metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridyl-κ2N,N′)bis­­(2-hy­droxy­benzoato)-κO1;κ2O1,O1′-cadmium(II) methanol solvate

aLaboratoire de Cristallographie et RMN Biologiques, UMR 8015 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques de Paris Descartes, 4, avenue de l'Observatoire 75270 Paris Cedex 06, France
*Correspondence e-mail: pascale.lemoine@parisdescartes.fr

(Received 17 November 2009; accepted 18 December 2009; online 16 January 2010)

The title compound, [Cd(C7H5O3)2(C10H8N2)2]·CH3OH, contains one monomeric seven-coordinate cadmium complex and one methanol solvate mol­ecule. The CdII atom is coordinated to two 2,2′-bipyridyl ligands via the N atoms and to two salicylate anions (Hsal) via the carboxyl­ate O atoms, which act as monodentate ligand for the one and bidentate ligand for the second. The CdII atom exhibits a {6 + 1} environment, approximately described as a distorted capped octa­hedron with the apical positions occupied by one of the two N atoms belonging to one bipyridyl ligand and one of the two carboxyl­ate O atoms from the monodentate Hsal ligand. Two intra­molecular six-membered hydrogen-bonded rings are present, generated from inter­actions between the carboxyl­ate and hydr­oxy groups of the salicylate ligands. There is one inter­molecular hydrogen-bonding inter­action involving the methanol solvent mol­ecule and the carboxyl­ate group from the monodentate Hsal ligand. The crystal packing is governed by ππ stacking inter­actions [centroid–centroid distance = 3.783 (4) Å] which occur between bipyridyl ligands, by C—H⋯O and C—H⋯π inter­actions and by numerous van der Waals contacts.

Related literature

For related structures, see: Lemoine et al. (2004[Lemoine, P., Viossat, B., Nguyen-Huy, D., Tomas, A., Morgant, G., Greenaway, F. T. & Sorenson, J. R. J. (2004). J. Inorg. Biochem. 98, 1734-1749.]); Mazurier et al. (2000[Mazurier, A., Billy, I., Lemoine, P., Viossat, B. & Tomas, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 113-114.]); Tomas et al. (2006[Tomas, A., Retailleau, P., Viossat, B., Prangé, T. & Lemoine, P. (2006). Z. Kristallogr. New Cryst. Struct. 221, 517-519.]); Turner et al. (1982[Turner, R. W., Rodesiler, P. F. & Amma, P. E. L. (1982). Inorg. Chim. Acta, 66, L13-L15]). For the anti-inflammatory properties of zinc complexes, see: Sorensen (2002[Sorenson, J. R. J. (2002). Curr. Med. Chem. pp. 1867-1890.] and references therein).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H5O3)2(C10H8N2)2]·CH4O

  • Mr = 731.03

  • Triclinic, [P \overline 1]

  • a = 9.115 (4) Å

  • b = 12.189 (2) Å

  • c = 14.883 (2) Å

  • α = 97.64 (1)°

  • β = 92.30 (3)°

  • γ = 101.00 (3)°

  • V = 1605.1 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 K

  • 0.40 × 0.18 × 0.13 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 9433 measured reflections

  • 9117 independent reflections

  • 4943 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 0.97

  • 9117 reflections

  • 423 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.82 1.82 2.545 (7) 147
O13—H13⋯O11 0.82 1.78 2.505 (4) 147
O61—H61⋯O12 0.82 1.98 2.802 (6) 177
C23—H23⋯O61i 0.93 2.57 3.429 (8) 154
C43—H43⋯O12ii 0.93 2.43 3.356 (6) 172
C45—H45⋯O13iii 0.93 2.47 3.370 (6) 163
C15—H15⋯Cg1iv 0.93 2.81 3.620 (6) 147
C47—H47⋯Cg2v 0.93 2.79 3.589 (6) 145
C62—H62ACg1vi 0.96 2.94 3.858 (8) 160
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) -x, -y+1, -z+2; (v) -x+1, -y+1, -z+2; (vi) x+1, y+1, z. Cg1 and Cg2 are the centroids of the C2–C7 and C12–C17 rings, respectively.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently we described the crystal structure of bis(3,5-diisopropylsalicylato)(2,9-dimethyl-1,10-phenanthroline)cadmium(II) complex (Tomas et al., 2006) as an extension of an ongoing crystal structure investigation of non-steroidal anti-inflammatory drug zinc carboxylate complexes. Zinc is an essential metalloelement required by all cells for activation of a large number of Zn-dependent enzymes (Sorenson, 2002 and references therein). Various zinc carboxylates exhibit favorable anti-inflammatory, analgesic and antipyretic properties. In previous work, we have synthesized and structurally characterized two ternary complexes of Zn(II) with 3,5-diisopropylsalicylate and 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline (Lemoine et al., 2004). Anticonvulsant and rotorod toxicity activities of these complexes were determined to examine structure-anticonvulsant and structure-hypnotic activities of these Zn(II) non- steroidal antiinflammatory agent complexes. Since zinc and cadmium belong to the same group 12 of the periodic system of elements, following this work, we report in this paper the synthesis and the structure of the bis(2,2'-bipyridyl- κ2N,N')(salicylato-κ2O,O')(salicylato-κO)cadmium(II) methanol solvate.

The title compound contains one monomeric seven- coordinate cadmium complex and one methanol solvate molecule. CdII is coordinate-covalently bonded to two 2,2'-bipyridyl bidendate ligands via N21 and N30 or N41 and N50 atoms and to two salicylate (Hsal-) anionic ligands, one of which is monodentate via O11 atom and the other is bidentate via O1 and O2 atoms (Fig. 1). Therefore, the cadmium atom exhibits a {6 + 1} environment, approximately described as a distorted capped octahedron. According to this description, the Cd atom lies 0.127 (2) Å out of the basal plane [O1, N30, N41, N50] with the apical positions occupied by N21 and O11. The O2 atom caps the triangular face formed by O1, N21 and N50. This very irregular geometry is imposed by the small bite angles of one salicylate [O1—Cd—O2, 50.7 (2)°] and the two bipyridyl [N21—Cd—N30, 69.0 (1) °; N41—Cd—N50, 69.3 (1) °] bidentate ligands, mainly due to the rigidity of these chelate molecules. The Cd—N bond lengths are very similar [average 2.367 (4) Å] and comparable with distances found in other bipyridine containing Cd complexes (Turner et al., 1982). The distances between Cd and the oxygen atoms are the following: d(Cd—O1) = 2.391 (5) Å and d(Cd—O2) = 2.685 (5) Å for the first salicylate ligand and d(Cd—O11) = 2.305 (3) Å for the second ligand. The longer Cd—O2 distance is comparable to that described in the bis(salicylato)(2,2'-bipyridyl) (dimethylformamide)cadmium(II) (Mazurier et al., 2000) in a (6 + 1) environment (2.667 Å). The bond lengths and angles of the complexed salicylate ligands and 2,2'-bipyridyl are normal. The chelation of CdII by the Hsal- ligand leads to planar ring, P1 (O1/C1/O2/Cd) with the maximum deviation of 0.026 (4) Å for C1 atom. The phenyl mean planes P2 [C2—C7] and P3 [C12—C17] [maximum deviation of 0.003 (4) Å for C7] in the salicylate ligands make a dihedral 70.5 (2) °. The bipyridyl ligands are essentially planar (maximum deviation of 0.067 (5) Å for C48) and the CdII atom is displaced from the least-squares planes P4 [N21/C22- C29/N30/C31—C32] by 0.139 (5) Å and from P5 [N41/C42- C49/N50/C51—C52] by 0.251 (5) Å. The dihedral angles between planes P4 and P5 is 82.1 (1) °.

The hydroxy H3 (or H13) atom attached to O3 (or O13) is involved in intramolecular via O1 (or O11) atom (Table 1) thus contributing to planarity of the rings [O1 C1 C2 C3 O3 H3 and O11 C11 C12 C13 O13 H13] (maximum deviation of 0.022 (2) Å for H3). There is one intermolecular hydrogen bonding interaction involving the solvate methanol molecule and the carboxylate O12 atom (Table 1).

Moreover, the packing is governed by π - π stacking interactions which occur between bipyridyl ligands [N21/C22—C25/C32 and N30/C26—C29/C31] through inversion centre at (1/2, 1/2, 1/2) with a centroid-to-centroid distance of 3.783 (4) Å, an average spacing of 3.50 Å with an offset of 22.1°. In addition, there are three C—H···O interactions (Table 1) and three C– H···Cg(π-ring) interactions (Table 1, Cg1 being the centroid of the ring C2 to C7 and Cg2 the centroid of the ring C12 to C17).

Related literature top

For related structures, see: Lemoine et al. (2004); Mazurier et al. (2000); Tomas et al. (2006); Turner et al. (1982). For the anti-inflammatory properties of zinc complexes, see: Sorensen (2002 and references therein).

Experimental top

The cadmium(II) salicylate [CdII(Sal)2] was prepared by reaction of Cd(NO3)2.4H2O with NaSal after neutralizing HSal by a NaOH solution. An amount of 0.387 g of CdII(Sal)2 (1 mmole) and 0.313 g of 2,2'-bipyridyl (2 mmole) were dissolved in 20 ml of methanol. The solution was stirred at 60°C under reflux conditions for one hour to give the complex. Single crystals were obtained by slow evaporation of this solution at room temperature (293 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with distances C—H = 0.96 Å (CH3) with Uiso(H) = 1.5 times Ueq(C) or 0.93 Å (CH phenyl) with Uiso(H) = 1.2 times Ueq(C); O—H = 0.82 Å (O3, O13 and O61) with Uiso(H) = 1.2 times Ueq(O).

Structure description top

Recently we described the crystal structure of bis(3,5-diisopropylsalicylato)(2,9-dimethyl-1,10-phenanthroline)cadmium(II) complex (Tomas et al., 2006) as an extension of an ongoing crystal structure investigation of non-steroidal anti-inflammatory drug zinc carboxylate complexes. Zinc is an essential metalloelement required by all cells for activation of a large number of Zn-dependent enzymes (Sorenson, 2002 and references therein). Various zinc carboxylates exhibit favorable anti-inflammatory, analgesic and antipyretic properties. In previous work, we have synthesized and structurally characterized two ternary complexes of Zn(II) with 3,5-diisopropylsalicylate and 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline (Lemoine et al., 2004). Anticonvulsant and rotorod toxicity activities of these complexes were determined to examine structure-anticonvulsant and structure-hypnotic activities of these Zn(II) non- steroidal antiinflammatory agent complexes. Since zinc and cadmium belong to the same group 12 of the periodic system of elements, following this work, we report in this paper the synthesis and the structure of the bis(2,2'-bipyridyl- κ2N,N')(salicylato-κ2O,O')(salicylato-κO)cadmium(II) methanol solvate.

The title compound contains one monomeric seven- coordinate cadmium complex and one methanol solvate molecule. CdII is coordinate-covalently bonded to two 2,2'-bipyridyl bidendate ligands via N21 and N30 or N41 and N50 atoms and to two salicylate (Hsal-) anionic ligands, one of which is monodentate via O11 atom and the other is bidentate via O1 and O2 atoms (Fig. 1). Therefore, the cadmium atom exhibits a {6 + 1} environment, approximately described as a distorted capped octahedron. According to this description, the Cd atom lies 0.127 (2) Å out of the basal plane [O1, N30, N41, N50] with the apical positions occupied by N21 and O11. The O2 atom caps the triangular face formed by O1, N21 and N50. This very irregular geometry is imposed by the small bite angles of one salicylate [O1—Cd—O2, 50.7 (2)°] and the two bipyridyl [N21—Cd—N30, 69.0 (1) °; N41—Cd—N50, 69.3 (1) °] bidentate ligands, mainly due to the rigidity of these chelate molecules. The Cd—N bond lengths are very similar [average 2.367 (4) Å] and comparable with distances found in other bipyridine containing Cd complexes (Turner et al., 1982). The distances between Cd and the oxygen atoms are the following: d(Cd—O1) = 2.391 (5) Å and d(Cd—O2) = 2.685 (5) Å for the first salicylate ligand and d(Cd—O11) = 2.305 (3) Å for the second ligand. The longer Cd—O2 distance is comparable to that described in the bis(salicylato)(2,2'-bipyridyl) (dimethylformamide)cadmium(II) (Mazurier et al., 2000) in a (6 + 1) environment (2.667 Å). The bond lengths and angles of the complexed salicylate ligands and 2,2'-bipyridyl are normal. The chelation of CdII by the Hsal- ligand leads to planar ring, P1 (O1/C1/O2/Cd) with the maximum deviation of 0.026 (4) Å for C1 atom. The phenyl mean planes P2 [C2—C7] and P3 [C12—C17] [maximum deviation of 0.003 (4) Å for C7] in the salicylate ligands make a dihedral 70.5 (2) °. The bipyridyl ligands are essentially planar (maximum deviation of 0.067 (5) Å for C48) and the CdII atom is displaced from the least-squares planes P4 [N21/C22- C29/N30/C31—C32] by 0.139 (5) Å and from P5 [N41/C42- C49/N50/C51—C52] by 0.251 (5) Å. The dihedral angles between planes P4 and P5 is 82.1 (1) °.

The hydroxy H3 (or H13) atom attached to O3 (or O13) is involved in intramolecular via O1 (or O11) atom (Table 1) thus contributing to planarity of the rings [O1 C1 C2 C3 O3 H3 and O11 C11 C12 C13 O13 H13] (maximum deviation of 0.022 (2) Å for H3). There is one intermolecular hydrogen bonding interaction involving the solvate methanol molecule and the carboxylate O12 atom (Table 1).

Moreover, the packing is governed by π - π stacking interactions which occur between bipyridyl ligands [N21/C22—C25/C32 and N30/C26—C29/C31] through inversion centre at (1/2, 1/2, 1/2) with a centroid-to-centroid distance of 3.783 (4) Å, an average spacing of 3.50 Å with an offset of 22.1°. In addition, there are three C—H···O interactions (Table 1) and three C– H···Cg(π-ring) interactions (Table 1, Cg1 being the centroid of the ring C2 to C7 and Cg2 the centroid of the ring C12 to C17).

For related structures, see: Lemoine et al. (2004); Mazurier et al. (2000); Tomas et al. (2006); Turner et al. (1982). For the anti-inflammatory properties of zinc complexes, see: Sorensen (2002 and references therein).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Version 1.63.02; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular view of the solvate methanol complex showing atomic numbering and O—H–O hydrogen bonds in dotted lines. Displacements ellipsoïds are drawn at the 30% probability level.
Bis(2,2'-bipyridyl-κ2N,N')bis(2-hydroxybenzoato)- κO1;κ2O1,O1'-cadmium(II) methanol solvate top
Crystal data top
[Cd(C7H5O3)2(C10H8N2)2]·CH4OZ = 2
Mr = 731.03F(000) = 744
Triclinic, P1Dx = 1.513 Mg m3
Dm = 1.53 (2) Mg m3
Dm measured by flotation (CCl4/CH2Cl2)
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.115 (4) ÅCell parameters from 25 reflections
b = 12.189 (2) Åθ = 1.7–8.9°
c = 14.883 (2) ŵ = 0.74 mm1
α = 97.64 (1)°T = 293 K
β = 92.30 (3)°Parallelepiped, colourless
γ = 101.00 (3)°0.40 × 0.18 × 0.13 mm
V = 1605.1 (8) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.040
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.1°
Graphite monochromatorh = 1212
ω–2θ scansk = 1716
9433 measured reflectionsl = 020
9117 independent reflections3 standard reflections every 60 min
4943 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
9117 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Cd(C7H5O3)2(C10H8N2)2]·CH4Oγ = 101.00 (3)°
Mr = 731.03V = 1605.1 (8) Å3
Triclinic, P1Z = 2
a = 9.115 (4) ÅMo Kα radiation
b = 12.189 (2) ŵ = 0.74 mm1
c = 14.883 (2) ÅT = 293 K
α = 97.64 (1)°0.40 × 0.18 × 0.13 mm
β = 92.30 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.040
9433 measured reflections3 standard reflections every 60 min
9117 independent reflections intensity decay: none
4943 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.97Δρmax = 0.37 e Å3
9117 reflectionsΔρmin = 0.85 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.22853 (3)0.25632 (3)0.68934 (2)0.04219 (10)
O10.0186 (6)0.1908 (3)0.7336 (3)0.1081 (18)
O20.1325 (5)0.0950 (5)0.7918 (3)0.1118 (18)
O30.2935 (6)0.1625 (4)0.7678 (3)0.0960 (14)
H30.21790.18730.74310.115*
C10.0072 (8)0.1196 (5)0.7824 (4)0.081 (2)
C20.1228 (5)0.0620 (4)0.8296 (3)0.0522 (11)
C30.2629 (6)0.0880 (4)0.8216 (3)0.0570 (12)
C40.3779 (6)0.0353 (5)0.8688 (4)0.0689 (14)
H40.47300.05190.86340.083*
C50.3499 (6)0.0414 (5)0.9234 (4)0.0707 (14)
H50.42660.07640.95540.085*
C60.2113 (7)0.0672 (5)0.9316 (4)0.0716 (14)
H60.19370.11930.96900.086*
C70.0989 (6)0.0162 (4)0.8848 (3)0.0617 (12)
H70.00460.03440.89000.074*
O110.1346 (4)0.4193 (2)0.7177 (2)0.0562 (8)
O120.2733 (5)0.5535 (3)0.6553 (2)0.0748 (11)
O130.0194 (4)0.4604 (3)0.8654 (2)0.0648 (9)
H130.03840.42230.81930.078*
C110.1982 (5)0.5224 (3)0.7164 (3)0.0442 (9)
C120.1700 (4)0.6045 (3)0.7947 (3)0.0407 (8)
C130.0823 (5)0.5701 (4)0.8645 (3)0.0467 (10)
C140.0580 (6)0.6490 (5)0.9356 (3)0.0645 (13)
H140.00140.62600.98170.077*
C150.1213 (7)0.7609 (5)0.9381 (3)0.0740 (16)
H150.10560.81320.98630.089*
C160.2082 (6)0.7965 (4)0.8697 (4)0.0696 (14)
H160.25030.87260.87150.083*
C170.2322 (6)0.7187 (4)0.7989 (3)0.0558 (11)
H170.29110.74280.75300.067*
N210.2855 (4)0.0894 (3)0.6089 (3)0.0526 (9)
C220.3627 (6)0.0235 (5)0.6465 (4)0.0751 (15)
H220.39810.04480.70710.090*
C230.3936 (7)0.0744 (5)0.6013 (6)0.090 (2)
H230.45060.11740.62940.108*
C240.3379 (8)0.1058 (5)0.5145 (6)0.098 (2)
H240.35480.17270.48240.118*
C270.0004 (7)0.1813 (6)0.3642 (4)0.0818 (17)
H270.04480.16520.30530.098*
C280.0146 (6)0.2783 (5)0.4192 (4)0.0712 (15)
H280.06960.32820.39910.085*
C290.0553 (6)0.2984 (4)0.5045 (3)0.0605 (12)
H290.04830.36450.54190.073*
N300.1333 (4)0.2278 (3)0.5370 (2)0.0472 (8)
C310.1458 (5)0.1334 (4)0.4834 (3)0.0496 (10)
C260.0791 (6)0.1089 (5)0.3964 (3)0.0727 (15)
H260.08840.04300.35960.087*
C250.2571 (7)0.0412 (4)0.4727 (4)0.0771 (16)
H250.21960.06290.41260.092*
C320.2323 (5)0.0582 (4)0.5224 (3)0.0512 (10)
N410.4715 (4)0.3495 (3)0.6612 (2)0.0459 (8)
C420.5095 (5)0.3697 (4)0.5786 (3)0.0547 (11)
H420.43670.34810.53060.066*
C430.6514 (6)0.4210 (4)0.5607 (4)0.0664 (13)
H430.67400.43560.50250.080*
C440.7574 (6)0.4497 (5)0.6315 (4)0.0779 (16)
H440.85500.48310.62190.094*
C470.5660 (7)0.3693 (5)0.9829 (4)0.0762 (16)
H470.62980.38561.03530.091*
C480.4174 (7)0.3288 (5)0.9872 (3)0.0740 (16)
H480.37720.31861.04270.089*
C490.3281 (7)0.3034 (5)0.9085 (3)0.0741 (16)
H490.22650.27520.91180.089*
N500.3790 (4)0.3170 (3)0.8270 (2)0.0545 (9)
C510.5237 (5)0.3598 (4)0.8221 (3)0.0482 (10)
C460.6214 (6)0.3861 (5)0.8992 (3)0.0665 (13)
H460.72270.41460.89490.080*
C450.7201 (5)0.4292 (5)0.7171 (4)0.0704 (14)
H450.79220.44810.76550.084*
C520.5742 (4)0.3801 (3)0.7306 (3)0.0447 (9)
O610.5469 (6)0.7016 (4)0.6474 (3)0.1025 (14)
H610.46520.66060.65030.123*
C620.6266 (9)0.7191 (6)0.7309 (5)0.110 (2)
H62A0.64690.79820.75430.165*
H62B0.71950.69370.72390.165*
H62C0.56890.67770.77240.165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04206 (16)0.04538 (17)0.03578 (14)0.00416 (11)0.00069 (11)0.00118 (11)
O10.169 (5)0.061 (2)0.080 (3)0.021 (3)0.061 (3)0.007 (2)
O20.071 (3)0.145 (5)0.090 (3)0.034 (3)0.022 (3)0.014 (3)
O30.140 (4)0.085 (3)0.078 (3)0.044 (3)0.019 (3)0.031 (2)
C10.095 (5)0.069 (4)0.054 (3)0.033 (3)0.029 (3)0.022 (3)
C20.061 (3)0.045 (2)0.039 (2)0.011 (2)0.014 (2)0.0069 (18)
C30.081 (3)0.044 (2)0.044 (2)0.011 (2)0.006 (2)0.0001 (19)
C40.055 (3)0.085 (4)0.065 (3)0.013 (3)0.010 (2)0.006 (3)
C50.064 (3)0.081 (4)0.062 (3)0.003 (3)0.021 (3)0.015 (3)
C60.082 (4)0.068 (3)0.064 (3)0.008 (3)0.004 (3)0.019 (3)
C70.058 (3)0.067 (3)0.056 (3)0.007 (2)0.000 (2)0.002 (2)
O110.0567 (19)0.0455 (17)0.0627 (19)0.0080 (14)0.0092 (15)0.0037 (14)
O120.111 (3)0.062 (2)0.052 (2)0.015 (2)0.034 (2)0.0050 (16)
O130.061 (2)0.069 (2)0.061 (2)0.0034 (17)0.0169 (16)0.0076 (17)
C110.052 (2)0.043 (2)0.037 (2)0.0111 (18)0.0021 (18)0.0018 (17)
C120.044 (2)0.042 (2)0.0356 (19)0.0112 (17)0.0067 (16)0.0019 (16)
C130.040 (2)0.058 (3)0.042 (2)0.0124 (19)0.0037 (17)0.0044 (19)
C140.068 (3)0.086 (4)0.042 (2)0.028 (3)0.009 (2)0.001 (2)
C150.096 (4)0.080 (4)0.048 (3)0.041 (3)0.003 (3)0.016 (3)
C160.076 (4)0.050 (3)0.076 (3)0.012 (2)0.006 (3)0.012 (2)
C170.066 (3)0.048 (3)0.053 (3)0.013 (2)0.004 (2)0.004 (2)
N210.052 (2)0.048 (2)0.059 (2)0.0140 (17)0.0044 (18)0.0080 (17)
C220.067 (3)0.071 (4)0.094 (4)0.019 (3)0.012 (3)0.027 (3)
C230.073 (4)0.065 (4)0.148 (7)0.029 (3)0.028 (4)0.041 (4)
C240.090 (5)0.055 (3)0.154 (7)0.026 (3)0.048 (5)0.001 (4)
C270.080 (4)0.109 (5)0.047 (3)0.007 (4)0.018 (3)0.001 (3)
C280.067 (3)0.087 (4)0.059 (3)0.007 (3)0.012 (3)0.024 (3)
C290.065 (3)0.064 (3)0.052 (3)0.016 (2)0.009 (2)0.006 (2)
N300.048 (2)0.049 (2)0.0397 (18)0.0045 (16)0.0023 (15)0.0026 (15)
C310.047 (2)0.051 (2)0.042 (2)0.0027 (19)0.0040 (18)0.0054 (18)
C260.080 (4)0.079 (4)0.044 (3)0.000 (3)0.008 (2)0.017 (2)
C250.083 (4)0.055 (3)0.086 (4)0.011 (3)0.022 (3)0.015 (3)
C320.045 (2)0.045 (2)0.059 (3)0.0016 (18)0.009 (2)0.003 (2)
N410.0443 (19)0.048 (2)0.0446 (19)0.0089 (15)0.0057 (15)0.0040 (15)
C420.057 (3)0.061 (3)0.047 (2)0.010 (2)0.008 (2)0.008 (2)
C430.070 (3)0.065 (3)0.068 (3)0.015 (3)0.021 (3)0.018 (3)
C440.053 (3)0.092 (4)0.091 (4)0.006 (3)0.021 (3)0.027 (3)
C470.081 (4)0.089 (4)0.052 (3)0.011 (3)0.028 (3)0.003 (3)
C480.100 (4)0.075 (4)0.041 (3)0.000 (3)0.007 (3)0.015 (2)
C490.078 (4)0.086 (4)0.044 (3)0.022 (3)0.001 (2)0.013 (3)
N500.057 (2)0.060 (2)0.0382 (18)0.0092 (18)0.0053 (16)0.0098 (17)
C510.046 (2)0.045 (2)0.051 (2)0.0090 (18)0.0109 (19)0.0029 (19)
C460.056 (3)0.084 (4)0.054 (3)0.012 (3)0.013 (2)0.001 (3)
C450.041 (3)0.086 (4)0.079 (4)0.005 (2)0.005 (2)0.021 (3)
C520.037 (2)0.044 (2)0.053 (2)0.0092 (17)0.0001 (18)0.0048 (18)
O610.115 (4)0.105 (4)0.080 (3)0.002 (3)0.014 (3)0.020 (3)
C620.102 (5)0.113 (6)0.110 (6)0.021 (5)0.004 (5)0.001 (5)
Geometric parameters (Å, º) top
Cd1—O112.305 (3)C23—H230.9300
Cd1—N302.352 (3)C24—C251.365 (9)
Cd1—N502.368 (4)C24—H240.9300
Cd1—N412.369 (4)C27—C261.365 (8)
Cd1—N212.377 (4)C27—C281.375 (8)
Cd1—O12.391 (5)C27—H270.9300
Cd1—O22.685 (5)C28—C291.368 (7)
O1—C11.253 (8)C28—H280.9300
O2—C11.242 (8)C29—N301.340 (6)
O3—C31.348 (6)C29—H290.9300
O3—H30.8200N30—C311.336 (5)
C1—C21.507 (7)C31—C261.378 (6)
C2—C31.377 (7)C31—C321.476 (6)
C2—C71.380 (7)C26—H260.9300
C3—C41.389 (7)C25—C321.394 (6)
C4—C51.369 (7)C25—H250.9300
C4—H40.9300N41—C521.330 (5)
C5—C61.364 (8)N41—C421.333 (5)
C5—H50.9300C42—C431.378 (7)
C6—C71.360 (7)C42—H420.9300
C6—H60.9300C43—C441.363 (8)
C7—H70.9300C43—H430.9300
O11—C111.283 (5)C44—C451.374 (8)
O12—C111.217 (5)C44—H440.9300
O13—C131.353 (5)C47—C481.358 (8)
O13—H130.8200C47—C461.388 (7)
C11—C121.497 (5)C47—H470.9300
C12—C171.391 (6)C48—C491.364 (7)
C12—C131.395 (6)C48—H480.9300
C13—C141.387 (6)C49—N501.335 (6)
C14—C151.371 (8)C49—H490.9300
C14—H140.9300N50—C511.332 (6)
C15—C161.379 (8)C51—C461.387 (6)
C15—H150.9300C51—C521.492 (6)
C16—C171.375 (6)C46—H460.9300
C16—H160.9300C45—C521.384 (6)
C17—H170.9300C45—H450.9300
N21—C221.326 (6)O61—C621.384 (8)
N21—C321.337 (6)O61—H610.8200
C22—C231.374 (8)C62—H62A0.9600
C22—H220.9300C62—H62B0.9600
C23—C241.347 (10)C62—H62C0.9600
O11—Cd1—N3090.83 (12)C24—C23—C22117.4 (6)
O11—Cd1—N5087.64 (13)C24—C23—H23121.3
N30—Cd1—N50164.41 (12)C22—C23—H23121.3
O11—Cd1—N4195.01 (12)C23—C24—C25121.1 (6)
N30—Cd1—N4195.40 (12)C23—C24—H24119.5
N50—Cd1—N4169.31 (12)C25—C24—H24119.5
O11—Cd1—N21159.80 (13)C26—C27—C28119.7 (5)
N30—Cd1—N2168.98 (13)C26—C27—H27120.2
N50—Cd1—N21111.80 (14)C28—C27—H27120.2
N41—Cd1—N2187.26 (13)C29—C28—C27117.5 (5)
O11—Cd1—O176.61 (14)C29—C28—H28121.2
N30—Cd1—O189.34 (15)C27—C28—H28121.2
N50—Cd1—O1105.36 (15)N30—C29—C28123.3 (5)
N41—Cd1—O1170.46 (12)N30—C29—H29118.4
N21—Cd1—O1102.18 (14)C28—C29—H29118.4
O11—Cd1—O2116.15 (14)C31—N30—C29118.9 (4)
N30—Cd1—O2117.82 (13)C31—N30—Cd1119.0 (3)
N50—Cd1—O276.51 (13)C29—N30—Cd1121.8 (3)
N41—Cd1—O2132.29 (14)N30—C31—C26120.6 (5)
N21—Cd1—O275.45 (14)N30—C31—C32116.8 (4)
O1—Cd1—O250.73 (17)C26—C31—C32122.6 (4)
C1—O1—Cd1100.0 (5)C27—C26—C31120.1 (5)
C1—O2—Cd186.3 (4)C27—C26—H26120.0
C3—O3—H3109.5C31—C26—H26120.0
O2—C1—O1122.8 (6)C24—C25—C32118.4 (6)
O2—C1—C2120.3 (7)C24—C25—H25120.8
O1—C1—C2116.9 (7)C32—C25—H25120.8
C3—C2—C7119.3 (4)N21—C32—C25120.9 (5)
C3—C2—C1121.9 (5)N21—C32—C31116.6 (4)
C7—C2—C1118.7 (5)C25—C32—C31122.4 (5)
O3—C3—C2122.0 (5)C52—N41—C42119.2 (4)
O3—C3—C4118.2 (5)C52—N41—Cd1118.3 (3)
C2—C3—C4119.8 (5)C42—N41—Cd1122.5 (3)
C5—C4—C3119.3 (5)N41—C42—C43123.2 (5)
C5—C4—H4120.3N41—C42—H42118.4
C3—C4—H4120.3C43—C42—H42118.4
C6—C5—C4121.0 (5)C44—C43—C42117.5 (5)
C6—C5—H5119.5C44—C43—H43121.2
C4—C5—H5119.5C42—C43—H43121.2
C7—C6—C5119.6 (5)C43—C44—C45120.0 (5)
C7—C6—H6120.2C43—C44—H44120.0
C5—C6—H6120.2C45—C44—H44120.0
C6—C7—C2120.9 (5)C48—C47—C46119.1 (5)
C6—C7—H7119.5C48—C47—H47120.4
C2—C7—H7119.5C46—C47—H47120.4
C11—O11—Cd1130.0 (3)C47—C48—C49118.6 (5)
C13—O13—H13109.5C47—C48—H48120.7
O12—C11—O11123.5 (4)C49—C48—H48120.7
O12—C11—C12121.3 (4)N50—C49—C48123.5 (5)
O11—C11—C12115.2 (4)N50—C49—H49118.3
C17—C12—C13118.5 (4)C48—C49—H49118.3
C17—C12—C11119.7 (4)C51—N50—C49118.5 (4)
C13—C12—C11121.9 (4)C51—N50—Cd1118.1 (3)
O13—C13—C14118.1 (4)C49—N50—Cd1123.3 (3)
O13—C13—C12121.7 (4)N50—C51—C46121.1 (4)
C14—C13—C12120.1 (4)N50—C51—C52116.9 (4)
C15—C14—C13120.0 (5)C46—C51—C52122.0 (4)
C15—C14—H14120.0C47—C46—C51119.1 (5)
C13—C14—H14120.0C47—C46—H46120.5
C14—C15—C16120.7 (4)C51—C46—H46120.5
C14—C15—H15119.7C44—C45—C52119.4 (5)
C16—C15—H15119.7C44—C45—H45120.3
C17—C16—C15119.5 (5)C52—C45—H45120.3
C17—C16—H16120.3N41—C52—C45120.7 (4)
C15—C16—H16120.3N41—C52—C51116.8 (4)
C16—C17—C12121.2 (5)C45—C52—C51122.5 (4)
C16—C17—H17119.4C62—O61—H61109.5
C12—C17—H17119.4O61—C62—H62A109.5
C22—N21—C32118.4 (4)O61—C62—H62B109.5
C22—N21—Cd1123.3 (4)H62A—C62—H62B109.5
C32—N21—Cd1118.3 (3)O61—C62—H62C109.5
N21—C22—C23123.7 (6)H62A—C62—H62C109.5
N21—C22—H22118.1H62B—C62—H62C109.5
C23—C22—H22118.1
O2—C1—C2—C3179.3 (5)Cd1—O12—C11—C12158.7 (5)
O1—C1—C2—C31.5 (7)Cd1—O11—C11—C12135.3 (3)
O2—C1—C2—C71.5 (7)C11—C12—C13—O130.7 (6)
O1—C1—C2—C7179.4 (4)Cd1—N30—C29—C28173.1 (4)
Cd1—O2—C1—C2177.0 (4)Cd1—N30—C31—C325.6 (5)
Cd1—O1—C1—C2176.4 (3)Cd1—N30—C31—C26173.9 (4)
C1—C2—C3—O33.1 (7)Cd1—N21—C22—C23178.6 (4)
O12—C11—C12—C13179.0 (4)Cd1—N21—C32—C311.9 (5)
O11—C11—C12—C130.9 (6)Cd1—N50—C51—C528.0 (5)
O12—C11—C12—C171.0 (6)Cd1—N21—C32—C25177.6 (4)
O11—C11—C12—C17179.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.822.545 (7)147
O13—H13···O110.821.782.505 (4)147
O61—H61···O120.821.982.802 (6)177
C23—H23···O61i0.932.573.429 (8)154
C43—H43···O12ii0.932.433.356 (6)172
C45—H45···O13iii0.932.473.370 (6)163
C15—H15···Cg1iv0.932.813.620 (6)147
C47—H47···Cg2v0.932.793.589 (6)145
C62—H62A···Cg1vi0.962.943.858 (8)160
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1, z+2; (v) x+1, y+1, z+2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C7H5O3)2(C10H8N2)2]·CH4O
Mr731.03
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.115 (4), 12.189 (2), 14.883 (2)
α, β, γ (°)97.64 (1), 92.30 (3), 101.00 (3)
V3)1605.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.40 × 0.18 × 0.13
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9433, 9117, 4943
Rint0.040
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 0.97
No. of reflections9117
No. of parameters423
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.85

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1996), WinGX (Version 1.63.02; Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.822.545 (7)146.5
O13—H13···O110.821.782.505 (4)147.0
O61—H61···O120.821.982.802 (6)176.5
C23—H23···O61i0.932.573.429 (8)154.3
C43—H43···O12ii0.932.433.356 (6)172.3
C45—H45···O13iii0.932.473.370 (6)163.3
C15—H15···Cg1iv0.932.813.620 (6)147
C47—H47···Cg2v0.932.793.589 (6)145
C62—H62A···Cg1vi0.962.943.858 (8)160
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1, z+2; (v) x+1, y+1, z+2; (vi) x+1, y+1, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLemoine, P., Viossat, B., Nguyen-Huy, D., Tomas, A., Morgant, G., Greenaway, F. T. & Sorenson, J. R. J. (2004). J. Inorg. Biochem. 98, 1734–1749.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazurier, A., Billy, I., Lemoine, P., Viossat, B. & Tomas, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 113–114.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorenson, J. R. J. (2002). Curr. Med. Chem. pp. 1867–1890.  Google Scholar
First citationTomas, A., Retailleau, P., Viossat, B., Prangé, T. & Lemoine, P. (2006). Z. Kristallogr. New Cryst. Struct. 221, 517–519.  CAS Google Scholar
First citationTurner, R. W., Rodesiler, P. F. & Amma, P. E. L. (1982). Inorg. Chim. Acta, 66, L13–L15  CSD CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds