organic compounds
Bis(2-amino-3-nitropyridinium) dihydrogendiphosphate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bChemistry Department, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: toumiakriche@yahoo.fr
The structure of the title compound, 2C5H6N3O2+·H2P2O72−, contains infinite (H2P2O72−)n layers stacked perpendicular to the a axis. The 2-amino-3-nitropyridinium cations are arranged in pairs and are anchored between these layers, linking them by N—H⋯O and C—H⋯O hydrogen-bonding and electrostatic interactions between anionic and cationic species to form a three-dimensional network.
Related literature
For related structures of 2-amino-3-nitropyridinium, see: Akriche & Rzaigui (2000, 2009a,b,c); Nicoud et al. (1997). For bond lengths in related structures, see: Aakeröy et al. (1998). For related structures of diphosphate anions, see: Akriche & Rzaigui (2005); Charfi & Jouini (2005); Brodski et al. (2004); Mrad et al. (2006); Soumhi et al. (1998).
Experimental
Crystal data
|
Data collection
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810000942/dn2529sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810000942/dn2529Isup2.hkl
Single crystals of the title compound were prepared at room temperature by slow evaporation of a mixture of an aqueous solution (20 ml) of diphosphoric acid (5 mmol) and an ethanolic solution (10 ml) of 2-amino-3-nitropyridine (4 mmol, 354 mg). The diphosphoric acid was produced from Na4P2O7 by using a cation-exchange resin (Amberlite IR 120). The resulting solution was evaporated slowly at room temperature for several days until the formation of good quality of prismatic single crystals.
All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C or N) and Uiso(H) = 1.5Ueq(O)
In the framework of our systematic research using the 2-amino-3-nitropyridine (2 A3NP) molecule, we report here the new non-centrosymetric compound, 2(C5H6N3O2)+, H2P2O72- (I) obtained by the interaction of the 2 A3NP molecule and diphosphoric acid.
The
of the title compound is built up from one anion H2P2O72- and two (C5H6N3O2)+ cations as shown in Fig. 1.The dihydrogendiphosphate anions are connected through strong hydrogen bonds characterized by relatively short distances (with distances O2···O5 = 2.549 (3) Å and O7···O1 = 2.537 (3) Å (Table 1)), to form corrugated layers parallel to bc plane at x = 0 and x= 1/2 (Fig. 2). Two crystallographically independent cations coexist in this structure. They are arranged in pairs and anchored onto both adjacent anionic layers via N—H···O and C—H···O hydrogen bonds to keep up the three-dimensionel network cohesion.
As expected, the H2P2O72- group with bent configuration shows its standard geometry, the longest bonds length P2–O4 = 1.592 (2) Å and P1–O4 = 1.613 (2) Å, correspond to the bridging oxygen atom, the intermediate ones, P1–O2 = 1.552 (2) Å and P2–O7 = 1.545 (2) Å, correspond to the P–OH bonding and the shortest ones spreading between 1.481 (2) Å and 1.515 (2) Å, correspond to the external oxygen atoms. The average values of the P–O distances and O–P–O angles are 1.536 Å and 109.3°. The P–P distance is 2.898 (1) Å and the P–O–P angle is close to 129.4 (1) °. All these distances and angles are similar to those commonly observed in others diphosphate anions (Akriche & Rzaigui, 2005; Charfi & Jouini, 2005; Brodski, et al., 2004; Mrad, et al., 2006). Despite the limited number of organic cation diphosphates (about twenty seven related structures of diphosphate anions), we can distinguish only one non-centrosymmetric structure (Soumhi, et al., 1998) such as the title compound (I).
In this atomic arrangement, one can distinguish the inter-cation contact C8—H8···O9 (H8···O9 = 2.52 Å) which induces the aggregation of the two independent organic cations in pairs (2 A3NP+)2. This kind of arrangement is also observed in the related structure of 2-amino-3-nitropyridinium hydrogenselenate (Akriche & Rzaigui, 2009b). These pairs are located between the anionic layers to link them by manifesting different interactions (Fig. 2). The geometric features of organic cations are usual and comparable with values of other 2-amino-3-nitropyridinium compounds (Akriche & Rzaigui, 2000; Nicoud et al.,1997; Akriche & Rzaigui, 2009a, 2009b, 2009c). It is worth noticing, the C—NH2 (1.316 (4) Å) and C—NO2 (1.440 (4) and 1.454 (5) Å) distances in the 2 A3NP cations are respectively shortened and lengthened with respect to the C—NH2 (1.337 (4) Å) and C—NO2 (1.429 (4) Å) observed in the 2-amino-3-nitropyridine molecular crystal (Aakeröy, et al., 1998). All the 2-amino-3-nitropyridinium cations encapsulated in various anionic subnetworks show the same changes in C—NH2 and C—NO2 distances, revealing a weak increase of pi bond character in C—NH2 and a decrease in C—NO2.
For related structures of 2-amino-3-nitropyridinium, see: Akriche & Rzaigui (2000); Akriche & Rzaigui (2009a,b,c); Nicoud et al. (1997). For bond lengths in related structures, see: Aakeröy et al. (1998). For related structures of diphosphate anions, see: Akriche & Rzaigui (2005); Charfi & Jouini (2005); Brodski et al. (2004); Mrad et al. (2006); Soumhi et al. (1998).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines. | |
Fig. 2. Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted. |
2C5H6N3O2+·H2O7P22− | F(000) = 936 |
Mr = 456.21 | Dx = 1.707 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 25 reflections |
a = 34.250 (5) Å | θ = 10–12° |
b = 5.763 (2) Å | µ = 0.32 mm−1 |
c = 8.991 (3) Å | T = 298 K |
V = 1774.8 (9) Å3 | Prism, yellow |
Z = 4 | 0.29 × 0.25 × 0.19 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.008 |
Radiation source: fine-focus sealed tube | θmax = 30.0°, θmin = 3.3° |
Graphite monochromator | h = −48→0 |
non–profiled ω scans | k = 0→8 |
2726 measured reflections | l = −12→0 |
2724 independent reflections | 2 standard reflections every 120 min |
2279 reflections with I > 2σ(I) | intensity decay: 3% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0391P)2 + 0.7964P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 0.53 e Å−3 |
2724 reflections | Δρmin = −0.28 e Å−3 |
265 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0192 (12) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.15 (11) |
2C5H6N3O2+·H2O7P22− | V = 1774.8 (9) Å3 |
Mr = 456.21 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 34.250 (5) Å | µ = 0.32 mm−1 |
b = 5.763 (2) Å | T = 298 K |
c = 8.991 (3) Å | 0.29 × 0.25 × 0.19 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.008 |
2726 measured reflections | 2 standard reflections every 120 min |
2724 independent reflections | intensity decay: 3% |
2279 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.091 | Δρmax = 0.53 e Å−3 |
S = 1.09 | Δρmin = −0.28 e Å−3 |
2724 reflections | Absolute structure: Flack (1983) |
265 parameters | Absolute structure parameter: −0.15 (11) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.05181 (2) | 0.76331 (12) | 0.64677 (9) | 0.02939 (15) | |
P2 | 0.06740 (2) | 0.49228 (13) | 0.38188 (9) | 0.02940 (15) | |
O1 | 0.02869 (6) | 0.6068 (4) | 0.7473 (3) | 0.0388 (5) | |
O2 | 0.03160 (6) | 1.0043 (4) | 0.6468 (3) | 0.0380 (5) | |
H2 | 0.0432 | 1.0916 | 0.5898 | 0.057* | |
O3 | 0.09419 (6) | 0.7686 (4) | 0.6795 (3) | 0.0406 (5) | |
O4 | 0.04503 (6) | 0.6839 (4) | 0.4767 (2) | 0.0349 (4) | |
O5 | 0.06725 (7) | 0.2687 (4) | 0.4645 (3) | 0.0442 (6) | |
O6 | 0.10798 (6) | 0.5779 (4) | 0.3433 (3) | 0.0381 (5) | |
O7 | 0.04355 (6) | 0.4892 (4) | 0.2361 (2) | 0.0367 (5) | |
H7 | 0.0207 | 0.4592 | 0.2548 | 0.055* | |
O8 | 0.17007 (11) | 0.0987 (8) | 1.2413 (5) | 0.0996 (14) | |
O9 | 0.17848 (8) | 0.4036 (7) | 1.1115 (4) | 0.0796 (12) | |
O10 | 0.17870 (9) | −0.0306 (6) | 0.8224 (4) | 0.0689 (9) | |
O11 | 0.23687 (9) | 0.0861 (7) | 0.8703 (5) | 0.0899 (12) | |
N1 | 0.07030 (7) | 0.3161 (5) | 0.9226 (3) | 0.0334 (5) | |
H1 | 0.0606 | 0.4078 | 0.8567 | 0.040* | |
N2 | 0.12502 (8) | 0.5449 (5) | 0.9194 (3) | 0.0445 (7) | |
H2A | 0.1139 | 0.6299 | 0.8532 | 0.053* | |
H2B | 0.1481 | 0.5788 | 0.9499 | 0.053* | |
N3 | 0.15874 (9) | 0.2373 (7) | 1.1479 (5) | 0.0578 (9) | |
N4 | 0.16725 (8) | 0.4967 (5) | 0.5130 (4) | 0.0396 (6) | |
H4 | 0.1465 | 0.5191 | 0.4608 | 0.048* | |
N5 | 0.13779 (8) | 0.1725 (6) | 0.6059 (4) | 0.0522 (8) | |
H5A | 0.1184 | 0.1998 | 0.5479 | 0.063* | |
H5B | 0.1374 | 0.0536 | 0.6637 | 0.063* | |
N6 | 0.20652 (10) | 0.1031 (6) | 0.8028 (4) | 0.0548 (8) | |
C1 | 0.04851 (9) | 0.1383 (5) | 0.9672 (4) | 0.0374 (6) | |
H1A | 0.0236 | 0.1196 | 0.9281 | 0.045* | |
C2 | 0.06201 (11) | −0.0169 (6) | 1.0689 (4) | 0.0450 (8) | |
H2C | 0.0469 | −0.1431 | 1.0978 | 0.054* | |
C3 | 0.09860 (10) | 0.0180 (6) | 1.1278 (4) | 0.0453 (8) | |
H3 | 0.1084 | −0.0843 | 1.1986 | 0.054* | |
C4 | 0.12081 (9) | 0.2041 (6) | 1.0822 (4) | 0.0404 (7) | |
C5 | 0.10672 (8) | 0.3631 (5) | 0.9740 (4) | 0.0350 (6) | |
C6 | 0.19675 (10) | 0.6453 (6) | 0.4979 (5) | 0.0470 (8) | |
H6 | 0.1943 | 0.7678 | 0.4312 | 0.056* | |
C7 | 0.23056 (10) | 0.6223 (7) | 0.5778 (5) | 0.0550 (10) | |
H7C | 0.2512 | 0.7255 | 0.5652 | 0.066* | |
C8 | 0.23302 (9) | 0.4406 (7) | 0.6779 (4) | 0.0511 (9) | |
H8 | 0.2554 | 0.4221 | 0.7352 | 0.061* | |
C9 | 0.20255 (9) | 0.2872 (6) | 0.6933 (4) | 0.0417 (7) | |
C10 | 0.16813 (9) | 0.3125 (6) | 0.6061 (4) | 0.0389 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0326 (3) | 0.0309 (3) | 0.0247 (3) | −0.0046 (3) | −0.0008 (3) | 0.0044 (3) |
P2 | 0.0323 (3) | 0.0269 (3) | 0.0291 (3) | −0.0007 (3) | 0.0004 (3) | 0.0045 (3) |
O1 | 0.0377 (10) | 0.0429 (12) | 0.0357 (11) | −0.0058 (9) | −0.0001 (9) | 0.0130 (10) |
O2 | 0.0473 (11) | 0.0334 (10) | 0.0333 (11) | −0.0004 (9) | 0.0047 (10) | 0.0004 (11) |
O3 | 0.0373 (10) | 0.0474 (12) | 0.0371 (13) | −0.0090 (10) | −0.0036 (9) | 0.0097 (10) |
O4 | 0.0379 (10) | 0.0374 (10) | 0.0293 (10) | 0.0054 (9) | −0.0045 (9) | 0.0000 (9) |
O5 | 0.0461 (13) | 0.0321 (11) | 0.0544 (15) | −0.0020 (9) | 0.0013 (11) | 0.0162 (11) |
O6 | 0.0336 (10) | 0.0412 (11) | 0.0394 (12) | −0.0049 (9) | 0.0003 (9) | 0.0102 (10) |
O7 | 0.0357 (10) | 0.0457 (12) | 0.0288 (10) | −0.0050 (10) | −0.0004 (9) | −0.0028 (10) |
O8 | 0.072 (2) | 0.126 (3) | 0.101 (3) | 0.007 (2) | −0.035 (2) | 0.058 (3) |
O9 | 0.0414 (14) | 0.108 (3) | 0.089 (3) | −0.0142 (16) | −0.0172 (16) | 0.035 (2) |
O10 | 0.0647 (18) | 0.073 (2) | 0.069 (2) | −0.0055 (16) | −0.0033 (15) | 0.0349 (18) |
O11 | 0.0635 (19) | 0.114 (3) | 0.092 (3) | 0.0031 (19) | −0.025 (2) | 0.045 (3) |
N1 | 0.0393 (13) | 0.0353 (13) | 0.0257 (11) | 0.0034 (10) | −0.0001 (9) | 0.0036 (10) |
N2 | 0.0426 (14) | 0.0462 (16) | 0.0447 (17) | −0.0056 (12) | −0.0057 (12) | 0.0137 (13) |
N3 | 0.0423 (15) | 0.079 (2) | 0.0518 (17) | 0.0116 (17) | −0.0067 (16) | 0.018 (2) |
N4 | 0.0325 (11) | 0.0423 (14) | 0.0440 (15) | 0.0013 (11) | −0.0029 (11) | 0.0083 (13) |
N5 | 0.0423 (15) | 0.0524 (17) | 0.062 (2) | −0.0119 (13) | −0.0101 (15) | 0.0222 (16) |
N6 | 0.0492 (16) | 0.066 (2) | 0.0494 (18) | 0.0083 (16) | 0.0005 (15) | 0.0154 (17) |
C1 | 0.0393 (15) | 0.0418 (16) | 0.0309 (14) | −0.0026 (13) | 0.0037 (13) | −0.0027 (14) |
C2 | 0.0549 (19) | 0.0353 (16) | 0.0447 (18) | −0.0021 (15) | 0.0087 (16) | 0.0062 (15) |
C3 | 0.0535 (17) | 0.0414 (16) | 0.0411 (19) | 0.0132 (14) | 0.0058 (15) | 0.0119 (16) |
C4 | 0.0373 (15) | 0.0488 (18) | 0.0350 (16) | 0.0079 (13) | −0.0004 (13) | 0.0054 (15) |
C5 | 0.0372 (14) | 0.0390 (16) | 0.0288 (13) | 0.0054 (12) | 0.0018 (12) | 0.0035 (13) |
C6 | 0.0419 (17) | 0.0463 (18) | 0.053 (2) | −0.0023 (14) | 0.0041 (15) | 0.0086 (17) |
C7 | 0.0374 (17) | 0.061 (2) | 0.066 (3) | −0.0102 (16) | 0.0042 (18) | 0.008 (2) |
C8 | 0.0303 (14) | 0.072 (2) | 0.051 (2) | 0.0006 (16) | −0.0028 (15) | 0.0070 (19) |
C9 | 0.0329 (13) | 0.0520 (18) | 0.0404 (15) | 0.0050 (13) | 0.0030 (12) | 0.0089 (16) |
C10 | 0.0345 (14) | 0.0408 (16) | 0.0412 (16) | 0.0024 (13) | 0.0042 (13) | 0.0041 (13) |
P1—O3 | 1.481 (2) | N4—C6 | 1.331 (4) |
P1—O1 | 1.503 (2) | N4—C10 | 1.353 (4) |
P1—O2 | 1.552 (2) | N4—H4 | 0.8600 |
P1—O4 | 1.613 (2) | N5—C10 | 1.316 (4) |
P2—O5 | 1.487 (2) | N5—H5A | 0.8600 |
P2—O6 | 1.515 (2) | N5—H5B | 0.8600 |
P2—O7 | 1.545 (2) | N6—C9 | 1.454 (5) |
P2—O4 | 1.592 (2) | C1—C2 | 1.360 (5) |
O2—H2 | 0.8200 | C1—H1A | 0.9300 |
O7—H7 | 0.8200 | C2—C3 | 1.375 (5) |
O8—N3 | 1.222 (5) | C2—H2C | 0.9300 |
O9—N3 | 1.217 (5) | C3—C4 | 1.377 (5) |
O10—N6 | 1.238 (4) | C3—H3 | 0.9300 |
O11—N6 | 1.208 (4) | C4—C5 | 1.420 (4) |
N1—C1 | 1.330 (4) | C6—C7 | 1.369 (5) |
N1—C5 | 1.358 (4) | C6—H6 | 0.9300 |
N1—H1 | 0.8600 | C7—C8 | 1.383 (5) |
N2—C5 | 1.316 (4) | C7—H7C | 0.9300 |
N2—H2A | 0.8600 | C8—C9 | 1.375 (5) |
N2—H2B | 0.8600 | C8—H8 | 0.9300 |
N3—C4 | 1.440 (4) | C9—C10 | 1.423 (5) |
O3—P1—O1 | 114.15 (13) | O10—N6—C9 | 118.6 (3) |
O3—P1—O2 | 114.74 (13) | N1—C1—C2 | 121.2 (3) |
O1—P1—O2 | 107.60 (13) | N1—C1—H1A | 119.4 |
O3—P1—O4 | 109.59 (13) | C2—C1—H1A | 119.4 |
O1—P1—O4 | 108.93 (14) | C1—C2—C3 | 118.2 (3) |
O2—P1—O4 | 100.93 (13) | C1—C2—H2C | 120.9 |
O5—P2—O6 | 113.55 (13) | C3—C2—H2C | 120.9 |
O5—P2—O7 | 114.34 (15) | C2—C3—C4 | 120.2 (3) |
O6—P2—O7 | 107.14 (13) | C2—C3—H3 | 119.9 |
O5—P2—O4 | 109.41 (14) | C4—C3—H3 | 119.9 |
O6—P2—O4 | 109.76 (13) | C3—C4—C5 | 121.2 (3) |
O7—P2—O4 | 101.99 (12) | C3—C4—N3 | 118.7 (3) |
P1—O2—H2 | 109.5 | C5—C4—N3 | 120.1 (3) |
P2—O4—P1 | 129.43 (14) | N2—C5—N1 | 118.0 (3) |
P2—O7—H7 | 109.5 | N2—C5—C4 | 127.4 (3) |
C1—N1—C5 | 124.5 (3) | N1—C5—C4 | 114.6 (3) |
C1—N1—H1 | 117.7 | N4—C6—C7 | 121.7 (4) |
C5—N1—H1 | 117.7 | N4—C6—H6 | 119.1 |
C5—N2—H2A | 120.0 | C7—C6—H6 | 119.1 |
C5—N2—H2B | 120.0 | C6—C7—C8 | 117.8 (3) |
H2A—N2—H2B | 120.0 | C6—C7—H7C | 121.1 |
O9—N3—O8 | 121.5 (4) | C8—C7—H7C | 121.1 |
O9—N3—C4 | 119.7 (3) | C9—C8—C7 | 120.4 (3) |
O8—N3—C4 | 118.8 (4) | C9—C8—H8 | 119.8 |
C6—N4—C10 | 123.4 (3) | C7—C8—H8 | 119.8 |
C6—N4—H4 | 118.3 | C8—C9—C10 | 120.5 (3) |
C10—N4—H4 | 118.3 | C8—C9—N6 | 117.8 (3) |
C10—N5—H5A | 120.0 | C10—C9—N6 | 121.7 (3) |
C10—N5—H5B | 120.0 | N5—C10—N4 | 117.6 (3) |
H5A—N5—H5B | 120.0 | N5—C10—C9 | 126.3 (3) |
O11—N6—O10 | 122.7 (4) | N4—C10—C9 | 116.1 (3) |
O11—N6—C9 | 118.7 (3) | ||
O5—P2—O4—P1 | 53.0 (2) | N3—C4—C5—N2 | 1.9 (6) |
O6—P2—O4—P1 | −72.2 (2) | C3—C4—C5—N1 | 0.4 (5) |
O7—P2—O4—P1 | 174.45 (18) | N3—C4—C5—N1 | −178.7 (3) |
O3—P1—O4—P2 | 39.2 (2) | C10—N4—C6—C7 | −0.5 (6) |
O1—P1—O4—P2 | −86.3 (2) | N4—C6—C7—C8 | −1.1 (6) |
O2—P1—O4—P2 | 160.61 (18) | C6—C7—C8—C9 | 1.2 (6) |
C5—N1—C1—C2 | −1.3 (5) | C7—C8—C9—C10 | 0.2 (6) |
N1—C1—C2—C3 | 1.6 (5) | C7—C8—C9—N6 | −178.6 (4) |
C1—C2—C3—C4 | −0.9 (5) | O11—N6—C9—C8 | −3.4 (6) |
C2—C3—C4—C5 | −0.1 (5) | O10—N6—C9—C8 | 177.0 (4) |
C2—C3—C4—N3 | 179.0 (4) | O11—N6—C9—C10 | 177.8 (4) |
O9—N3—C4—C3 | −178.4 (4) | O10—N6—C9—C10 | −1.8 (5) |
O8—N3—C4—C3 | 0.5 (6) | C6—N4—C10—N5 | −176.9 (4) |
O9—N3—C4—C5 | 0.7 (6) | C6—N4—C10—C9 | 1.9 (5) |
O8—N3—C4—C5 | 179.6 (4) | C8—C9—C10—N5 | 177.0 (4) |
C1—N1—C5—N2 | 179.7 (3) | N6—C9—C10—N5 | −4.2 (6) |
C1—N1—C5—C4 | 0.2 (4) | C8—C9—C10—N4 | −1.7 (5) |
C3—C4—C5—N2 | −179.0 (3) | N6—C9—C10—N4 | 177.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O5i | 0.82 | 1.73 | 2.549 (3) | 178 |
O7—H7···O1ii | 0.82 | 1.73 | 2.537 (3) | 166 |
N1—H1···O1 | 0.86 | 1.87 | 2.706 (3) | 165 |
N2—H2A···O3 | 0.86 | 1.88 | 2.726 (4) | 168 |
N2—H2B···O9 | 0.86 | 2.05 | 2.645 (4) | 126 |
N4—H4···O6 | 0.86 | 1.72 | 2.582 (4) | 174 |
N5—H5A···O5 | 0.86 | 1.95 | 2.786 (4) | 165 |
N5—H5B···O10 | 0.86 | 2.07 | 2.669 (5) | 126 |
N5—H5B···O3iii | 0.86 | 2.22 | 2.843 (4) | 130 |
C2—H2C···O7iv | 0.93 | 2.46 | 3.280 (4) | 147 |
C3—H3···O6iv | 0.93 | 2.34 | 3.208 (4) | 155 |
C8—H8···O9v | 0.93 | 2.52 | 3.097 (4) | 120 |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, z−1/2; (iii) x, y−1, z; (iv) x, y−1, z+1; (v) −x+1/2, y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | 2C5H6N3O2+·H2O7P22− |
Mr | 456.21 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 298 |
a, b, c (Å) | 34.250 (5), 5.763 (2), 8.991 (3) |
V (Å3) | 1774.8 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.29 × 0.25 × 0.19 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2726, 2724, 2279 |
Rint | 0.008 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.091, 1.09 |
No. of reflections | 2724 |
No. of parameters | 265 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.28 |
Absolute structure | Flack (1983) |
Absolute structure parameter | −0.15 (11) |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O5i | 0.82 | 1.73 | 2.549 (3) | 177.9 |
O7—H7···O1ii | 0.82 | 1.73 | 2.537 (3) | 165.9 |
N1—H1···O1 | 0.86 | 1.87 | 2.706 (3) | 165.1 |
N2—H2A···O3 | 0.86 | 1.88 | 2.726 (4) | 167.5 |
N2—H2B···O9 | 0.86 | 2.05 | 2.645 (4) | 125.5 |
N4—H4···O6 | 0.86 | 1.72 | 2.582 (4) | 174.2 |
N5—H5A···O5 | 0.86 | 1.95 | 2.786 (4) | 165.4 |
N5—H5B···O10 | 0.86 | 2.07 | 2.669 (5) | 126.4 |
N5—H5B···O3iii | 0.86 | 2.22 | 2.843 (4) | 129.8 |
C2—H2C···O7iv | 0.93 | 2.46 | 3.280 (4) | 147.3 |
C3—H3···O6iv | 0.93 | 2.34 | 3.208 (4) | 154.9 |
C8—H8···O9v | 0.93 | 2.52 | 3.097 (4) | 120.1 |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, z−1/2; (iii) x, y−1, z; (iv) x, y−1, z+1; (v) −x+1/2, y, z−1/2. |
References
Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem. pp. 1385–1389. Google Scholar
Akriche, S. & Rzaigui, M. (2000). Z. Kristallogr. New Cryst. Struct. 215, 617–618. CAS Google Scholar
Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Akriche, S. & Rzaigui, M. (2009a). Acta Cryst. E65, m123. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akriche, S. & Rzaigui, M. (2009b). Acta Cryst. E65, o1648. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akriche, S. & Rzaigui, M. (2009c). Acta Cryst. E65, o793. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brodski, V., Peschar, R., Schenk, H., Brinkmann, A., Van Eck, E. R. H., Kentgens, A. P. M., Coussens, B. & Braam, A. (2004). J. Phys. Chem. B, 108, 15069–15076. Web of Science CSD CrossRef CAS Google Scholar
Charfi, M. & Jouini, A. (2005). Cryst. Res. Technol. 40, 615–621. Web of Science CSD CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Mrad, M. L., Nasr, C. B., Rzaigui, M. & Lefebvre, F. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 1625–1635. Web of Science CSD CrossRef CAS Google Scholar
Nicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem. 7, 35–39. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soumhi, E. H., Saadoune, I., Driss, A. & Jouini, T. (1998). Eur. J. Solid State Inorg. Chem. 35, 699—706. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the framework of our systematic research using the 2-amino-3-nitropyridine (2 A3NP) molecule, we report here the new non-centrosymetric compound, 2(C5H6N3O2)+, H2P2O72- (I) obtained by the interaction of the 2 A3NP molecule and diphosphoric acid.
The asymmetric unit of the title compound is built up from one anion H2P2O72- and two (C5H6N3O2)+ cations as shown in Fig. 1.
The dihydrogendiphosphate anions are connected through strong hydrogen bonds characterized by relatively short distances (with distances O2···O5 = 2.549 (3) Å and O7···O1 = 2.537 (3) Å (Table 1)), to form corrugated layers parallel to bc plane at x = 0 and x= 1/2 (Fig. 2). Two crystallographically independent cations coexist in this structure. They are arranged in pairs and anchored onto both adjacent anionic layers via N—H···O and C—H···O hydrogen bonds to keep up the three-dimensionel network cohesion.
As expected, the H2P2O72- group with bent configuration shows its standard geometry, the longest bonds length P2–O4 = 1.592 (2) Å and P1–O4 = 1.613 (2) Å, correspond to the bridging oxygen atom, the intermediate ones, P1–O2 = 1.552 (2) Å and P2–O7 = 1.545 (2) Å, correspond to the P–OH bonding and the shortest ones spreading between 1.481 (2) Å and 1.515 (2) Å, correspond to the external oxygen atoms. The average values of the P–O distances and O–P–O angles are 1.536 Å and 109.3°. The P–P distance is 2.898 (1) Å and the P–O–P angle is close to 129.4 (1) °. All these distances and angles are similar to those commonly observed in others diphosphate anions (Akriche & Rzaigui, 2005; Charfi & Jouini, 2005; Brodski, et al., 2004; Mrad, et al., 2006). Despite the limited number of organic cation diphosphates (about twenty seven related structures of diphosphate anions), we can distinguish only one non-centrosymmetric structure (Soumhi, et al., 1998) such as the title compound (I).
In this atomic arrangement, one can distinguish the inter-cation contact C8—H8···O9 (H8···O9 = 2.52 Å) which induces the aggregation of the two independent organic cations in pairs (2 A3NP+)2. This kind of arrangement is also observed in the related structure of 2-amino-3-nitropyridinium hydrogenselenate (Akriche & Rzaigui, 2009b). These pairs are located between the anionic layers to link them by manifesting different interactions (Fig. 2). The geometric features of organic cations are usual and comparable with values of other 2-amino-3-nitropyridinium compounds (Akriche & Rzaigui, 2000; Nicoud et al.,1997; Akriche & Rzaigui, 2009a, 2009b, 2009c). It is worth noticing, the C—NH2 (1.316 (4) Å) and C—NO2 (1.440 (4) and 1.454 (5) Å) distances in the 2 A3NP cations are respectively shortened and lengthened with respect to the C—NH2 (1.337 (4) Å) and C—NO2 (1.429 (4) Å) observed in the 2-amino-3-nitropyridine molecular crystal (Aakeröy, et al., 1998). All the 2-amino-3-nitropyridinium cations encapsulated in various anionic subnetworks show the same changes in C—NH2 and C—NO2 distances, revealing a weak increase of pi bond character in C—NH2 and a decrease in C—NO2.