organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl­methyl-3-(2-thienylmeth­yl)-4-(2-thienylmethyl­ene­amino)-1H-1,2,4-triazol-5(4H)-one

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Karadeniz Technical University, Trabzon, Turkey
*Correspondence e-mail: htanak@omu.edu.tr

(Received 20 November 2009; accepted 1 January 2010; online 9 January 2010)

In the title compound, C20H16N4O2S2, one of the thio­phene rings is disordered [occupancy ratio 0.710 (4):0.290 (4)] and the disorder is of the flip type. An intra­molecular C—H⋯O hydrogen bond generates a six-membered ring with an S(6) motif.

Related literature

For general background to 1,2,4-triazoles and thio­phenes, see: Santen (2003[Santen, J. R. (2003). Steroids, 68, 559-567.]); Clemons et al. (2004[Clemons, M., Colemon, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325-332.]); Chen et al. (1997[Chen, S. Y., Kao, C. & Laughton, C. A. (1997). J. Steroid Biochem. 61, 107-127.]); Mohareb et al. (2004[Mohareb, M., Sherif, M., Gaber, M., Ghabrial, S. & Aziz, I. (2004). Heteroatom Chem. 15, 15-20.]); Collin et al. (2003[Collin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. 13, 2601-2605.]). For the graph-set description of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Tanak et al. (2009[Tanak, H., Köysal, Y., Yavuz, M., Işık, Ş. & Gül, G. (2009). Acta Cryst. E65, o3039.]); Akkurt et al. (2008[Akkurt, M., Öztürk Yıldırım, S., Bogdanov, M. G., Kandinska, M. I. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1955-o1956.]); Ustabaş et al. (2009[Ustabaş, R., Ünver, Y., Suleymanoğlu, N., Çoruh, U. & Sancak, K. (2009). Acta Cryst. E65, o1006-o1007.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N4O2S2

  • Mr = 408.49

  • Monoclinic, C 2/c

  • a = 25.287 (3) Å

  • b = 5.5347 (4) Å

  • c = 28.281 (2) Å

  • β = 102.430 (7)°

  • V = 3865.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.80 × 0.37 × 0.14 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.776, Tmax = 0.913

  • 20676 measured reflections

  • 3865 independent reflections

  • 2676 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.141

  • S = 1.05

  • 3865 reflections

  • 272 parameters

  • 104 restraints

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1 0.93 2.35 2.981 (3) 125

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,2,4-triazole derivatives are known in the scientific literature for their wide pharmacological activity. Two main types of their activity are antiviral, antibacterial and antifungal activities, and central nervous system (CNS) activity. It was reported that compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatase inhibitors very useful for preventing breast cancer (Ünver et al., 2009; Santen, 2003; Clemons et al., 2004). It is known that 1,2,4- triazol moieties interact strongly with heme iron, and aromatic substituents on the triazoles are very effective for interacting with the active site aromatase (Chen et al., 1997). Over recent years, there has been an increasing interest in the chemistry of thiophenes because of their biological significance. Many of them have been widely investigated for therapeutic uses, especially as antifungal, antibacterial, antiinflammatory, anticonvulsant, antiasthmatic, and analgesic agents. They also were known to show anti-HIV, antiproliferative, germicidal, and D2 dopaminergic activities (Mohareb et al., 2004). There are antimicrobial agents having different structures are frequently used in treatment of microbial infections. However, there is an increasing resistance to these drugs. Moreover, some of azole derivatives used as common antibiotics such as Amphotericin B posses a toxic effect on humans as well as their antimicrobial effects (Collin et al., 2003). To overcome the development of drug resistance, it is crucial to synthesize a new class of antimicrobials possessing different chemical properties from those of used commonly.

The molecular structure of the title compound (I) is shown in Figure 1. Within the molecule of (I), a flip-disorder of the thiophene ring containing S2 is observed. There are two positions of the thiophene ring, rotated by ca 180° about the single C16—C17 bond. These two orientations are not equivalent; the site-occupation factors refined to 0.710 (4) and 0.290 (4). All the bond lengths and angles of (I) are within normal ranges (Allen et al.,1987; Akkurt et al., 2008; Ustabaş et al., 2009). In (I), thiophene rings and benzyl ring are bridged by 1,2,4-triazole ring system. The dihedral angles between the triazole ring A (N1/N2/C2/N3/C1), the benzyl ring B (C5—C10), the thiophene rings C (C12/C13/C14/C15/S1), D (C17/C21/C20/C19/S2), and E (C17/C18/C19/C20/S3) are 80.04 (14)° (A/B), 11.45 (15)° (A/C), 82.82 (17)° (A/D), 83.5 (2)° (A/E), 74.35 (15)° (B/C), 14.87 (17)° (B/D), 13.8 (2)° (B/E), 79.81 (17)° (C/D) and 80.2 (2)° (C/E). The torsion angles, (N3/N4/C11/C12) and (N2/C3/C4/C5) are 178.43 (19)° and 176.08 (19)°, shows that for the title compound, the side chain conformation induced by anti-conformations, respectively. The interatomic distances within the triazole ring of (I) are not equal. The C1—N1 is double bond and shorter than the conjugated C1—N3 and C2—N3 bonds. The molecular geometry of the triazole ring is in agreement values with the structure 4-(2,3-dihidroxybenzylideneamino)-5-methyl-2H-1,2,4-triazole-3(4H)-one (Tanak et al., 2009).

The molecular structure is stabilized by C—H···O type hydrogen bond. An intramolecular hydrogen bond C11—H11···O1, forming rings with the graph set S(6) (Bernstein et al., 1995), details of which are given in Table 1.

Related literature top

For general background to 1,2,4-triazoles and thiophenes, see: Ünver et al. (2009); Santen (2003); Clemons et al. (2004); Chen et al. (1997); Mohareb et al. (2004); Collin et al. (2003). For the graph-set description of hydrogen bonds, see: Bernstein et al.(1995). For reference structural data, see: Allen et al. (1987). For related structures, see: Tanak et al. (2009); Akkurt et al. (2008); Ustabaş et al. (2009).

Experimental top

The title compound, C20H16N4O2S2, was synthesized by published method (Ünver et al., 2009).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The flip-type disorder means that in their alternative positions, the different types of atoms (in this case sulfur and carbon) occupy positions that are close to each other, which influences their Uij values. The disordered atoms of the thiophene ring were refined using the following restraints: SIMU, DELU, FLAT and SADI (SHELXL97; Sheldrick, 2008).

Structure description top

1,2,4-triazole derivatives are known in the scientific literature for their wide pharmacological activity. Two main types of their activity are antiviral, antibacterial and antifungal activities, and central nervous system (CNS) activity. It was reported that compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatase inhibitors very useful for preventing breast cancer (Ünver et al., 2009; Santen, 2003; Clemons et al., 2004). It is known that 1,2,4- triazol moieties interact strongly with heme iron, and aromatic substituents on the triazoles are very effective for interacting with the active site aromatase (Chen et al., 1997). Over recent years, there has been an increasing interest in the chemistry of thiophenes because of their biological significance. Many of them have been widely investigated for therapeutic uses, especially as antifungal, antibacterial, antiinflammatory, anticonvulsant, antiasthmatic, and analgesic agents. They also were known to show anti-HIV, antiproliferative, germicidal, and D2 dopaminergic activities (Mohareb et al., 2004). There are antimicrobial agents having different structures are frequently used in treatment of microbial infections. However, there is an increasing resistance to these drugs. Moreover, some of azole derivatives used as common antibiotics such as Amphotericin B posses a toxic effect on humans as well as their antimicrobial effects (Collin et al., 2003). To overcome the development of drug resistance, it is crucial to synthesize a new class of antimicrobials possessing different chemical properties from those of used commonly.

The molecular structure of the title compound (I) is shown in Figure 1. Within the molecule of (I), a flip-disorder of the thiophene ring containing S2 is observed. There are two positions of the thiophene ring, rotated by ca 180° about the single C16—C17 bond. These two orientations are not equivalent; the site-occupation factors refined to 0.710 (4) and 0.290 (4). All the bond lengths and angles of (I) are within normal ranges (Allen et al.,1987; Akkurt et al., 2008; Ustabaş et al., 2009). In (I), thiophene rings and benzyl ring are bridged by 1,2,4-triazole ring system. The dihedral angles between the triazole ring A (N1/N2/C2/N3/C1), the benzyl ring B (C5—C10), the thiophene rings C (C12/C13/C14/C15/S1), D (C17/C21/C20/C19/S2), and E (C17/C18/C19/C20/S3) are 80.04 (14)° (A/B), 11.45 (15)° (A/C), 82.82 (17)° (A/D), 83.5 (2)° (A/E), 74.35 (15)° (B/C), 14.87 (17)° (B/D), 13.8 (2)° (B/E), 79.81 (17)° (C/D) and 80.2 (2)° (C/E). The torsion angles, (N3/N4/C11/C12) and (N2/C3/C4/C5) are 178.43 (19)° and 176.08 (19)°, shows that for the title compound, the side chain conformation induced by anti-conformations, respectively. The interatomic distances within the triazole ring of (I) are not equal. The C1—N1 is double bond and shorter than the conjugated C1—N3 and C2—N3 bonds. The molecular geometry of the triazole ring is in agreement values with the structure 4-(2,3-dihidroxybenzylideneamino)-5-methyl-2H-1,2,4-triazole-3(4H)-one (Tanak et al., 2009).

The molecular structure is stabilized by C—H···O type hydrogen bond. An intramolecular hydrogen bond C11—H11···O1, forming rings with the graph set S(6) (Bernstein et al., 1995), details of which are given in Table 1.

For general background to 1,2,4-triazoles and thiophenes, see: Ünver et al. (2009); Santen (2003); Clemons et al. (2004); Chen et al. (1997); Mohareb et al. (2004); Collin et al. (2003). For the graph-set description of hydrogen bonds, see: Bernstein et al.(1995). For reference structural data, see: Allen et al. (1987). For related structures, see: Tanak et al. (2009); Akkurt et al. (2008); Ustabaş et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 30% probability diplacement ellipsoids.
1-Benzoylmethyl-3-(2-thienylmethyl)-4-(2-thienylmethyleneamino)- 1H-1,2,4-triazol-5(4H)-one top
Crystal data top
C20H16N4O2S2F(000) = 1696
Mr = 408.49Dx = 1.404 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5214 reflections
a = 25.287 (3) Åθ = 1.5–26.6°
b = 5.5347 (4) ŵ = 0.30 mm1
c = 28.281 (2) ÅT = 296 K
β = 102.430 (7)°Needle, colorless
V = 3865.2 (6) Å30.80 × 0.37 × 0.14 mm
Z = 8
Data collection top
Stoe IPDS II
diffractometer
3865 independent reflections
Radiation source: fine-focus sealed tube2676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 6.67 pixels mm-1θmax = 26.2°, θmin = 1.5°
rotation method scansh = 3031
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 66
Tmin = 0.776, Tmax = 0.913l = 3434
20676 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0757P)2 + 0.8966P]
where P = (Fo2 + 2Fc2)/3
3865 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.36 e Å3
104 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H16N4O2S2V = 3865.2 (6) Å3
Mr = 408.49Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.287 (3) ŵ = 0.30 mm1
b = 5.5347 (4) ÅT = 296 K
c = 28.281 (2) Å0.80 × 0.37 × 0.14 mm
β = 102.430 (7)°
Data collection top
Stoe IPDS II
diffractometer
3865 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2676 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.913Rint = 0.037
20676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049104 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
3865 reflectionsΔρmin = 0.31 e Å3
272 parameters
Special details top

Experimental. 281 frames, detector distance = 125 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.47605 (4)0.54631 (18)0.68233 (3)0.0833 (3)
O10.53985 (8)0.2178 (4)0.51294 (7)0.0694 (6)
O20.67029 (9)0.1247 (4)0.51864 (8)0.0801 (7)
N10.61243 (9)0.1968 (5)0.59495 (8)0.0610 (6)
N20.59159 (9)0.1102 (5)0.54847 (8)0.0591 (6)
N30.56138 (8)0.1266 (4)0.59653 (7)0.0550 (5)
N40.53290 (9)0.2812 (4)0.61947 (8)0.0567 (6)
C10.59244 (10)0.0525 (5)0.62262 (9)0.0571 (7)
C20.56182 (10)0.0935 (5)0.54744 (9)0.0565 (7)
C30.61089 (11)0.2103 (5)0.50850 (10)0.0595 (7)
H3A0.58140.21610.48020.071*
H3B0.62320.37440.51630.071*
C40.65705 (11)0.0615 (5)0.49698 (9)0.0558 (6)
C50.68400 (10)0.1502 (5)0.45852 (9)0.0529 (6)
C60.66851 (13)0.3618 (6)0.43283 (10)0.0678 (8)
H60.64050.45480.43970.081*
C70.69452 (16)0.4339 (7)0.39723 (12)0.0829 (10)
H70.68360.57390.37970.099*
C80.73677 (16)0.2991 (8)0.38754 (13)0.0869 (11)
H80.75430.34830.36340.104*
C90.75304 (14)0.0933 (7)0.41332 (12)0.0796 (9)
H90.78210.00490.40720.096*
C100.72666 (12)0.0170 (6)0.44804 (10)0.0643 (7)
H100.73740.12550.46480.077*
C110.50618 (10)0.4552 (5)0.59640 (9)0.0551 (6)
H110.50610.48360.56400.066*
C120.47593 (11)0.6068 (5)0.62279 (9)0.0572 (7)
C130.44447 (12)0.8073 (6)0.60642 (11)0.0672 (7)
H130.43920.86810.57510.081*
C140.42152 (15)0.9073 (7)0.64294 (13)0.0836 (9)
H140.39911.04240.63860.100*
C150.43555 (16)0.7853 (7)0.68508 (13)0.0888 (11)
H150.42400.82880.71300.107*
C160.60269 (12)0.0648 (6)0.67632 (9)0.0678 (8)
H16A0.61910.21920.68700.081*
H16B0.56840.05570.68630.081*
C170.63885 (11)0.1337 (6)0.70048 (8)0.0683 (7)
S2A0.63477 (7)0.2526 (3)0.75375 (5)0.1001 (6)0.710 (4)
C18A0.6783 (3)0.2503 (12)0.6854 (3)0.0779 (12)0.710 (4)
H18A0.68780.21470.65620.094*0.710 (4)
S2B0.68795 (15)0.2524 (8)0.67823 (15)0.0812 (11)0.290 (4)
C18B0.6385 (3)0.2512 (14)0.7420 (3)0.0910 (15)0.290 (4)
H18B0.61380.21690.76120.109*0.290 (4)
C190.70600 (12)0.4412 (6)0.71870 (13)0.0940 (9)
H190.73470.53820.71460.113*
C200.68156 (14)0.4441 (6)0.75479 (11)0.0973 (9)
H200.69120.55380.78010.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1088 (7)0.0827 (6)0.0612 (4)0.0136 (5)0.0245 (4)0.0073 (4)
O10.0786 (13)0.0740 (14)0.0515 (10)0.0032 (11)0.0049 (9)0.0091 (10)
O20.0878 (15)0.0773 (15)0.0819 (14)0.0314 (12)0.0330 (11)0.0300 (12)
N10.0583 (13)0.0669 (15)0.0587 (13)0.0020 (12)0.0145 (10)0.0141 (11)
N20.0570 (12)0.0669 (16)0.0543 (12)0.0012 (12)0.0137 (10)0.0077 (11)
N30.0526 (12)0.0623 (14)0.0506 (11)0.0002 (11)0.0121 (9)0.0091 (10)
N40.0554 (12)0.0611 (14)0.0540 (12)0.0021 (11)0.0126 (10)0.0055 (11)
C10.0520 (14)0.0639 (17)0.0562 (14)0.0048 (13)0.0134 (11)0.0122 (13)
C20.0504 (14)0.0640 (18)0.0543 (14)0.0087 (13)0.0094 (11)0.0054 (13)
C30.0612 (16)0.0599 (17)0.0571 (14)0.0074 (13)0.0119 (12)0.0024 (12)
C40.0573 (15)0.0559 (17)0.0522 (13)0.0077 (13)0.0072 (11)0.0023 (12)
C50.0546 (14)0.0545 (16)0.0471 (12)0.0000 (12)0.0053 (10)0.0021 (11)
C60.0774 (19)0.0589 (18)0.0657 (16)0.0015 (15)0.0125 (14)0.0050 (14)
C70.108 (3)0.067 (2)0.0728 (19)0.011 (2)0.0178 (18)0.0160 (16)
C80.100 (3)0.094 (3)0.074 (2)0.024 (2)0.0341 (19)0.0010 (19)
C90.077 (2)0.095 (3)0.0724 (19)0.0003 (19)0.0278 (16)0.0074 (19)
C100.0690 (17)0.0680 (19)0.0562 (15)0.0079 (15)0.0138 (13)0.0014 (13)
C110.0527 (14)0.0605 (17)0.0503 (13)0.0115 (13)0.0075 (11)0.0025 (12)
C120.0587 (15)0.0571 (17)0.0533 (14)0.0084 (13)0.0064 (11)0.0009 (12)
C130.0761 (18)0.0598 (17)0.0629 (15)0.0033 (15)0.0093 (13)0.0005 (13)
C140.093 (2)0.068 (2)0.087 (2)0.0115 (17)0.0130 (17)0.0029 (17)
C150.109 (3)0.086 (3)0.077 (2)0.009 (2)0.0300 (19)0.0089 (19)
C160.0717 (18)0.074 (2)0.0597 (15)0.0011 (16)0.0176 (13)0.0214 (14)
C170.0726 (15)0.0800 (16)0.0527 (12)0.0032 (13)0.0144 (11)0.0140 (12)
S2A0.1227 (11)0.1241 (12)0.0609 (8)0.0224 (9)0.0364 (7)0.0061 (7)
C18A0.079 (2)0.092 (2)0.071 (2)0.005 (2)0.0339 (18)0.0026 (18)
S2B0.0736 (18)0.0932 (19)0.0825 (18)0.0038 (15)0.0292 (14)0.0002 (14)
C18B0.107 (3)0.104 (3)0.065 (3)0.010 (2)0.025 (2)0.001 (2)
C190.0851 (18)0.0907 (19)0.1016 (19)0.0082 (16)0.0097 (15)0.0082 (16)
C200.119 (2)0.097 (2)0.0682 (16)0.0077 (17)0.0020 (16)0.0006 (15)
Geometric parameters (Å, º) top
S1—C151.685 (4)C9—H90.9300
S1—C121.716 (3)C10—H100.9300
O1—C21.225 (3)C11—C121.446 (4)
O2—C41.209 (3)C11—H110.9300
N1—C11.294 (4)C12—C131.386 (4)
N1—N21.392 (3)C13—C141.403 (5)
N2—C21.352 (4)C13—H130.9300
N2—C31.435 (4)C14—C151.349 (5)
N3—N41.369 (3)C14—H140.9300
N3—C11.376 (4)C15—H150.9300
N3—C21.403 (3)C16—C171.497 (5)
N4—C111.273 (3)C16—H16A0.9700
C1—C161.486 (4)C16—H16B0.9700
C3—C41.520 (4)C17—C18A1.333 (8)
C3—H3A0.9700C17—C18B1.344 (9)
C3—H3B0.9700C17—S2B1.645 (4)
C4—C51.486 (4)C17—S2A1.668 (3)
C5—C61.389 (4)S2A—C201.584 (4)
C5—C101.390 (4)C18A—C191.487 (10)
C6—C71.375 (5)C18A—H18A0.9300
C6—H60.9300S2B—C191.545 (5)
C7—C81.378 (5)C18B—C201.512 (10)
C7—H70.9300C18B—H18B0.9300
C8—C91.367 (5)C19—C201.302 (6)
C8—H80.9300C19—H190.9300
C9—C101.367 (4)C20—H200.9300
C15—S1—C1291.12 (17)C13—C12—C11128.4 (2)
C1—N1—N2103.9 (2)C13—C12—S1111.3 (2)
C2—N2—N1113.8 (2)C11—C12—S1120.2 (2)
C2—N2—C3125.9 (2)C12—C13—C14111.6 (3)
N1—N2—C3119.1 (2)C12—C13—H13124.2
N4—N3—C1119.6 (2)C14—C13—H13124.2
N4—N3—C2131.9 (2)C15—C14—C13112.4 (3)
C1—N3—C2108.2 (2)C15—C14—H14123.8
C11—N4—N3120.4 (2)C13—C14—H14123.8
N1—C1—N3111.9 (2)C14—C15—S1113.5 (3)
N1—C1—C16125.8 (3)C14—C15—H15123.2
N3—C1—C16122.3 (3)S1—C15—H15123.2
O1—C2—N2129.8 (3)C1—C16—C17112.8 (2)
O1—C2—N3128.0 (3)C1—C16—H16A109.0
N2—C2—N3102.1 (2)C17—C16—H16A109.0
N2—C3—C4111.5 (2)C1—C16—H16B109.0
N2—C3—H3A109.3C17—C16—H16B109.0
C4—C3—H3A109.3H16A—C16—H16B107.8
N2—C3—H3B109.3C18A—C17—C18B101.1 (8)
C4—C3—H3B109.3C18A—C17—C16129.4 (4)
H3A—C3—H3B108.0C18B—C17—C16129.4 (5)
O2—C4—C5122.1 (3)C18B—C17—S2B106.8 (4)
O2—C4—C3119.7 (3)C16—C17—S2B123.8 (2)
C5—C4—C3118.2 (2)C18A—C17—S2A107.1 (4)
C6—C5—C10118.7 (3)C16—C17—S2A123.47 (19)
C6—C5—C4122.6 (3)S2B—C17—S2A112.7 (3)
C10—C5—C4118.7 (2)C20—S2A—C1795.14 (19)
C7—C6—C5120.1 (3)C17—C18A—C19115.1 (6)
C7—C6—H6119.9C17—C18A—H18A122.5
C5—C6—H6119.9C19—C18A—H18A122.5
C6—C7—C8120.1 (3)C19—S2B—C1796.5 (2)
C6—C7—H7119.9C17—C18B—C20114.2 (7)
C8—C7—H7119.9C17—C18B—H18B122.9
C9—C8—C7120.1 (3)C20—C18B—H18B122.9
C9—C8—H8119.9C20—C19—C18A105.5 (4)
C7—C8—H8119.9C20—C19—S2B118.3 (2)
C10—C9—C8120.2 (3)C20—C19—H19127.3
C10—C9—H9119.9C18A—C19—H19127.3
C8—C9—H9119.9S2B—C19—H19114.4
C9—C10—C5120.7 (3)C19—C20—C18B104.1 (4)
C9—C10—H10119.7C19—C20—S2A117.1 (2)
C5—C10—H10119.7C19—C20—H20121.4
N4—C11—C12117.1 (2)C18B—C20—H20134.4
N4—C11—H11121.4S2A—C20—H20121.4
C12—C11—H11121.4
C1—N1—N2—C23.8 (3)C11—C12—C13—C14179.8 (3)
C1—N1—N2—C3172.3 (2)S1—C12—C13—C140.3 (3)
C1—N3—N4—C11176.5 (2)C12—C13—C14—C150.1 (4)
C2—N3—N4—C1111.2 (4)C13—C14—C15—S10.5 (4)
N2—N1—C1—N32.0 (3)C12—S1—C15—C140.6 (3)
N2—N1—C1—C16179.3 (3)N1—C1—C16—C17107.3 (3)
N4—N3—C1—N1173.8 (2)N3—C1—C16—C1769.8 (3)
C2—N3—C1—N10.2 (3)C1—C16—C17—C18A29.9 (4)
N4—N3—C1—C168.8 (4)C1—C16—C17—C18B146.2 (2)
C2—N3—C1—C16177.2 (2)C1—C16—C17—S2B32.7 (4)
N1—N2—C2—O1177.2 (3)C1—C16—C17—S2A149.2 (2)
C3—N2—C2—O19.5 (5)C18A—C17—S2A—C200.72 (9)
N1—N2—C2—N33.8 (3)C18B—C17—S2A—C2019 (2)
C3—N2—C2—N3171.4 (2)C16—C17—S2A—C20178.5 (3)
N4—N3—C2—O18.5 (5)S2B—C17—S2A—C203.2 (2)
C1—N3—C2—O1178.6 (3)C18B—C17—C18A—C192.5 (2)
N4—N3—C2—N2170.6 (2)C16—C17—C18A—C19179.5 (3)
C1—N3—C2—N22.4 (3)S2B—C17—C18A—C19158 (2)
C2—N2—C3—C472.9 (3)S2A—C17—C18A—C190.31 (12)
N1—N2—C3—C494.1 (3)C18A—C17—S2B—C1919 (2)
N2—C3—C4—O24.8 (4)C18B—C17—S2B—C190.80 (10)
N2—C3—C4—C5176.1 (2)C16—C17—S2B—C19178.3 (3)
O2—C4—C5—C6178.9 (3)S2A—C17—S2B—C193.4 (2)
C3—C4—C5—C60.3 (4)C18A—C17—C18B—C202.7 (2)
O2—C4—C5—C101.6 (4)C16—C17—C18B—C20179.6 (3)
C3—C4—C5—C10179.3 (2)S2B—C17—C18B—C200.60 (12)
C10—C5—C6—C71.1 (4)S2A—C17—C18B—C20158 (2)
C4—C5—C6—C7179.3 (3)C17—C18A—C19—C201.4 (2)
C5—C6—C7—C81.3 (5)C17—C18A—C19—S2B169.1 (9)
C6—C7—C8—C90.1 (5)C17—S2B—C19—C202.3 (2)
C7—C8—C9—C101.6 (5)C17—S2B—C19—C18A8.0 (7)
C8—C9—C10—C51.7 (5)C18A—C19—C20—C18B0.31 (17)
C6—C5—C10—C90.3 (4)S2B—C19—C20—C18B2.7 (3)
C4—C5—C10—C9179.2 (3)C18A—C19—C20—S2A2.0 (3)
N3—N4—C11—C12178.4 (2)S2B—C19—C20—S2A0.4 (2)
N4—C11—C12—C13179.1 (3)C17—C18B—C20—C192.0 (2)
N4—C11—C12—S11.1 (3)C17—C18B—C20—S2A168.8 (9)
C15—S1—C12—C130.5 (2)C17—S2A—C20—C191.8 (2)
C15—S1—C12—C11179.6 (2)C17—S2A—C20—C18B8.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O10.932.352.981 (3)125

Experimental details

Crystal data
Chemical formulaC20H16N4O2S2
Mr408.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)25.287 (3), 5.5347 (4), 28.281 (2)
β (°) 102.430 (7)
V3)3865.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.80 × 0.37 × 0.14
Data collection
DiffractometerStoe IPDS II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.776, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
20676, 3865, 2676
Rint0.037
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.141, 1.05
No. of reflections3865
No. of parameters272
No. of restraints104
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O10.932.352.981 (3)125.2
 

Acknowledgements

This study was supported financially by the Research Center of Ondokuz Mayıs University (Project No. F-476). The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationAkkurt, M., Öztürk Yıldırım, S., Bogdanov, M. G., Kandinska, M. I. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1955–o1956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChen, S. Y., Kao, C. & Laughton, C. A. (1997). J. Steroid Biochem. 61, 107–127.  CrossRef CAS Google Scholar
First citationClemons, M., Colemon, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCollin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. 13, 2601–2605.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMohareb, M., Sherif, M., Gaber, M., Ghabrial, S. & Aziz, I. (2004). Heteroatom Chem. 15, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationSanten, J. R. (2003). Steroids, 68, 559-567.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTanak, H., Köysal, Y., Yavuz, M., Işık, Ş. & Gül, G. (2009). Acta Cryst. E65, o3039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÜnver, Y., Düğdü, E., Sancak, K., Er, M. & Karaoğlu, Ş. A. (2009). Turk. J. Chem. 33, 135–147.  Google Scholar
First citationUstabaş, R., Ünver, Y., Suleymanoğlu, N., Çoruh, U. & Sancak, K. (2009). Acta Cryst. E65, o1006–o1007.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds