H7107.4O15S—Cl6S—O16S114.4 (8)
C3—C7—H7107.4O15S—Cl6S—O13S108.3 (6)
N4—C8—C9110.5 (6)O16S—Cl6S—O13S108.8 (6)
N4—C8—C1107.4 (6)O15S—Cl6S—O14S110.9 (6)
C9—C8—C1113.4 (6)O16S—Cl6S—O14S105.2 (5)
N4—C8—H8108.5O13S—Cl6S—O14S109.2 (5)
C9—C8—H8108.5O8S—Cl1S—O7SA102 (3)
C1—C8—H8108.5O8S—Cl1S—O6S109.7 (7)
C5—N1—H11109.5O7SA—Cl1S—O6S115.0 (12)
C5—N1—H12109.5O8S—Cl1S—O5S108.2 (6)
H11—N1—H12109.5O7SA—Cl1S—O5S111.3 (16)
C5—N1—H13109.5O6S—Cl1S—O5S110.0 (5)
H11—N1—H13109.5O8S—Cl1S—O7SB135 (4)
H12—N1—H13109.5O6S—Cl1S—O7SB98 (3)
C6—N2—H21109.5O5S—Cl1S—O7SB94 (2)
C6—N2—H22109.5O10—Tb1—O11117.3 (2)
H21—N2—H22109.5O10—Tb1—O1276.9 (2)
C6—N2—H23109.5O11—Tb1—O1276.2 (2)
H21—N2—H23109.5O10—Tb1—O1482.4 (3)
H22—N2—H23109.5O11—Tb1—O14145.0 (3)
C8—C9—H9A109.5O12—Tb1—O1481.3 (3)
C8—C9—H9C109.5O10—Tb1—O974.7 (2)
H9A—C9—H9C109.5O11—Tb1—O977.3 (2)
C8—C9—H9B109.5O12—Tb1—O9125.8 (2)
H9A—C9—H9B109.5O14—Tb1—O9137.5 (2)
H9C—C9—H9B109.5O10—Tb1—O15144.7 (2)
C7—C10—H10A109.5O11—Tb1—O1576.9 (2)
C7—C10—H10B109.5O12—Tb1—O15138.1 (2)
H10A—C10—H10B109.5O14—Tb1—O15104.3 (3)
C7—C10—H10C109.5O9—Tb1—O1577.7 (2)
H10A—C10—H10C109.5O10—Tb1—O1680.1 (2)
H10B—C10—H10C109.5O11—Tb1—O16140.5 (2)
C7—N3—H31109.5O12—Tb1—O16143.2 (2)
C7—N3—H32109.5O14—Tb1—O1667.4 (3)
H31—N3—H32109.5O9—Tb1—O1673.7 (2)
C7—N3—H33109.5O15—Tb1—O1671.2 (2)
H31—N3—H33109.5O10—Tb1—O13139.5 (2)
H32—N3—H33109.5O11—Tb1—O1375.4 (2)
C8—N4—H41109.5O12—Tb1—O1368.9 (2)
C8—N4—H42109.5O14—Tb1—O1371.7 (3)
H41—N4—H42109.5O9—Tb1—O13144.0 (2)
C8—N4—H43109.5O15—Tb1—O1373.6 (2)
H41—N4—H43109.5O16—Tb1—O13115.7 (2)
H42—N4—H43109.5O2—Tb2—O679.9 (2)
C6—C11—H11A109.5O2—Tb2—O7123.2 (2)
C6—C11—H11B109.5O6—Tb2—O774.8 (2)
H11A—C11—H11B109.5O2—Tb2—O179.7 (2)
C6—C11—H11C109.5O6—Tb2—O1127.5 (2)
H11A—C11—H11C109.5O7—Tb2—O177.2 (2)
H11B—C11—H11C109.5O2—Tb2—O573.9 (2)
C5—C12—H12A109.5O6—Tb2—O578.4 (2)
C5—C12—H12B109.5O7—Tb2—O5144.1 (2)
H12A—C12—H12B109.5O1—Tb2—O5138.7 (2)
C5—C12—H12C109.5O2—Tb2—O4138.9 (3)
H12A—C12—H12C109.5O6—Tb2—O474.6 (2)
H12B—C12—H12C109.5O7—Tb2—O480.3 (2)
C4—O1—Tb2122.9 (6)O1—Tb2—O4141.3 (3)
O1S—Cl2S—O3S110.6 (5)O5—Tb2—O469.8 (2)
O1S—Cl2S—O2S109.2 (5)O2—Tb2—O3141.8 (2)
O3S—Cl2S—O2S110.3 (4)O6—Tb2—O3138.3 (2)
O1S—Cl2S—O4S109.7 (4)O7—Tb2—O378.0 (2)
O3S—Cl2S—O4S109.2 (5)O1—Tb2—O374.6 (2)
O2S—Cl2S—O4S107.9 (4)O5—Tb2—O3108.5 (2)
C1—O2—Tb2152.4 (6)O4—Tb2—O370.2 (2)
O22S—Cl5S—O24S112.3 (6)O2—Tb2—O873.8 (2)
O22S—Cl5S—O23S108.8 (6)O6—Tb2—O8144.5 (2)
O24S—Cl5S—O23S109.6 (4)O7—Tb2—O8140.1 (2)
O22S—Cl5S—O25S109.8 (7)O1—Tb2—O870.7 (2)
O24S—Cl5S—O25S108.6 (5)O5—Tb2—O871.7 (2)
O23S—Cl5S—O25S107.6 (5)O4—Tb2—O8111.2 (2)
C3—O6—Tb2153.0 (6)O3—Tb2—O871.3 (2)
C2—O7—Tb2134.3 (6)O18S—Cl4S—O17S110.3 (4)
Tb2—O3—H3A121 (3)O18S—Cl4S—O19S108.3 (4)
Tb2—O3—H3B120 (3)O17S—Cl4S—O19S109.3 (5)
H3A—O3—H3B113 (5)O18S—Cl4S—O20S109.2 (4)
Tb2—O4—H4A124 (3)O17S—Cl4S—O20S109.3 (4)
Tb2—O4—H4B126 (3)O19S—Cl4S—O20S110.5 (4)
H4A—O4—H4B109 (5)
O12—C2—C5—N1166.3 (8)C2—O12—Tb1—O929.2 (12)
O7—C2—C5—N115.5 (10)C2—O12—Tb1—O15143.4 (10)
O12—C2—C5—C1239.8 (11)C2—O12—Tb1—O1683.4 (12)
O7—C2—C5—C12142.1 (8)C2—O12—Tb1—O13171.4 (12)
O10—C4—C6—N2177.7 (8)C1—O9—Tb1—O1056.8 (8)
O1—C4—C6—N23.0 (11)C1—O9—Tb1—O1166.4 (8)
O10—C4—C6—C1159.4 (10)C1—O9—Tb1—O124.1 (9)
O1—C4—C6—C11120.0 (8)C1—O9—Tb1—O14116.6 (8)
O11—C3—C7—N312.2 (10)C1—O9—Tb1—O15145.5 (8)
O6—C3—C7—N3166.7 (7)C1—O9—Tb1—O16140.7 (8)
O11—C3—C7—C10137.3 (8)C1—O9—Tb1—O13107.9 (8)
O6—C3—C7—C1041.6 (10)C1—O2—Tb2—O653.0 (13)
O2—C1—C8—N4179.1 (7)C1—O2—Tb2—O711.2 (15)
O9—C1—C8—N40.5 (10)C1—O2—Tb2—O178.4 (14)
O2—C1—C8—C958.6 (10)C1—O2—Tb2—O5133.8 (14)
O9—C1—C8—C9122.9 (8)C1—O2—Tb2—O4105.1 (14)
O10—C4—O1—Tb21.7 (13)C1—O2—Tb2—O3126.6 (13)
C6—C4—O1—Tb2179.0 (5)C1—O2—Tb2—O8151.1 (14)
O9—C1—O2—Tb27 (2)C3—O6—Tb2—O236.5 (12)
C8—C1—O2—Tb2170.9 (9)C3—O6—Tb2—O792.1 (13)
O11—C3—O6—Tb210.8 (19)C3—O6—Tb2—O132.0 (13)
C7—C3—O6—Tb2168.0 (9)C3—O6—Tb2—O5112.0 (13)
O12—C2—O7—Tb231.1 (14)C3—O6—Tb2—O4176.0 (13)
C5—C2—O7—Tb2146.8 (6)C3—O6—Tb2—O3143.2 (12)
O2—C1—O9—Tb17.2 (15)C3—O6—Tb2—O878.9 (13)
C8—C1—O9—Tb1171.1 (5)C2—O7—Tb2—O236.1 (8)
O6—C3—O11—Tb127.6 (13)C2—O7—Tb2—O630.7 (7)
C7—C3—O11—Tb1153.6 (6)C2—O7—Tb2—O1104.5 (7)
O7—C2—O12—Tb18.9 (18)C2—O7—Tb2—O573.7 (8)
C5—C2—O12—Tb1173.2 (7)C2—O7—Tb2—O4107.2 (7)
C3—O11—Tb1—O1029.4 (8)C2—O7—Tb2—O3178.8 (8)
C3—O11—Tb1—O1237.7 (7)C2—O7—Tb2—O8141.2 (7)
C3—O11—Tb1—O1489.0 (9)C4—O1—Tb2—O262.2 (7)
C3—O11—Tb1—O994.6 (7)C4—O1—Tb2—O66.4 (8)
C3—O11—Tb1—O15174.7 (8)C4—O1—Tb2—O765.5 (7)
C3—O11—Tb1—O16138.0 (7)C4—O1—Tb2—O5112.9 (7)
C3—O11—Tb1—O13109.2 (8)C4—O1—Tb2—O4121.4 (7)
C2—O12—Tb1—O1030.7 (11)C4—O1—Tb2—O3146.4 (7)
C2—O12—Tb1—O1192.0 (11)C4—O1—Tb2—O8138.5 (7)
C2—O12—Tb1—O14114.9 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H23···O12S0.912.202.928 (15)136
N3—H31···O17S0.912.323.032 (15)136
O14—H14B···O25S0.85 (10)2.01 (9)2.754 (15)145 (6)
O5—H5A···O3Si0.86 (4)2.00 (4)2.809 (10)156 (3)
O4—H4B···O9Si0.85 (5)2.37 (6)3.05 (2)137 (3)
N2—H22···O4Sii0.912.233.022 (12)145
N2—H21···O15Sii0.912.112.768 (19)129
N1—H13···O16Sii0.912.022.906 (13)163
N2—H22···O2Sii0.912.223.016 (12)147
N4—H42···O7SBiii0.912.102.98 (5)163
N3—H33···O22Siii0.911.942.822 (19)164
N4—H41···O24Siii0.912.183.033 (12)156
N4—H42···O5Siii0.912.313.049 (13)139
N1—H11···O6Siv0.912.203.002 (15)147
O3—H3B···O6Siv0.85 (5)2.33 (7)3.149 (15)161 (4)
N1—H12···O4Sv0.912.092.981 (11)165
N2—H21···O23Svi0.912.302.924 (10)125
O3—H3A···O23Svi0.85 (6)2.04 (5)2.882 (10)171 (4)
O4—H4A···O20Svi0.86 (6)2.01 (4)2.826 (10)158 (5)
N4—H43···O19Svii0.912.163.017 (11)156
O16—H16B···O20Svii0.84 (10)2.16 (5)2.794 (11)133 (4)
N3—H32···O5Sviii0.912.062.926 (12)159
O13—H13A···O8ix0.86 (3)2.01 (3)2.863 (10)174 (5)
Symmetry codes: (i) x, y, z1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y, z1; (v) x, y1, z1; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x, y+1, z1; (ix) x1, y, z.

Experimental details

Crystal data
Chemical formula[Tb2(C3H7NO2)4(H2O)8](ClO4)6
Mr1415.05
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.7703 (3), 10.7766 (2), 11.3521 (3)
α, β, γ (°)79.345 (2), 65.390 (3), 67.658 (2)
V3)1107.44 (5)
Z1
Radiation typeMo Kα
µ (mm1)3.65
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerOxford Diffraction Excalibur2 CCD
Absorption correctionMulti-scan
(Blessing, 1995, 1997)
Tmin, Tmax0.637, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
11115, 8505, 8128
Rint0.027
(sin θ/λ)max1)0.748
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.107, 1.09
No. of reflections8505
No. of parameters639
No. of restraints47
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.42, 2.57
Absolute structureFlack (1983), 770 Friedel pairs
Absolute structure parameter0.006 (9)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H23···O12S0.912.202.928 (15)136.02
N3—H31···O17S0.912.323.032 (15)135.48
O14—H14B···O25S0.85 (10)2.01 (9)2.754 (15)145 (6)
O5—H5A···O3Si0.86 (4)2.00 (4)2.809 (10)156 (3)
O4—H4B···O9Si0.85 (5)2.37 (6)3.048 (20)137 (3)
N2—H22···O4Sii0.912.233.022 (12)144.66
N2—H21···O15Sii0.912.112.768 (19)128.62
N1—H13···O16Sii0.912.022.906 (13)163.09
N2—H22···O2Sii0.912.223.016 (12)146.52
N4—H42···O7SBiii0.912.102.979 (51)162.5
N3—H33···O22Siii0.911.942.822 (19)163.87
N4—H41···O24Siii0.912.183.033 (12)155.94
N4—H42···O5Siii0.912.313.049 (13)138.88
N1—H11···O6Siv0.912.203.002 (15)147.42
O3—H3B···O6Siv0.85 (5)2.33 (7)3.149 (15)161 (4)
N1—H12···O4Sv0.912.092.981 (11)164.81
N2—H21···O23Svi0.912.3042.924 (10)125.11
O3—H3A···O23Svi0.85 (6)2.04 (5)2.882 (10)171 (4)
O4—H4A···O20Svi0.86 (6)2.01 (4)2.826 (10)158 (5)
N4—H43···O19Svii0.912.1613.017 (11)156.4
O16—H16B···O20Svii0.84 (10)2.16 (5)2.794 (11)133 (4)
N3—H32···O5Sviii0.912.062.926 (12)159.33
O13—H13A···O8ix0.86 (3)2.01 (3)2.863 (10)174 (5)
Symmetry codes: (i) x, y, z1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y, z1; (v) x, y1, z1; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x, y+1, z1; (ix) x1, y, z.
 

Acknowledgements

We thank Dr Kirsty Stewart, UKZN, for the data collection.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlowiak, T., Legandziewicz, J., Dao, C. N. & Huskowska, E. (1991). J. Less Common Met. 168, 237–248.  CSD CrossRef CAS Web of Science Google Scholar
First citationGlowiak, T., Legendziewicz, J., Huskowska, E. & Gawryszewska, P. (1996). Polyhedron, 15, 2939–2947.  CSD CrossRef CAS Web of Science Google Scholar
First citationHu, N.-H., Wang, Z.-L., Niu, C.-J. & Ni, J.-Z. (1995). Acta Cryst. C51, 1565–1568.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNgoan, D. C., Glowiak, T., Huskowska, E. & Legendziewicz, J. (1988). J. Less Common Met. 136, 339–347.  Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRopp, R. C. (2004). Luminescence and the Solid State. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTianzhu, J., Song, G., Chunhui, H., Yuzhen, H., Guangxian, X. & Guangdi, Y. (1987). J. Chin. Rare Earth Soc. 5, 1–3.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds