organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(1,3-dioxoisoindolin-2-yl)eth­yl] phthalate

aSchool of Ocean, Hainan University, Haikou 570228, People's Republic of China, bExperimental Teaching Center of Marine Biology, Hainan University, Haikou 570228, People's Republic of China, and cKey Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, People's Republic of China
*Correspondence e-mail: wangsf777@gmail.com

(Received 14 December 2009; accepted 23 December 2009; online 13 January 2010)

The title compound, C28H20N2O8, was synthesized by the reaction of isobenzofuran-1,3-dione and 2-amino­ethanol in a one-pot reaction. The benzene and five-membered rings are slightly twisted to each other, making dihedral angles of 2.77 (9) and 1.77 (10)°. The rings of the phthalimide groups make dihedral angle of 57.64 (7) and 83.46 (7)° with the central benzene ring. Weak C—H⋯O, C—H⋯π and ππ [centroid–centroid distance = 3.446 (1) and 3.599 (1) Å] inter­actions reinforce the cohesion of the crystal.

Related literature

For a related structure, see: Liang & Li (2006[Liang, Z.-P. & Li, J. (2006). Acta Cryst. E62, o4450-o4451.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20N2O8

  • Mr = 512.46

  • Monoclinic, C 2/c

  • a = 15.021 (2) Å

  • b = 12.3953 (19) Å

  • c = 25.954 (4) Å

  • β = 90.125 (2)°

  • V = 4832.5 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.33 × 0.27 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.988

  • 18257 measured reflections

  • 4718 independent reflections

  • 3689 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.03

  • 4718 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the and Cg5 are the centroids of the C12–C17 and C22–C27 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.93 2.39 3.315 (2) 174
C10—H10B⋯O5ii 0.97 2.55 3.163 (2) 121
C6—H6⋯Cg5 0.93 2.91 3.784 (2) 167
C19—H19BCg4iii 0.97 2.93 3.817 (2) 152
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z+2]; (iii) -x+1, -y+2, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-32 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-(2-hydroxyethyl)isoindoline-1,3-dione (Liang & Li, 2006) is a useful pharmaceutical intermediate in the synthesis of drugs containing aminoethyl group). The title compound, Bis(2-(1,3-dioxoisoindolin-2-yl)ethyl) phthalate includes two phthalamide groups and then easily provides two aminoethyl groups. As an intermediate for further synthesis, we obtained it in one-pot reaction.

The asymmetric unit is built up from a central phtalate with two pendant dioxoisoindolin groups (Fig. 1). The geometry of both the phthalimide rings compare well with the structure of the 2-(2-hydroxyethyl)isoindoline-1,3-dione (Liang & Li, 2006).

They could be regarded as planar with the largest deviation being 0.033 (2) Å and 0.028 (2) Å for C3 and C21 respectively, although the phenyl and the 5-membered rings are slightly twisted to each other making dihedral angles of 2.77 (9)° and 1.77 (10)° respectively. The phthalimide rings make dihedral angle of 57.64 (7)° and 83.46 (7)° with the central phenyl ring. Bond lengths and angles are normal and comparable to those observed in related compounds (Allen et al., 1987).

Weak C-H···O, C-H···π and π-π interactions reinforce the cohesion of the crystal (Table 1,2).

Related literature top

For a related structure, see:Liang & Li (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

44.5 g of isobenzofuran-1,3-dione (0.3 mol), 12.2 g of 2-aminoethanol (0.2 mol) were mixed in a flask and the mixture was heated up to boiling for one hour and then the reaction mixture was poured into water to give white precipitate. The precipitate was filtered, washed with water and dried in air to give the title compound as white solid (40.13 g, 78%). A little of the white solid was dissolved in mixed acetone/ water (50:1). After standing in air over a period of seven days, the acetone is evaporated, colourless crystals suitable for X-ray diffraction analysis were formed at the bottom of the vessel.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C).

Structure description top

2-(2-hydroxyethyl)isoindoline-1,3-dione (Liang & Li, 2006) is a useful pharmaceutical intermediate in the synthesis of drugs containing aminoethyl group). The title compound, Bis(2-(1,3-dioxoisoindolin-2-yl)ethyl) phthalate includes two phthalamide groups and then easily provides two aminoethyl groups. As an intermediate for further synthesis, we obtained it in one-pot reaction.

The asymmetric unit is built up from a central phtalate with two pendant dioxoisoindolin groups (Fig. 1). The geometry of both the phthalimide rings compare well with the structure of the 2-(2-hydroxyethyl)isoindoline-1,3-dione (Liang & Li, 2006).

They could be regarded as planar with the largest deviation being 0.033 (2) Å and 0.028 (2) Å for C3 and C21 respectively, although the phenyl and the 5-membered rings are slightly twisted to each other making dihedral angles of 2.77 (9)° and 1.77 (10)° respectively. The phthalimide rings make dihedral angle of 57.64 (7)° and 83.46 (7)° with the central phenyl ring. Bond lengths and angles are normal and comparable to those observed in related compounds (Allen et al., 1987).

Weak C-H···O, C-H···π and π-π interactions reinforce the cohesion of the crystal (Table 1,2).

For a related structure, see:Liang & Li (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Bis[2-(1,3-dioxoisoindolin-2-yl)ethyl] phthalate top
Crystal data top
C28H20N2O8F(000) = 2128
Mr = 512.46Dx = 1.409 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 19894 reflections
a = 15.021 (2) Åθ = 2.3–24.0°
b = 12.3953 (19) ŵ = 0.11 mm1
c = 25.954 (4) ÅT = 295 K
β = 90.125 (2)°Block, colourless
V = 4832.5 (13) Å30.33 × 0.27 × 0.12 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4718 independent reflections
Radiation source: fine-focus sealed tube3689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1818
Tmin = 0.966, Tmax = 0.988k = 1515
18257 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0561P)2 + 1.0157P]
where P = (Fo2 + 2Fc2)/3
4718 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C28H20N2O8V = 4832.5 (13) Å3
Mr = 512.46Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.021 (2) ŵ = 0.11 mm1
b = 12.3953 (19) ÅT = 295 K
c = 25.954 (4) Å0.33 × 0.27 × 0.12 mm
β = 90.125 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3689 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.988Rint = 0.031
18257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
4718 reflectionsΔρmin = 0.18 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.97630 (11)1.05121 (13)0.91255 (6)0.0416 (4)
C20.97412 (11)0.96188 (13)0.87460 (6)0.0418 (4)
C31.03959 (12)0.89040 (15)0.85964 (7)0.0553 (5)
H31.09730.89570.87240.066*
C41.01605 (15)0.81098 (16)0.82513 (7)0.0650 (5)
H41.05880.76160.81440.078*
C50.93112 (15)0.80299 (16)0.80617 (7)0.0640 (5)
H50.91720.74830.78300.077*
C60.86611 (13)0.87458 (16)0.82088 (6)0.0548 (5)
H60.80860.86950.80780.066*
C70.88892 (10)0.95428 (13)0.85562 (6)0.0400 (4)
C80.83416 (10)1.03777 (13)0.88082 (6)0.0431 (4)
C90.86318 (12)1.18167 (13)0.94637 (6)0.0481 (4)
H9A0.80601.20840.93450.058*
H9B0.90601.23990.94320.058*
C100.85568 (11)1.15007 (13)1.00187 (6)0.0459 (4)
H10A0.91401.13331.01590.055*
H10B0.83011.20851.02180.055*
C110.75624 (10)1.03503 (12)1.04734 (6)0.0388 (4)
C120.70715 (10)0.93102 (12)1.04218 (6)0.0389 (4)
C130.73462 (12)0.84711 (14)1.07294 (6)0.0501 (4)
H130.77710.85901.09840.060*
C140.69920 (14)0.74499 (15)1.06614 (7)0.0579 (5)
H140.71860.68821.08670.069*
C150.63546 (13)0.72739 (15)1.02905 (7)0.0553 (5)
H150.61180.65871.02450.066*
C160.60667 (11)0.81130 (13)0.99856 (7)0.0475 (4)
H160.56330.79910.97360.057*
C170.64183 (10)0.91381 (12)1.00478 (6)0.0382 (4)
C180.60827 (10)1.00635 (13)0.97419 (6)0.0402 (4)
C190.53654 (12)1.06028 (14)0.89801 (6)0.0475 (4)
H19A0.58531.10120.88330.057*
H19B0.49931.10910.91770.057*
C200.48331 (11)1.00681 (15)0.85621 (6)0.0492 (4)
H20A0.43680.96350.87180.059*
H20B0.45501.06180.83530.059*
C210.59113 (10)0.97752 (15)0.78414 (6)0.0430 (4)
C220.63316 (11)0.88163 (14)0.76059 (6)0.0462 (4)
C230.68986 (12)0.87307 (18)0.71912 (7)0.0602 (5)
H230.70770.93360.70060.072*
C240.71909 (14)0.7715 (2)0.70614 (8)0.0773 (7)
H240.75700.76320.67810.093*
C250.69367 (17)0.6827 (2)0.73348 (9)0.0850 (7)
H250.71610.61540.72440.102*
C260.63520 (16)0.69062 (17)0.77446 (8)0.0742 (6)
H260.61690.62990.79260.089*
C270.60526 (12)0.79191 (15)0.78731 (7)0.0518 (4)
C280.54202 (12)0.82721 (15)0.82772 (6)0.0509 (4)
N10.89058 (8)1.09290 (10)0.91377 (5)0.0400 (3)
N20.53736 (9)0.93881 (11)0.82350 (5)0.0434 (3)
O11.03739 (8)1.08221 (10)0.93858 (5)0.0612 (4)
O20.75574 (8)1.05580 (11)0.87512 (5)0.0634 (4)
O30.79903 (7)1.05658 (8)1.00380 (4)0.0446 (3)
O40.76146 (8)1.08763 (10)1.08580 (4)0.0541 (3)
O50.61305 (9)1.09848 (9)0.98776 (5)0.0592 (3)
O60.57008 (8)0.97564 (9)0.93053 (4)0.0485 (3)
O70.59873 (9)1.07155 (10)0.77251 (5)0.0588 (3)
O80.50082 (10)0.77394 (12)0.85785 (5)0.0771 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (9)0.0390 (9)0.0465 (9)0.0041 (7)0.0018 (7)0.0000 (7)
C20.0435 (9)0.0440 (9)0.0378 (8)0.0002 (7)0.0015 (7)0.0004 (7)
C30.0521 (10)0.0608 (12)0.0529 (10)0.0127 (9)0.0041 (8)0.0104 (9)
C40.0805 (14)0.0626 (13)0.0519 (11)0.0182 (11)0.0013 (10)0.0143 (9)
C50.0878 (15)0.0625 (13)0.0419 (10)0.0062 (11)0.0005 (10)0.0143 (9)
C60.0575 (11)0.0690 (13)0.0378 (9)0.0113 (9)0.0049 (8)0.0031 (8)
C70.0433 (9)0.0447 (9)0.0320 (8)0.0059 (7)0.0008 (6)0.0047 (7)
C80.0390 (9)0.0513 (10)0.0391 (8)0.0035 (7)0.0028 (7)0.0112 (7)
C90.0519 (10)0.0333 (9)0.0591 (10)0.0013 (7)0.0144 (8)0.0001 (8)
C100.0465 (9)0.0358 (9)0.0554 (10)0.0100 (7)0.0071 (7)0.0088 (8)
C110.0385 (8)0.0411 (9)0.0368 (8)0.0018 (7)0.0004 (6)0.0037 (7)
C120.0421 (8)0.0395 (9)0.0352 (8)0.0034 (7)0.0096 (7)0.0016 (7)
C130.0574 (10)0.0518 (11)0.0413 (9)0.0048 (8)0.0046 (8)0.0062 (8)
C140.0731 (13)0.0459 (11)0.0546 (11)0.0041 (9)0.0152 (10)0.0147 (9)
C150.0646 (12)0.0402 (10)0.0612 (11)0.0135 (9)0.0191 (9)0.0008 (8)
C160.0468 (9)0.0438 (10)0.0519 (10)0.0098 (8)0.0090 (8)0.0076 (8)
C170.0383 (8)0.0381 (9)0.0383 (8)0.0036 (7)0.0095 (6)0.0054 (7)
C180.0359 (8)0.0421 (9)0.0425 (8)0.0019 (7)0.0047 (6)0.0087 (7)
C190.0502 (10)0.0470 (10)0.0452 (9)0.0074 (8)0.0007 (8)0.0030 (8)
C200.0397 (9)0.0619 (11)0.0460 (9)0.0061 (8)0.0016 (7)0.0046 (8)
C210.0392 (8)0.0531 (11)0.0366 (8)0.0003 (7)0.0047 (7)0.0014 (8)
C220.0400 (9)0.0600 (11)0.0384 (8)0.0027 (8)0.0047 (7)0.0034 (8)
C230.0461 (10)0.0896 (15)0.0448 (10)0.0032 (10)0.0008 (8)0.0081 (10)
C240.0588 (13)0.116 (2)0.0570 (12)0.0185 (13)0.0028 (10)0.0264 (13)
C250.0870 (17)0.0921 (19)0.0758 (15)0.0372 (14)0.0090 (13)0.0328 (14)
C260.0930 (16)0.0588 (13)0.0709 (14)0.0133 (12)0.0080 (12)0.0075 (11)
C270.0551 (10)0.0538 (11)0.0465 (9)0.0073 (9)0.0039 (8)0.0060 (8)
C280.0574 (11)0.0528 (11)0.0424 (9)0.0031 (9)0.0002 (8)0.0036 (8)
N10.0381 (7)0.0356 (7)0.0463 (7)0.0017 (6)0.0074 (6)0.0001 (6)
N20.0437 (7)0.0488 (8)0.0378 (7)0.0009 (6)0.0018 (6)0.0028 (6)
O10.0471 (7)0.0623 (8)0.0743 (9)0.0038 (6)0.0092 (6)0.0211 (7)
O20.0369 (7)0.0902 (10)0.0630 (8)0.0056 (6)0.0004 (6)0.0048 (7)
O30.0530 (7)0.0394 (6)0.0414 (6)0.0135 (5)0.0080 (5)0.0058 (5)
O40.0636 (8)0.0564 (8)0.0423 (6)0.0081 (6)0.0030 (6)0.0149 (6)
O50.0736 (9)0.0393 (7)0.0647 (8)0.0074 (6)0.0174 (7)0.0136 (6)
O60.0586 (7)0.0444 (7)0.0424 (6)0.0010 (5)0.0060 (5)0.0055 (5)
O70.0657 (8)0.0527 (8)0.0579 (8)0.0033 (6)0.0015 (6)0.0094 (6)
O80.0953 (11)0.0665 (9)0.0696 (9)0.0120 (8)0.0211 (8)0.0121 (7)
Geometric parameters (Å, º) top
C1—O11.2014 (19)C14—H140.9300
C1—N11.388 (2)C15—C161.376 (2)
C1—C21.482 (2)C15—H150.9300
C2—C71.374 (2)C16—C171.385 (2)
C2—C31.380 (2)C16—H160.9300
C3—C41.377 (3)C17—C181.483 (2)
C3—H30.9300C18—O51.1972 (18)
C4—C51.370 (3)C18—O61.3250 (18)
C4—H40.9300C19—O61.437 (2)
C5—C61.374 (3)C19—C201.501 (2)
C5—H50.9300C19—H19A0.9700
C6—C71.380 (2)C19—H19B0.9700
C6—H60.9300C20—N21.447 (2)
C7—C81.476 (2)C20—H20A0.9700
C8—O21.2077 (19)C20—H20B0.9700
C8—N11.383 (2)C21—O71.209 (2)
C9—N11.448 (2)C21—N21.389 (2)
C9—C101.497 (2)C21—C221.479 (2)
C9—H9A0.9700C22—C271.376 (2)
C9—H9B0.9700C22—C231.378 (2)
C10—O31.4387 (18)C23—C241.375 (3)
C10—H10A0.9700C23—H230.9300
C10—H10B0.9700C24—C251.365 (4)
C11—O41.1947 (18)C24—H240.9300
C11—O31.3284 (18)C25—C261.384 (3)
C11—C121.491 (2)C25—H250.9300
C12—C131.374 (2)C26—C271.375 (3)
C12—C171.395 (2)C26—H260.9300
C13—C141.384 (3)C27—C281.483 (2)
C13—H130.9300C28—O81.197 (2)
C14—C151.374 (3)C28—N21.389 (2)
O1—C1—N1125.14 (15)C15—C16—H16119.8
O1—C1—C2128.94 (16)C17—C16—H16119.8
N1—C1—C2105.91 (13)C16—C17—C12119.25 (15)
C7—C2—C3121.28 (15)C16—C17—C18121.21 (15)
C7—C2—C1107.98 (14)C12—C17—C18119.48 (14)
C3—C2—C1130.67 (16)O5—C18—O6123.45 (15)
C4—C3—C2117.38 (18)O5—C18—C17124.08 (14)
C4—C3—H3121.3O6—C18—C17112.45 (13)
C2—C3—H3121.3O6—C19—C20106.72 (14)
C5—C4—C3121.54 (18)O6—C19—H19A110.4
C5—C4—H4119.2C20—C19—H19A110.4
C3—C4—H4119.2O6—C19—H19B110.4
C4—C5—C6121.02 (17)C20—C19—H19B110.4
C4—C5—H5119.5H19A—C19—H19B108.6
C6—C5—H5119.5N2—C20—C19112.51 (13)
C5—C6—C7117.91 (17)N2—C20—H20A109.1
C5—C6—H6121.0C19—C20—H20A109.1
C7—C6—H6121.0N2—C20—H20B109.1
C2—C7—C6120.87 (16)C19—C20—H20B109.1
C2—C7—C8108.23 (13)H20A—C20—H20B107.8
C6—C7—C8130.82 (15)O7—C21—N2124.87 (16)
O2—C8—N1125.48 (16)O7—C21—C22129.12 (16)
O2—C8—C7128.31 (16)N2—C21—C22106.00 (15)
N1—C8—C7106.20 (13)C27—C22—C23121.37 (17)
N1—C9—C10112.68 (13)C27—C22—C21108.09 (15)
N1—C9—H9A109.1C23—C22—C21130.53 (18)
C10—C9—H9A109.1C24—C23—C22117.4 (2)
N1—C9—H9B109.1C24—C23—H23121.3
C10—C9—H9B109.1C22—C23—H23121.3
H9A—C9—H9B107.8C25—C24—C23121.4 (2)
O3—C10—C9106.85 (13)C25—C24—H24119.3
O3—C10—H10A110.4C23—C24—H24119.3
C9—C10—H10A110.4C24—C25—C26121.4 (2)
O3—C10—H10B110.4C24—C25—H25119.3
C9—C10—H10B110.4C26—C25—H25119.3
H10A—C10—H10B108.6C27—C26—C25117.4 (2)
O4—C11—O3124.75 (15)C27—C26—H26121.3
O4—C11—C12125.33 (15)C25—C26—H26121.3
O3—C11—C12109.74 (12)C26—C27—C22121.03 (18)
C13—C12—C17119.89 (15)C26—C27—C28130.66 (19)
C13—C12—C11117.04 (15)C22—C27—C28108.31 (15)
C17—C12—C11122.78 (14)O8—C28—N2125.08 (17)
C12—C13—C14120.22 (17)O8—C28—C27129.23 (18)
C12—C13—H13119.9N2—C28—C27105.69 (15)
C14—C13—H13119.9C8—N1—C1111.67 (13)
C15—C14—C13120.12 (17)C8—N1—C9124.20 (13)
C15—C14—H14119.9C1—N1—C9124.13 (13)
C13—C14—H14119.9C21—N2—C28111.88 (14)
C14—C15—C16120.04 (16)C21—N2—C20123.93 (15)
C14—C15—H15120.0C28—N2—C20124.20 (14)
C16—C15—H15120.0C11—O3—C10118.61 (12)
C15—C16—C17120.47 (17)C18—O6—C19116.31 (12)
Hydrogen-bond geometry (Å, º) top
Cg4 is the and Cg5 are the centroids of the C12–C17 and C22–C27 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.932.393.315 (2)174
C10—H10B···O5ii0.972.553.163 (2)121
C6—H6···Cg50.932.913.784 (2)167
C19—H19B···Cg4iii0.972.933.817 (2)152
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+3/2, y+5/2, z+2; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC28H20N2O8
Mr512.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)15.021 (2), 12.3953 (19), 25.954 (4)
β (°) 90.125 (2)
V3)4832.5 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.33 × 0.27 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.966, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
18257, 4718, 3689
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.03
No. of reflections4718
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg4 is the and Cg5 are the centroids of the C12–C17 and C22–C27 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.932.393.315 (2)174
C10—H10B···O5ii0.972.553.163 (2)121
C6—H6···Cg50.932.913.784 (2)167
C19—H19B···Cg4iii0.972.933.817 (2)152
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+3/2, y+5/2, z+2; (iii) x+1, y+2, z+2.
ππ interactions in (I) top
Cg2 is the centroid of the N2/C21/C22/C27/C28 plane and Cg4 is the centroid of the C12–C17 phenyl ring
CgI—CgIICg–Cg (Å)Cg—perp (Å)Offset (°)Symmetry
Cg2—Cg23.446 (1)3.427.04(1-x, y, 1/2-z)
Cg4—Cg43.599 (1)3.35521.2(1/2-x, 1/2-y, -z)
 

Acknowledgements

This research was supported financially by National Natural Science Foundation of China (30660215).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiang, Z.-P. & Li, J. (2006). Acta Cryst. E62, o4450–o4451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds