organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Fluoro­phenyl­sulfin­yl)-2,5,7-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 22 January 2010; accepted 24 January 2010; online 30 January 2010)

In the title mol­ecule, C17H15FO2S, the O atom and the 4-fluoro­phenyl group of the 4-fluoro­phenyl­sulfinyl substituent lie on opposite sides of the benzofuran fragment. The mean planes of the benzofuran and 4-fluoro­phenyl fragments form a dihedral angle of 86.07 (4)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further linked via inter­molecular C—H⋯π inter­actions.

Related literature

For the crystal structures of similar 2-methyl-3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.], 2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1395.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1476.]). For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15FO2S

  • Mr = 302.35

  • Triclinic, [P \overline 1]

  • a = 6.2558 (2) Å

  • b = 11.1848 (3) Å

  • c = 11.9766 (5) Å

  • α = 110.355 (2)°

  • β = 99.448 (2)°

  • γ = 104.130 (1)°

  • V = 732.75 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 172 K

  • 0.43 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.746

  • 12781 measured reflections

  • 3350 independent reflections

  • 3071 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.03

  • 3350 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.50 3.194 (2) 130
C11—H11BCgii 0.98 2.87 3.663 (2) 139
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing benzofuran skeleton show potent biological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) properties. These compounds are widely occurring in nature (Akgul & Anil, 2003; Soekamto et al. 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-methyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2007, 2008a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is almost perpendicular to the plane of the benzofuran fragment [86.07 (4)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C–H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the SO unit (Table 1). The molecular packing (Fig. 2) is further stabilized by an intermolecular C–H···π interaction between the methyl H atom and the benzene ring of an adjacent benzofuran system, with a C11–H11B···Cgii (Table 1; Cg is the centroid of the C2-C7 benzene ring).

Related literature top

For the crystal structures of similar 2-methyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2007, 2008a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Experimental top

77% 3-Chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 3-(4-fluorophenylsulfanyl)-2,5,7-trimethyl-1-benzofuran (343 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 82%, m.p. 433-434 K; Rf = 0.65 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Structure description top

Molecules containing benzofuran skeleton show potent biological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) properties. These compounds are widely occurring in nature (Akgul & Anil, 2003; Soekamto et al. 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 2-methyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2007, 2008a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-fluorophenyl ring is almost perpendicular to the plane of the benzofuran fragment [86.07 (4)°] and is tilted slightly towards it. The crystal packing (Fig. 2) is stabilized by a weak intermolecular C–H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the SO unit (Table 1). The molecular packing (Fig. 2) is further stabilized by an intermolecular C–H···π interaction between the methyl H atom and the benzene ring of an adjacent benzofuran system, with a C11–H11B···Cgii (Table 1; Cg is the centroid of the C2-C7 benzene ring).

For the crystal structures of similar 2-methyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2007, 2008a,b). For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O and C–H···π interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring (C2-C7) centroid. [Symmetry codes: (i) - x + 2, - y + 1, - z + 2; (ii) - x + 1, - y + 1, - z + 1.]
3-(4-Fluorophenylsulfinyl)-2,5,7-trimethyl-1-benzofuran top
Crystal data top
C17H15FO2SZ = 2
Mr = 302.35F(000) = 316
Triclinic, P1Dx = 1.370 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2558 (2) ÅCell parameters from 9234 reflections
b = 11.1848 (3) Åθ = 3.3–27.5°
c = 11.9766 (5) ŵ = 0.23 mm1
α = 110.355 (2)°T = 172 K
β = 99.448 (2)°Block, colourless
γ = 104.130 (1)°0.43 × 0.28 × 0.26 mm
V = 732.75 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3350 independent reflections
Radiation source: Rotating Anode3071 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer optics monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.9°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.681, Tmax = 0.746l = 1515
12781 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.3002P]
where P = (Fo2 + 2Fc2)/3
3350 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C17H15FO2Sγ = 104.130 (1)°
Mr = 302.35V = 732.75 (4) Å3
Triclinic, P1Z = 2
a = 6.2558 (2) ÅMo Kα radiation
b = 11.1848 (3) ŵ = 0.23 mm1
c = 11.9766 (5) ÅT = 172 K
α = 110.355 (2)°0.43 × 0.28 × 0.26 mm
β = 99.448 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3350 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3071 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.746Rint = 0.026
12781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3350 reflectionsΔρmin = 0.37 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.61072 (6)0.50406 (3)0.83633 (3)0.02837 (11)
F0.28727 (19)0.04833 (10)0.97162 (10)0.0498 (3)
O10.23445 (16)0.38938 (10)0.49810 (8)0.0282 (2)
O20.86249 (18)0.53145 (12)0.85499 (10)0.0409 (3)
C10.4760 (2)0.42813 (13)0.67695 (12)0.0262 (3)
C20.5133 (2)0.32114 (13)0.58028 (12)0.0265 (3)
C30.6563 (3)0.24226 (15)0.57323 (14)0.0329 (3)
H30.76440.25460.64540.040*
C40.6370 (3)0.14528 (15)0.45835 (16)0.0380 (3)
C50.4753 (3)0.12862 (15)0.35294 (15)0.0391 (4)
H50.46390.06080.27550.047*
C60.3315 (3)0.20587 (14)0.35596 (13)0.0337 (3)
C70.3589 (2)0.30150 (13)0.47270 (12)0.0273 (3)
C80.3107 (2)0.46565 (13)0.62320 (11)0.0261 (3)
C90.7900 (3)0.05875 (18)0.4476 (2)0.0522 (5)
H9A0.93550.10560.43790.078*
H9B0.71450.02710.37540.078*
H9C0.81960.04160.52260.078*
C100.1578 (3)0.19014 (17)0.24463 (14)0.0464 (4)
H10A0.00330.15880.25320.070*
H10B0.17340.12420.16980.070*
H10C0.18340.27720.23820.070*
C110.1968 (3)0.56646 (15)0.67177 (13)0.0337 (3)
H11A0.04000.52020.66900.051*
H11B0.19250.61860.62100.051*
H11C0.28230.62740.75750.051*
C120.5089 (2)0.35932 (13)0.87080 (11)0.0264 (3)
C130.6686 (2)0.31841 (15)0.92889 (12)0.0310 (3)
H130.82790.36250.94540.037*
C140.5933 (3)0.21171 (15)0.96292 (13)0.0350 (3)
H140.69940.18101.00230.042*
C150.3616 (3)0.15211 (14)0.93807 (13)0.0348 (3)
C160.1997 (3)0.19321 (15)0.88255 (14)0.0361 (3)
H160.04070.14990.86780.043*
C170.2753 (2)0.29939 (15)0.84890 (13)0.0326 (3)
H170.16830.33090.81120.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.02613 (19)0.03171 (19)0.02281 (17)0.00535 (14)0.00233 (13)0.01064 (13)
F0.0627 (7)0.0372 (5)0.0530 (6)0.0114 (5)0.0166 (5)0.0253 (4)
O10.0271 (5)0.0333 (5)0.0240 (4)0.0108 (4)0.0038 (4)0.0120 (4)
O20.0236 (5)0.0554 (7)0.0374 (5)0.0007 (5)0.0002 (4)0.0234 (5)
C10.0236 (6)0.0306 (6)0.0240 (6)0.0080 (5)0.0055 (5)0.0117 (5)
C20.0237 (6)0.0285 (6)0.0278 (6)0.0069 (5)0.0080 (5)0.0129 (5)
C30.0284 (7)0.0352 (7)0.0417 (8)0.0131 (6)0.0124 (6)0.0200 (6)
C40.0403 (8)0.0319 (7)0.0522 (9)0.0148 (6)0.0261 (7)0.0208 (7)
C50.0491 (9)0.0294 (7)0.0377 (7)0.0090 (6)0.0233 (7)0.0098 (6)
C60.0389 (8)0.0304 (7)0.0275 (6)0.0044 (6)0.0116 (6)0.0103 (5)
C70.0269 (7)0.0285 (6)0.0269 (6)0.0073 (5)0.0084 (5)0.0122 (5)
C80.0246 (6)0.0298 (6)0.0241 (6)0.0075 (5)0.0063 (5)0.0121 (5)
C90.0561 (11)0.0433 (9)0.0754 (13)0.0285 (8)0.0380 (10)0.0278 (9)
C100.0601 (11)0.0419 (8)0.0245 (7)0.0067 (8)0.0047 (7)0.0086 (6)
C110.0315 (7)0.0368 (7)0.0357 (7)0.0160 (6)0.0099 (6)0.0145 (6)
C120.0257 (6)0.0304 (6)0.0210 (5)0.0083 (5)0.0049 (5)0.0092 (5)
C130.0264 (7)0.0374 (7)0.0280 (6)0.0119 (6)0.0053 (5)0.0118 (5)
C140.0393 (8)0.0368 (7)0.0314 (7)0.0187 (6)0.0065 (6)0.0138 (6)
C150.0454 (9)0.0280 (6)0.0294 (6)0.0100 (6)0.0120 (6)0.0105 (5)
C160.0296 (7)0.0377 (7)0.0359 (7)0.0047 (6)0.0078 (6)0.0138 (6)
C170.0257 (7)0.0396 (7)0.0316 (7)0.0100 (6)0.0041 (5)0.0154 (6)
Geometric parameters (Å, º) top
S—O21.4919 (11)C9—H9A0.9800
S—C11.7521 (13)C9—H9B0.9800
S—C121.8013 (14)C9—H9C0.9800
F—C151.3591 (17)C10—H10A0.9800
O1—C81.3702 (15)C10—H10B0.9800
O1—C71.3814 (16)C10—H10C0.9800
C1—C81.3567 (19)C11—H11A0.9800
C1—C21.4450 (18)C11—H11B0.9800
C2—C71.3899 (19)C11—H11C0.9800
C2—C31.3942 (19)C12—C131.3811 (19)
C3—C41.388 (2)C12—C171.3885 (19)
C3—H30.9500C13—C141.393 (2)
C4—C51.406 (2)C13—H130.9500
C4—C91.509 (2)C14—C151.372 (2)
C5—C61.387 (2)C14—H140.9500
C5—H50.9500C15—C161.378 (2)
C6—C71.3856 (19)C16—C171.385 (2)
C6—C101.503 (2)C16—H160.9500
C8—C111.4799 (19)C17—H170.9500
O2—S—C1108.53 (6)H9A—C9—H9C109.5
O2—S—C12105.94 (6)H9B—C9—H9C109.5
C1—S—C1297.96 (6)C6—C10—H10A109.5
C8—O1—C7106.44 (10)C6—C10—H10B109.5
C8—C1—C2107.66 (11)H10A—C10—H10B109.5
C8—C1—S122.90 (10)C6—C10—H10C109.5
C2—C1—S129.43 (10)H10A—C10—H10C109.5
C7—C2—C3119.26 (13)H10B—C10—H10C109.5
C7—C2—C1104.44 (11)C8—C11—H11A109.5
C3—C2—C1136.30 (13)C8—C11—H11B109.5
C4—C3—C2118.46 (14)H11A—C11—H11B109.5
C4—C3—H3120.8C8—C11—H11C109.5
C2—C3—H3120.8H11A—C11—H11C109.5
C3—C4—C5119.76 (14)H11B—C11—H11C109.5
C3—C4—C9119.71 (16)C13—C12—C17121.61 (13)
C5—C4—C9120.53 (15)C13—C12—S118.26 (11)
C6—C5—C4123.51 (14)C17—C12—S119.88 (11)
C6—C5—H5118.2C12—C13—C14119.19 (13)
C4—C5—H5118.2C12—C13—H13120.4
C7—C6—C5114.30 (14)C14—C13—H13120.4
C7—C6—C10121.21 (15)C15—C14—C13118.22 (14)
C5—C6—C10124.49 (14)C15—C14—H14120.9
O1—C7—C6124.51 (13)C13—C14—H14120.9
O1—C7—C2110.78 (11)F—C15—C14118.43 (14)
C6—C7—C2124.70 (13)F—C15—C16118.07 (14)
C1—C8—O1110.67 (11)C14—C15—C16123.49 (14)
C1—C8—C11133.59 (12)C15—C16—C17118.13 (14)
O1—C8—C11115.72 (11)C15—C16—H16120.9
C4—C9—H9A109.5C17—C16—H16120.9
C4—C9—H9B109.5C16—C17—C12119.34 (14)
H9A—C9—H9B109.5C16—C17—H17120.3
C4—C9—H9C109.5C12—C17—H17120.3
O2—S—C1—C8134.93 (12)C1—C2—C7—O10.50 (14)
C12—S—C1—C8115.24 (12)C3—C2—C7—C61.2 (2)
O2—S—C1—C244.44 (14)C1—C2—C7—C6178.86 (13)
C12—S—C1—C265.40 (13)C2—C1—C8—O10.87 (15)
C8—C1—C2—C70.82 (15)S—C1—C8—O1179.65 (9)
S—C1—C2—C7179.74 (11)C2—C1—C8—C11179.02 (14)
C8—C1—C2—C3179.13 (15)S—C1—C8—C111.5 (2)
S—C1—C2—C30.3 (2)C7—O1—C8—C10.55 (15)
C7—C2—C3—C40.7 (2)C7—O1—C8—C11179.07 (11)
C1—C2—C3—C4179.31 (15)O2—S—C12—C1312.66 (12)
C2—C3—C4—C50.2 (2)C1—S—C12—C13124.61 (11)
C2—C3—C4—C9179.74 (13)O2—S—C12—C17172.98 (11)
C3—C4—C5—C60.8 (2)C1—S—C12—C1761.03 (12)
C9—C4—C5—C6179.12 (14)C17—C12—C13—C142.0 (2)
C4—C5—C6—C70.4 (2)S—C12—C13—C14176.26 (10)
C4—C5—C6—C10179.89 (15)C12—C13—C14—C150.6 (2)
C8—O1—C7—C6179.37 (13)C13—C14—C15—F179.71 (12)
C8—O1—C7—C20.00 (14)C13—C14—C15—C160.8 (2)
C5—C6—C7—O1179.85 (12)F—C15—C16—C17179.68 (13)
C10—C6—C7—O10.2 (2)C14—C15—C16—C170.7 (2)
C5—C6—C7—C20.6 (2)C15—C16—C17—C120.7 (2)
C10—C6—C7—C2179.13 (14)C13—C12—C17—C162.0 (2)
C3—C2—C7—O1179.46 (12)S—C12—C17—C16176.20 (11)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.503.194 (2)130
C11—H11B···Cgii0.982.873.663 (2)139
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15FO2S
Mr302.35
Crystal system, space groupTriclinic, P1
Temperature (K)172
a, b, c (Å)6.2558 (2), 11.1848 (3), 11.9766 (5)
α, β, γ (°)110.355 (2), 99.448 (2), 104.130 (1)
V3)732.75 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.43 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.681, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12781, 3350, 3071
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.03
No. of reflections3350
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.503.194 (2)129.8
C11—H11B···Cgii0.982.873.663 (2)138.6
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SADABS. APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds