organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,6-Di­chloro­benzo­yl)-3-(3-nitro­phen­yl)thio­urea di­methyl­formamide solvate

aDepartment of Chemistry, Changzhi University, Shanxi, People's Republic of China, and bInstitute of Applied Chemistry, Shanxi University, Shanxi, People's Republic of China
*Correspondence e-mail: limin0081.student@sina.com

(Received 1 December 2009; accepted 22 December 2009; online 9 January 2010)

In the title compound, C14H9Cl2N3O3S·C3H7NO, the two aromatic rings enclose a dihedral angle of 32.93 (12)°. The thiourea mol­ecule exists in its thione form in the solid state with typical C=S and C—N bond lengths. In the crystal, N—H⋯O hydrogen bonds exist between the thio­urea and carbonyl groups on the same and neighboring mol­ecules. In addition, each dimethyl­formamide solvate mol­ecule forms a hydrogen bond to one N atom of the thio­urea group.

Related literature

For general background to the use of thio­urea and urea derivatives in the development of agrochemicals and pharmacological agents, see: Darlington et al. (1996[Darlington, A., Vishnevetskia, K. & Blake, T. T. (1996). Physiol. Plant. 97, 217-222.]); Dowding & Leeds (1971[Dowding, J. & Leeds, W. G. (1971). Ger. Patent No. 2 040 580.]); Sasse et al. (1969[Sasse, K., Barden, R., Eue, L. & Hack, H. (1969). S. Afr. Patent No. 900 256.]). For bond lengths in other other substituted thio­ureas, see: Khawar Rauf et al. (2006a[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859-o1860.],b[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221-o2222.],c[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444-o2445.], 2007[Khawar Rauf, M., Badshah, A., Bolte, M. & Ahmad, I. (2007). Acta Cryst. E63, o1073-o1075.], 2009[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009). Acta Cryst. E65, o142.]). For previously reported C=S distances, see: Bailey et al. (1997[Bailey, P. J., Grant, K. J. & Parsons, S. (1997). Acta Cryst. C53, 247-248.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl2N3O3S·C3H7NO

  • Mr = 443.30

  • Triclinic, [P \overline 1]

  • a = 8.507 (5) Å

  • b = 10.240 (5) Å

  • c = 12.414 (8) Å

  • α = 70.40 (4)°

  • β = 81.74 (5)°

  • γ = 87.98 (4)°

  • V = 1008 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.914

  • 4551 measured reflections

  • 3413 independent reflections

  • 2691 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.139

  • S = 1.11

  • 3413 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.47 3.182 (3) 141
N2—H2⋯O1 0.86 1.99 2.675 (3) 136
N1—H1⋯O4ii 0.86 1.96 2.787 (3) 161
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Earlier studies have shown that thiourea and urea derivatives have played an important role in developing agrochemicals and pharmacological agents (Dowding & Leeds, 1971; Sasse et al., 1969; Darlington et al., 1996). As part of our interest in N,N'-disubstituted thioureas, we now report the crystal structure of the title compound (I).

The N—C bonds in (I), see Fig. 1, differ significantly from one another but are short in comparison with the typical value for an N—C single bond (1.479 Å). Owing to the introduction of the C=O electron-acceptor group the adjacent C-S bond length [1.652 (2)Å ] is shorter than previously reported C=S distances (1.710 (7)Å) (Bailey, et al., 1997). These distances are similar to those usually found in other substituted thioureas (Khawar Rauf et al., 2006a, 2006b, 2006c, 2007, 2009). The dihedral angle between the aromatic rings is 32.93 (12)°, and the corresponding angles with the thiourea plane are 83.52 (7)° for the C2–C7 ring and 50.61 (7)° for the C9–C14 ring.The thiocarbonyl and carbonyl groups are almost coplanar.

Inter- and intramolecular N—H···O hydrogen bonds exist between the thiourea N—H-atoms and carbonyl-O atoms. In addition, each dimethylformamide solvate molecule also has a hydrogen bond to the N of the thiourea groups (2.787 (3) Å: Table 1, Fig. 2).

Related literature top

For general background to the use of thiourea and urea derivatives in the development of agrochemicals and pharmacological agents, see: Darlington et al. (1996); Dowding & Leeds (1971); Sasse et al. (1969). For bond lengths in other other substituted thioureas, see: Khawar Rauf et al. (2006a,b,c, 2007, 2009). For previously reported CS distances, see: Bailey et al. (1997).

Experimental top

Freshly prepared 2,6-dichlorobenzoylisothiocyanate (2.32 g, 10 mmol) was added to dimethylformamide (30 ml) and stirred for 2 minutes. Afterwards neat 3-nitroaniline (1.38 g, 10 mmol) was added and the resulting mixture was stirred for 1 h.The reaction mixture was then poured into an ice-water mixture and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/CH2Cl2 (1:1 v/v) to give fine crystals of the title compound (I), with an overall yield of 85%.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.96– 0.98 Å, and refined as riding, allowing for free rotation of the methyl groups. The Uiso(H) values were set at 1.5Ueq(C).

Structure description top

Earlier studies have shown that thiourea and urea derivatives have played an important role in developing agrochemicals and pharmacological agents (Dowding & Leeds, 1971; Sasse et al., 1969; Darlington et al., 1996). As part of our interest in N,N'-disubstituted thioureas, we now report the crystal structure of the title compound (I).

The N—C bonds in (I), see Fig. 1, differ significantly from one another but are short in comparison with the typical value for an N—C single bond (1.479 Å). Owing to the introduction of the C=O electron-acceptor group the adjacent C-S bond length [1.652 (2)Å ] is shorter than previously reported C=S distances (1.710 (7)Å) (Bailey, et al., 1997). These distances are similar to those usually found in other substituted thioureas (Khawar Rauf et al., 2006a, 2006b, 2006c, 2007, 2009). The dihedral angle between the aromatic rings is 32.93 (12)°, and the corresponding angles with the thiourea plane are 83.52 (7)° for the C2–C7 ring and 50.61 (7)° for the C9–C14 ring.The thiocarbonyl and carbonyl groups are almost coplanar.

Inter- and intramolecular N—H···O hydrogen bonds exist between the thiourea N—H-atoms and carbonyl-O atoms. In addition, each dimethylformamide solvate molecule also has a hydrogen bond to the N of the thiourea groups (2.787 (3) Å: Table 1, Fig. 2).

For general background to the use of thiourea and urea derivatives in the development of agrochemicals and pharmacological agents, see: Darlington et al. (1996); Dowding & Leeds (1971); Sasse et al. (1969). For bond lengths in other other substituted thioureas, see: Khawar Rauf et al. (2006a,b,c, 2007, 2009). For previously reported CS distances, see: Bailey et al. (1997).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of a molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Partial packing view of (I). Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
1-(2,6-Dichlorobenzoyl)-3-(3-nitrophenyl)thiourea dimethylformamide solvate top
Crystal data top
C14H9Cl2N3O3S·C3H7NOZ = 2
Mr = 443.30F(000) = 456
Triclinic, P1Dx = 1.460 Mg m3
a = 8.507 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.240 (5) ÅCell parameters from 1797 reflections
c = 12.414 (8) Åθ = 2.4–25.9°
α = 70.40 (4)°µ = 0.46 mm1
β = 81.74 (5)°T = 293 K
γ = 87.98 (4)°Block, yellow
V = 1008 (1) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3413 independent reflections
Radiation source: fine-focus sealed tube2691 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 109
Tmin = 0.875, Tmax = 0.914k = 1212
4551 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.0267P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3413 reflectionsΔρmax = 0.30 e Å3
256 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.082 (8)
Crystal data top
C14H9Cl2N3O3S·C3H7NOγ = 87.98 (4)°
Mr = 443.30V = 1008 (1) Å3
Triclinic, P1Z = 2
a = 8.507 (5) ÅMo Kα radiation
b = 10.240 (5) ŵ = 0.46 mm1
c = 12.414 (8) ÅT = 293 K
α = 70.40 (4)°0.30 × 0.20 × 0.20 mm
β = 81.74 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3413 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2691 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.914Rint = 0.021
4551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.11Δρmax = 0.30 e Å3
3413 reflectionsΔρmin = 0.42 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05945 (7)0.84634 (6)0.96546 (5)0.0570 (3)
Cl10.47677 (12)0.70890 (8)0.61611 (6)0.0911 (3)
Cl20.67130 (10)0.96356 (8)0.88967 (7)0.0831 (3)
N10.3397 (2)0.80330 (17)0.86720 (15)0.0445 (4)
H10.32260.88320.81870.053*
N20.2412 (2)0.62210 (17)1.03144 (15)0.0481 (5)
H20.32720.58111.01610.058*
N30.0870 (3)0.6004 (2)1.39465 (16)0.0594 (5)
O10.52143 (19)0.63011 (15)0.90012 (14)0.0577 (5)
O20.0391 (3)0.7149 (2)1.38288 (17)0.0829 (6)
O30.1862 (2)0.5355 (2)1.47485 (16)0.0832 (6)
C10.4823 (2)0.7462 (2)0.84468 (18)0.0433 (5)
C20.5907 (3)0.8398 (2)0.74414 (18)0.0466 (5)
C30.6004 (3)0.8284 (2)0.6353 (2)0.0588 (6)
C40.7002 (4)0.9109 (3)0.5417 (2)0.0786 (9)
H40.70320.90250.46920.094*
C50.7950 (4)1.0058 (3)0.5583 (3)0.0857 (10)
H50.86471.06090.49620.103*
C60.7900 (3)1.0218 (3)0.6639 (3)0.0788 (9)
H60.85531.08680.67340.095*
C70.6859 (3)0.9394 (2)0.7564 (2)0.0569 (6)
C80.2176 (3)0.7497 (2)0.95824 (18)0.0426 (5)
C90.1355 (2)0.5494 (2)1.13216 (18)0.0444 (5)
C100.0778 (3)0.6112 (2)1.21291 (18)0.0477 (5)
H100.10480.70241.20210.057*
C110.0212 (3)0.5334 (2)1.31033 (18)0.0496 (5)
C120.0602 (3)0.3960 (2)1.3312 (2)0.0579 (6)
H120.12520.34521.39810.070*
C130.0003 (3)0.3373 (2)1.2498 (2)0.0624 (7)
H130.02410.24521.26170.075*
C140.0970 (3)0.4129 (2)1.1505 (2)0.0536 (6)
H140.13640.37181.09580.064*
N40.6148 (2)0.7230 (2)0.23093 (16)0.0561 (5)
O40.6593 (2)0.91813 (16)0.26969 (14)0.0645 (5)
C160.6896 (3)0.8409 (2)0.2126 (2)0.0549 (6)
H160.77200.86750.15140.066*
C170.6543 (4)0.6418 (3)0.1547 (2)0.0737 (8)
H17A0.74180.68520.09690.110*
H17B0.56390.63650.11810.110*
H17C0.68340.55000.19890.110*
C180.4832 (4)0.6777 (3)0.3233 (3)0.0856 (9)
H18A0.45170.75230.35190.128*
H18B0.51510.60030.38470.128*
H18C0.39540.65030.29460.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0485 (4)0.0507 (4)0.0612 (4)0.0082 (3)0.0081 (3)0.0122 (3)
Cl10.1307 (8)0.0806 (5)0.0656 (5)0.0230 (5)0.0006 (4)0.0318 (4)
Cl20.0883 (6)0.0810 (5)0.0918 (6)0.0026 (4)0.0312 (4)0.0362 (4)
N10.0443 (10)0.0372 (8)0.0438 (10)0.0025 (7)0.0030 (8)0.0068 (7)
N20.0432 (10)0.0420 (9)0.0505 (11)0.0018 (8)0.0079 (8)0.0104 (8)
N30.0614 (13)0.0695 (14)0.0425 (11)0.0034 (11)0.0032 (10)0.0143 (10)
O10.0545 (9)0.0450 (8)0.0562 (9)0.0103 (7)0.0075 (7)0.0012 (7)
O20.1064 (16)0.0775 (13)0.0678 (12)0.0047 (12)0.0060 (11)0.0351 (10)
O30.0753 (13)0.1017 (15)0.0586 (11)0.0029 (11)0.0196 (10)0.0198 (11)
C10.0445 (12)0.0407 (11)0.0425 (11)0.0002 (9)0.0002 (9)0.0132 (9)
C20.0427 (11)0.0406 (11)0.0476 (12)0.0038 (9)0.0040 (9)0.0078 (9)
C30.0645 (15)0.0500 (13)0.0525 (14)0.0020 (11)0.0107 (11)0.0128 (11)
C40.090 (2)0.0636 (16)0.0582 (16)0.0079 (16)0.0252 (15)0.0043 (13)
C50.073 (2)0.0604 (17)0.089 (2)0.0000 (15)0.0355 (17)0.0011 (16)
C60.0540 (16)0.0512 (14)0.113 (3)0.0089 (12)0.0091 (16)0.0105 (15)
C70.0453 (13)0.0490 (12)0.0693 (16)0.0002 (10)0.0003 (11)0.0136 (11)
C80.0456 (12)0.0386 (10)0.0419 (11)0.0041 (9)0.0010 (9)0.0139 (9)
C90.0387 (11)0.0455 (11)0.0425 (11)0.0026 (9)0.0003 (9)0.0082 (9)
C100.0470 (12)0.0460 (11)0.0469 (12)0.0045 (9)0.0015 (10)0.0126 (10)
C110.0458 (12)0.0577 (13)0.0407 (12)0.0010 (10)0.0015 (10)0.0119 (10)
C120.0570 (14)0.0557 (13)0.0482 (13)0.0066 (11)0.0026 (11)0.0036 (11)
C130.0654 (16)0.0449 (12)0.0651 (15)0.0113 (11)0.0052 (13)0.0076 (11)
C140.0552 (14)0.0456 (12)0.0558 (14)0.0004 (10)0.0015 (11)0.0153 (10)
N40.0623 (12)0.0489 (11)0.0509 (11)0.0033 (9)0.0015 (9)0.0110 (9)
O40.0862 (13)0.0446 (8)0.0560 (10)0.0051 (8)0.0006 (9)0.0123 (8)
C160.0620 (15)0.0470 (12)0.0465 (13)0.0028 (11)0.0039 (11)0.0052 (10)
C170.094 (2)0.0662 (16)0.0650 (17)0.0082 (15)0.0123 (15)0.0254 (13)
C180.077 (2)0.0725 (18)0.096 (2)0.0153 (15)0.0155 (17)0.0218 (16)
Geometric parameters (Å, º) top
S1—C81.652 (2)C6—H60.9300
Cl1—C31.738 (3)C9—C101.381 (3)
Cl2—C71.740 (3)C9—C141.383 (3)
N1—C11.362 (3)C10—C111.384 (3)
N1—C81.394 (3)C10—H100.9300
N1—H10.8600C11—C121.386 (3)
N2—C81.345 (3)C12—C131.373 (4)
N2—C91.423 (3)C12—H120.9300
N2—H20.8600C13—C141.382 (3)
N3—O21.210 (3)C13—H130.9300
N3—O31.225 (3)C14—H140.9300
N3—C111.472 (3)N4—C161.319 (3)
O1—C11.219 (3)N4—C181.448 (4)
C1—C21.502 (3)N4—C171.455 (3)
C2—C71.384 (3)O4—C161.226 (3)
C2—C31.385 (3)C16—H160.9300
C3—C41.376 (4)C17—H17A0.9600
C4—C51.369 (5)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.368 (5)C18—H18A0.9600
C5—H50.9300C18—H18B0.9600
C6—C71.387 (4)C18—H18C0.9600
C1—N1—C8128.75 (17)C14—C9—N2118.5 (2)
C1—N1—H1115.6C9—C10—C11118.0 (2)
C8—N1—H1115.6C9—C10—H10121.0
C8—N2—C9125.37 (18)C11—C10—H10121.0
C8—N2—H2117.3C10—C11—C12122.7 (2)
C9—N2—H2117.3C10—C11—N3118.1 (2)
O2—N3—O3123.3 (2)C12—C11—N3119.2 (2)
O2—N3—C11118.9 (2)C13—C12—C11117.8 (2)
O3—N3—C11117.8 (2)C13—C12—H12121.1
O1—C1—N1124.13 (19)C11—C12—H12121.1
O1—C1—C2121.96 (19)C12—C13—C14121.0 (2)
N1—C1—C2113.91 (18)C12—C13—H13119.5
C7—C2—C3117.4 (2)C14—C13—H13119.5
C7—C2—C1121.7 (2)C13—C14—C9120.1 (2)
C3—C2—C1121.0 (2)C13—C14—H14119.9
C4—C3—C2122.5 (3)C9—C14—H14119.9
C4—C3—Cl1119.1 (2)C16—N4—C18119.9 (2)
C2—C3—Cl1118.37 (18)C16—N4—C17121.3 (2)
C5—C4—C3118.2 (3)C18—N4—C17118.7 (2)
C5—C4—H4120.9O4—C16—N4125.3 (2)
C3—C4—H4120.9O4—C16—H16117.3
C6—C5—C4121.8 (3)N4—C16—H16117.3
C6—C5—H5119.1N4—C17—H17A109.5
C4—C5—H5119.1N4—C17—H17B109.5
C5—C6—C7119.0 (3)H17A—C17—H17B109.5
C5—C6—H6120.5N4—C17—H17C109.5
C7—C6—H6120.5H17A—C17—H17C109.5
C2—C7—C6121.2 (3)H17B—C17—H17C109.5
C2—C7—Cl2119.17 (18)N4—C18—H18A109.5
C6—C7—Cl2119.6 (2)N4—C18—H18B109.5
N2—C8—N1115.74 (18)H18A—C18—H18B109.5
N2—C8—S1126.52 (17)N4—C18—H18C109.5
N1—C8—S1117.74 (15)H18A—C18—H18C109.5
C10—C9—C14120.3 (2)H18B—C18—H18C109.5
C10—C9—N2121.05 (19)
C8—N1—C1—O14.9 (4)C9—N2—C8—S12.9 (3)
C8—N1—C1—C2174.8 (2)C1—N1—C8—N22.8 (3)
O1—C1—C2—C796.1 (3)C1—N1—C8—S1177.82 (18)
N1—C1—C2—C783.7 (3)C8—N2—C9—C1050.6 (3)
O1—C1—C2—C383.2 (3)C8—N2—C9—C14132.3 (2)
N1—C1—C2—C397.1 (2)C14—C9—C10—C111.3 (3)
C7—C2—C3—C40.3 (3)N2—C9—C10—C11178.34 (19)
C1—C2—C3—C4178.9 (2)C9—C10—C11—C122.0 (3)
C7—C2—C3—Cl1177.59 (18)C9—C10—C11—N3178.0 (2)
C1—C2—C3—Cl13.2 (3)O2—N3—C11—C108.1 (3)
C2—C3—C4—C51.2 (4)O3—N3—C11—C10173.1 (2)
Cl1—C3—C4—C5179.1 (2)O2—N3—C11—C12171.9 (2)
C3—C4—C5—C61.4 (4)O3—N3—C11—C126.9 (3)
C4—C5—C6—C70.0 (4)C10—C11—C12—C131.4 (4)
C3—C2—C7—C61.7 (3)N3—C11—C12—C13178.7 (2)
C1—C2—C7—C6177.5 (2)C11—C12—C13—C140.1 (4)
C3—C2—C7—Cl2176.95 (17)C12—C13—C14—C90.6 (4)
C1—C2—C7—Cl23.8 (3)C10—C9—C14—C130.1 (4)
C5—C6—C7—C21.6 (4)N2—C9—C14—C13177.2 (2)
C5—C6—C7—Cl2177.1 (2)C18—N4—C16—O41.4 (4)
C9—N2—C8—N1177.71 (19)C17—N4—C16—O4176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.473.182 (3)141
N2—H2···O10.861.992.675 (3)136
N1—H1···O4ii0.861.962.787 (3)161
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H9Cl2N3O3S·C3H7NO
Mr443.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.507 (5), 10.240 (5), 12.414 (8)
α, β, γ (°)70.40 (4), 81.74 (5), 87.98 (4)
V3)1008 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.875, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
4551, 3413, 2691
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.139, 1.11
No. of reflections3413
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.42

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
S1—C81.652 (2)N2—C81.345 (3)
N1—C81.394 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.473.182 (3)140.7
N2—H2···O10.861.992.675 (3)136.3
N1—H1···O4ii0.861.962.787 (3)161.1
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+1.
 

References

First citationBailey, P. J., Grant, K. J. & Parsons, S. (1997). Acta Cryst. C53, 247–248.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDarlington, A., Vishnevetskia, K. & Blake, T. T. (1996). Physiol. Plant. 97, 217–222.  CrossRef CAS Web of Science Google Scholar
First citationDowding, J. & Leeds, W. G. (1971). Ger. Patent No. 2 040 580.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859–o1860.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221–o2222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444–o2445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009). Acta Cryst. E65, o142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A., Bolte, M. & Ahmad, I. (2007). Acta Cryst. E63, o1073–o1075.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSasse, K., Barden, R., Eue, L. & Hack, H. (1969). S. Afr. Patent No. 900 256.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds