organic compounds
1-(2,6-Dichlorobenzoyl)-3-(3-nitrophenyl)thiourea dimethylformamide solvate
aDepartment of Chemistry, Changzhi University, Shanxi, People's Republic of China, and bInstitute of Applied Chemistry, Shanxi University, Shanxi, People's Republic of China
*Correspondence e-mail: limin0081.student@sina.com
In the title compound, C14H9Cl2N3O3S·C3H7NO, the two aromatic rings enclose a dihedral angle of 32.93 (12)°. The thiourea molecule exists in its thione form in the solid state with typical C=S and C—N bond lengths. In the crystal, N—H⋯O hydrogen bonds exist between the thiourea and carbonyl groups on the same and neighboring molecules. In addition, each dimethylformamide solvate molecule forms a hydrogen bond to one N atom of the thiourea group.
Related literature
For general background to the use of thiourea and urea derivatives in the development of agrochemicals and pharmacological agents, see: Darlington et al. (1996); Dowding & Leeds (1971); Sasse et al. (1969). For bond lengths in other other substituted thioureas, see: Khawar Rauf et al. (2006a,b,c, 2007, 2009). For previously reported C=S distances, see: Bailey et al. (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536809055056/ez2196sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809055056/ez2196Isup2.hkl
Freshly prepared 2,6-dichlorobenzoylisothiocyanate (2.32 g, 10 mmol) was added to dimethylformamide (30 ml) and stirred for 2 minutes. Afterwards neat 3-nitroaniline (1.38 g, 10 mmol) was added and the resulting mixture was stirred for 1 h.The reaction mixture was then poured into an ice-water mixture and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/CH2Cl2 (1:1 v/v) to give fine crystals of the title compound (I), with an overall yield of 85%.
All H atoms were positioned geometrically, with C—H = 0.96– 0.98 Å, and refined as riding, allowing for
of the methyl groups. The Uiso(H) values were set at 1.5Ueq(C).Earlier studies have shown that thiourea and urea derivatives have played an important role in developing agrochemicals and pharmacological agents (Dowding & Leeds, 1971; Sasse et al., 1969; Darlington et al., 1996). As part of our interest in N,N'-disubstituted thioureas, we now report the
of the title compound (I).The N—C bonds in (I), see Fig. 1, differ significantly from one another but are short in comparison with the typical value for an N—C single bond (1.479 Å). Owing to the introduction of the C=O electron-acceptor group the adjacent C-S bond length [1.652 (2)Å ] is shorter than previously reported C=S distances (1.710 (7)Å) (Bailey, et al., 1997). These distances are similar to those usually found in other substituted thioureas (Khawar Rauf et al., 2006a, 2006b, 2006c, 2007, 2009). The dihedral angle between the aromatic rings is 32.93 (12)°, and the corresponding angles with the thiourea plane are 83.52 (7)° for the C2–C7 ring and 50.61 (7)° for the C9–C14 ring.The thiocarbonyl and carbonyl groups are almost coplanar.
Inter- and intramolecular N—H···O hydrogen bonds exist between the thiourea N—H-atoms and carbonyl-O atoms. In addition, each dimethylformamide solvate molecule also has a hydrogen bond to the N of the thiourea groups (2.787 (3) Å: Table 1, Fig. 2).
For general background to the use of thiourea and urea derivatives in the development of agrochemicals and pharmacological agents, see: Darlington et al. (1996); Dowding & Leeds (1971); Sasse et al. (1969). For bond lengths in other other substituted thioureas, see: Khawar Rauf et al. (2006a,b,c, 2007, 2009). For previously reported C═S distances, see: Bailey et al. (1997).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C14H9Cl2N3O3S·C3H7NO | Z = 2 |
Mr = 443.30 | F(000) = 456 |
Triclinic, P1 | Dx = 1.460 Mg m−3 |
a = 8.507 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.240 (5) Å | Cell parameters from 1797 reflections |
c = 12.414 (8) Å | θ = 2.4–25.9° |
α = 70.40 (4)° | µ = 0.46 mm−1 |
β = 81.74 (5)° | T = 293 K |
γ = 87.98 (4)° | Block, yellow |
V = 1008 (1) Å3 | 0.30 × 0.20 × 0.20 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3413 independent reflections |
Radiation source: fine-focus sealed tube | 2691 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
phi and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −10→9 |
Tmin = 0.875, Tmax = 0.914 | k = −12→12 |
4551 measured reflections | l = −14→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.139 | w = 1/[σ2(Fo2) + (0.0842P)2 + 0.0267P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
3413 reflections | Δρmax = 0.30 e Å−3 |
256 parameters | Δρmin = −0.42 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.082 (8) |
C14H9Cl2N3O3S·C3H7NO | γ = 87.98 (4)° |
Mr = 443.30 | V = 1008 (1) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.507 (5) Å | Mo Kα radiation |
b = 10.240 (5) Å | µ = 0.46 mm−1 |
c = 12.414 (8) Å | T = 293 K |
α = 70.40 (4)° | 0.30 × 0.20 × 0.20 mm |
β = 81.74 (5)° |
Bruker SMART APEX CCD area-detector diffractometer | 3413 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 2691 reflections with I > 2σ(I) |
Tmin = 0.875, Tmax = 0.914 | Rint = 0.021 |
4551 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.30 e Å−3 |
3413 reflections | Δρmin = −0.42 e Å−3 |
256 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.05945 (7) | 0.84634 (6) | 0.96546 (5) | 0.0570 (3) | |
Cl1 | 0.47677 (12) | 0.70890 (8) | 0.61611 (6) | 0.0911 (3) | |
Cl2 | 0.67130 (10) | 0.96356 (8) | 0.88967 (7) | 0.0831 (3) | |
N1 | 0.3397 (2) | 0.80330 (17) | 0.86720 (15) | 0.0445 (4) | |
H1 | 0.3226 | 0.8832 | 0.8187 | 0.053* | |
N2 | 0.2412 (2) | 0.62210 (17) | 1.03144 (15) | 0.0481 (5) | |
H2 | 0.3272 | 0.5811 | 1.0161 | 0.058* | |
N3 | −0.0870 (3) | 0.6004 (2) | 1.39465 (16) | 0.0594 (5) | |
O1 | 0.52143 (19) | 0.63011 (15) | 0.90012 (14) | 0.0577 (5) | |
O2 | −0.0391 (3) | 0.7149 (2) | 1.38288 (17) | 0.0829 (6) | |
O3 | −0.1862 (2) | 0.5355 (2) | 1.47485 (16) | 0.0832 (6) | |
C1 | 0.4823 (2) | 0.7462 (2) | 0.84468 (18) | 0.0433 (5) | |
C2 | 0.5907 (3) | 0.8398 (2) | 0.74414 (18) | 0.0466 (5) | |
C3 | 0.6004 (3) | 0.8284 (2) | 0.6353 (2) | 0.0588 (6) | |
C4 | 0.7002 (4) | 0.9109 (3) | 0.5417 (2) | 0.0786 (9) | |
H4 | 0.7032 | 0.9025 | 0.4692 | 0.094* | |
C5 | 0.7950 (4) | 1.0058 (3) | 0.5583 (3) | 0.0857 (10) | |
H5 | 0.8647 | 1.0609 | 0.4962 | 0.103* | |
C6 | 0.7900 (3) | 1.0218 (3) | 0.6639 (3) | 0.0788 (9) | |
H6 | 0.8553 | 1.0868 | 0.6734 | 0.095* | |
C7 | 0.6859 (3) | 0.9394 (2) | 0.7564 (2) | 0.0569 (6) | |
C8 | 0.2176 (3) | 0.7497 (2) | 0.95824 (18) | 0.0426 (5) | |
C9 | 0.1355 (2) | 0.5494 (2) | 1.13216 (18) | 0.0444 (5) | |
C10 | 0.0778 (3) | 0.6112 (2) | 1.21291 (18) | 0.0477 (5) | |
H10 | 0.1048 | 0.7024 | 1.2021 | 0.057* | |
C11 | −0.0212 (3) | 0.5334 (2) | 1.31033 (18) | 0.0496 (5) | |
C12 | −0.0602 (3) | 0.3960 (2) | 1.3312 (2) | 0.0579 (6) | |
H12 | −0.1252 | 0.3452 | 1.3981 | 0.070* | |
C13 | 0.0003 (3) | 0.3373 (2) | 1.2498 (2) | 0.0624 (7) | |
H13 | −0.0241 | 0.2452 | 1.2617 | 0.075* | |
C14 | 0.0970 (3) | 0.4129 (2) | 1.1505 (2) | 0.0536 (6) | |
H14 | 0.1364 | 0.3718 | 1.0958 | 0.064* | |
N4 | 0.6148 (2) | 0.7230 (2) | 0.23093 (16) | 0.0561 (5) | |
O4 | 0.6593 (2) | 0.91813 (16) | 0.26969 (14) | 0.0645 (5) | |
C16 | 0.6896 (3) | 0.8409 (2) | 0.2126 (2) | 0.0549 (6) | |
H16 | 0.7720 | 0.8675 | 0.1514 | 0.066* | |
C17 | 0.6543 (4) | 0.6418 (3) | 0.1547 (2) | 0.0737 (8) | |
H17A | 0.7418 | 0.6852 | 0.0969 | 0.110* | |
H17B | 0.5639 | 0.6365 | 0.1181 | 0.110* | |
H17C | 0.6834 | 0.5500 | 0.1989 | 0.110* | |
C18 | 0.4832 (4) | 0.6777 (3) | 0.3233 (3) | 0.0856 (9) | |
H18A | 0.4517 | 0.7523 | 0.3519 | 0.128* | |
H18B | 0.5151 | 0.6003 | 0.3847 | 0.128* | |
H18C | 0.3954 | 0.6503 | 0.2946 | 0.128* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0485 (4) | 0.0507 (4) | 0.0612 (4) | 0.0082 (3) | 0.0081 (3) | −0.0122 (3) |
Cl1 | 0.1307 (8) | 0.0806 (5) | 0.0656 (5) | −0.0230 (5) | −0.0006 (4) | −0.0318 (4) |
Cl2 | 0.0883 (6) | 0.0810 (5) | 0.0918 (6) | −0.0026 (4) | −0.0312 (4) | −0.0362 (4) |
N1 | 0.0443 (10) | 0.0372 (8) | 0.0438 (10) | 0.0025 (7) | 0.0030 (8) | −0.0068 (7) |
N2 | 0.0432 (10) | 0.0420 (9) | 0.0505 (11) | 0.0018 (8) | 0.0079 (8) | −0.0104 (8) |
N3 | 0.0614 (13) | 0.0695 (14) | 0.0425 (11) | 0.0034 (11) | −0.0032 (10) | −0.0143 (10) |
O1 | 0.0545 (9) | 0.0450 (8) | 0.0562 (9) | 0.0103 (7) | 0.0075 (7) | −0.0012 (7) |
O2 | 0.1064 (16) | 0.0775 (13) | 0.0678 (12) | −0.0047 (12) | 0.0060 (11) | −0.0351 (10) |
O3 | 0.0753 (13) | 0.1017 (15) | 0.0586 (11) | −0.0029 (11) | 0.0196 (10) | −0.0198 (11) |
C1 | 0.0445 (12) | 0.0407 (11) | 0.0425 (11) | 0.0002 (9) | −0.0002 (9) | −0.0132 (9) |
C2 | 0.0427 (11) | 0.0406 (11) | 0.0476 (12) | 0.0038 (9) | 0.0040 (9) | −0.0078 (9) |
C3 | 0.0645 (15) | 0.0500 (13) | 0.0525 (14) | 0.0020 (11) | 0.0107 (11) | −0.0128 (11) |
C4 | 0.090 (2) | 0.0636 (16) | 0.0582 (16) | 0.0079 (16) | 0.0252 (15) | −0.0043 (13) |
C5 | 0.073 (2) | 0.0604 (17) | 0.089 (2) | 0.0000 (15) | 0.0355 (17) | 0.0011 (16) |
C6 | 0.0540 (16) | 0.0512 (14) | 0.113 (3) | −0.0089 (12) | 0.0091 (16) | −0.0105 (15) |
C7 | 0.0453 (13) | 0.0490 (12) | 0.0693 (16) | −0.0002 (10) | −0.0003 (11) | −0.0136 (11) |
C8 | 0.0456 (12) | 0.0386 (10) | 0.0419 (11) | −0.0041 (9) | 0.0010 (9) | −0.0139 (9) |
C9 | 0.0387 (11) | 0.0455 (11) | 0.0425 (11) | −0.0026 (9) | 0.0003 (9) | −0.0082 (9) |
C10 | 0.0470 (12) | 0.0460 (11) | 0.0469 (12) | −0.0045 (9) | −0.0015 (10) | −0.0126 (10) |
C11 | 0.0458 (12) | 0.0577 (13) | 0.0407 (12) | −0.0010 (10) | −0.0015 (10) | −0.0119 (10) |
C12 | 0.0570 (14) | 0.0557 (13) | 0.0482 (13) | −0.0066 (11) | 0.0026 (11) | −0.0036 (11) |
C13 | 0.0654 (16) | 0.0449 (12) | 0.0651 (15) | −0.0113 (11) | 0.0052 (13) | −0.0076 (11) |
C14 | 0.0552 (14) | 0.0456 (12) | 0.0558 (14) | −0.0004 (10) | 0.0015 (11) | −0.0153 (10) |
N4 | 0.0623 (12) | 0.0489 (11) | 0.0509 (11) | −0.0033 (9) | −0.0015 (9) | −0.0110 (9) |
O4 | 0.0862 (13) | 0.0446 (8) | 0.0560 (10) | 0.0051 (8) | −0.0006 (9) | −0.0123 (8) |
C16 | 0.0620 (15) | 0.0470 (12) | 0.0465 (13) | 0.0028 (11) | −0.0039 (11) | −0.0052 (10) |
C17 | 0.094 (2) | 0.0662 (16) | 0.0650 (17) | −0.0082 (15) | −0.0123 (15) | −0.0254 (13) |
C18 | 0.077 (2) | 0.0725 (18) | 0.096 (2) | −0.0153 (15) | 0.0155 (17) | −0.0218 (16) |
S1—C8 | 1.652 (2) | C6—H6 | 0.9300 |
Cl1—C3 | 1.738 (3) | C9—C10 | 1.381 (3) |
Cl2—C7 | 1.740 (3) | C9—C14 | 1.383 (3) |
N1—C1 | 1.362 (3) | C10—C11 | 1.384 (3) |
N1—C8 | 1.394 (3) | C10—H10 | 0.9300 |
N1—H1 | 0.8600 | C11—C12 | 1.386 (3) |
N2—C8 | 1.345 (3) | C12—C13 | 1.373 (4) |
N2—C9 | 1.423 (3) | C12—H12 | 0.9300 |
N2—H2 | 0.8600 | C13—C14 | 1.382 (3) |
N3—O2 | 1.210 (3) | C13—H13 | 0.9300 |
N3—O3 | 1.225 (3) | C14—H14 | 0.9300 |
N3—C11 | 1.472 (3) | N4—C16 | 1.319 (3) |
O1—C1 | 1.219 (3) | N4—C18 | 1.448 (4) |
C1—C2 | 1.502 (3) | N4—C17 | 1.455 (3) |
C2—C7 | 1.384 (3) | O4—C16 | 1.226 (3) |
C2—C3 | 1.385 (3) | C16—H16 | 0.9300 |
C3—C4 | 1.376 (4) | C17—H17A | 0.9600 |
C4—C5 | 1.369 (5) | C17—H17B | 0.9600 |
C4—H4 | 0.9300 | C17—H17C | 0.9600 |
C5—C6 | 1.368 (5) | C18—H18A | 0.9600 |
C5—H5 | 0.9300 | C18—H18B | 0.9600 |
C6—C7 | 1.387 (4) | C18—H18C | 0.9600 |
C1—N1—C8 | 128.75 (17) | C14—C9—N2 | 118.5 (2) |
C1—N1—H1 | 115.6 | C9—C10—C11 | 118.0 (2) |
C8—N1—H1 | 115.6 | C9—C10—H10 | 121.0 |
C8—N2—C9 | 125.37 (18) | C11—C10—H10 | 121.0 |
C8—N2—H2 | 117.3 | C10—C11—C12 | 122.7 (2) |
C9—N2—H2 | 117.3 | C10—C11—N3 | 118.1 (2) |
O2—N3—O3 | 123.3 (2) | C12—C11—N3 | 119.2 (2) |
O2—N3—C11 | 118.9 (2) | C13—C12—C11 | 117.8 (2) |
O3—N3—C11 | 117.8 (2) | C13—C12—H12 | 121.1 |
O1—C1—N1 | 124.13 (19) | C11—C12—H12 | 121.1 |
O1—C1—C2 | 121.96 (19) | C12—C13—C14 | 121.0 (2) |
N1—C1—C2 | 113.91 (18) | C12—C13—H13 | 119.5 |
C7—C2—C3 | 117.4 (2) | C14—C13—H13 | 119.5 |
C7—C2—C1 | 121.7 (2) | C13—C14—C9 | 120.1 (2) |
C3—C2—C1 | 121.0 (2) | C13—C14—H14 | 119.9 |
C4—C3—C2 | 122.5 (3) | C9—C14—H14 | 119.9 |
C4—C3—Cl1 | 119.1 (2) | C16—N4—C18 | 119.9 (2) |
C2—C3—Cl1 | 118.37 (18) | C16—N4—C17 | 121.3 (2) |
C5—C4—C3 | 118.2 (3) | C18—N4—C17 | 118.7 (2) |
C5—C4—H4 | 120.9 | O4—C16—N4 | 125.3 (2) |
C3—C4—H4 | 120.9 | O4—C16—H16 | 117.3 |
C6—C5—C4 | 121.8 (3) | N4—C16—H16 | 117.3 |
C6—C5—H5 | 119.1 | N4—C17—H17A | 109.5 |
C4—C5—H5 | 119.1 | N4—C17—H17B | 109.5 |
C5—C6—C7 | 119.0 (3) | H17A—C17—H17B | 109.5 |
C5—C6—H6 | 120.5 | N4—C17—H17C | 109.5 |
C7—C6—H6 | 120.5 | H17A—C17—H17C | 109.5 |
C2—C7—C6 | 121.2 (3) | H17B—C17—H17C | 109.5 |
C2—C7—Cl2 | 119.17 (18) | N4—C18—H18A | 109.5 |
C6—C7—Cl2 | 119.6 (2) | N4—C18—H18B | 109.5 |
N2—C8—N1 | 115.74 (18) | H18A—C18—H18B | 109.5 |
N2—C8—S1 | 126.52 (17) | N4—C18—H18C | 109.5 |
N1—C8—S1 | 117.74 (15) | H18A—C18—H18C | 109.5 |
C10—C9—C14 | 120.3 (2) | H18B—C18—H18C | 109.5 |
C10—C9—N2 | 121.05 (19) | ||
C8—N1—C1—O1 | 4.9 (4) | C9—N2—C8—S1 | −2.9 (3) |
C8—N1—C1—C2 | −174.8 (2) | C1—N1—C8—N2 | −2.8 (3) |
O1—C1—C2—C7 | −96.1 (3) | C1—N1—C8—S1 | 177.82 (18) |
N1—C1—C2—C7 | 83.7 (3) | C8—N2—C9—C10 | −50.6 (3) |
O1—C1—C2—C3 | 83.2 (3) | C8—N2—C9—C14 | 132.3 (2) |
N1—C1—C2—C3 | −97.1 (2) | C14—C9—C10—C11 | −1.3 (3) |
C7—C2—C3—C4 | 0.3 (3) | N2—C9—C10—C11 | −178.34 (19) |
C1—C2—C3—C4 | −178.9 (2) | C9—C10—C11—C12 | 2.0 (3) |
C7—C2—C3—Cl1 | −177.59 (18) | C9—C10—C11—N3 | −178.0 (2) |
C1—C2—C3—Cl1 | 3.2 (3) | O2—N3—C11—C10 | −8.1 (3) |
C2—C3—C4—C5 | 1.2 (4) | O3—N3—C11—C10 | 173.1 (2) |
Cl1—C3—C4—C5 | 179.1 (2) | O2—N3—C11—C12 | 171.9 (2) |
C3—C4—C5—C6 | −1.4 (4) | O3—N3—C11—C12 | −6.9 (3) |
C4—C5—C6—C7 | 0.0 (4) | C10—C11—C12—C13 | −1.4 (4) |
C3—C2—C7—C6 | −1.7 (3) | N3—C11—C12—C13 | 178.7 (2) |
C1—C2—C7—C6 | 177.5 (2) | C11—C12—C13—C14 | 0.1 (4) |
C3—C2—C7—Cl2 | 176.95 (17) | C12—C13—C14—C9 | 0.6 (4) |
C1—C2—C7—Cl2 | −3.8 (3) | C10—C9—C14—C13 | 0.1 (4) |
C5—C6—C7—C2 | 1.6 (4) | N2—C9—C14—C13 | 177.2 (2) |
C5—C6—C7—Cl2 | −177.1 (2) | C18—N4—C16—O4 | 1.4 (4) |
C9—N2—C8—N1 | 177.71 (19) | C17—N4—C16—O4 | 176.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.86 | 2.47 | 3.182 (3) | 141 |
N2—H2···O1 | 0.86 | 1.99 | 2.675 (3) | 136 |
N1—H1···O4ii | 0.86 | 1.96 | 2.787 (3) | 161 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H9Cl2N3O3S·C3H7NO |
Mr | 443.30 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.507 (5), 10.240 (5), 12.414 (8) |
α, β, γ (°) | 70.40 (4), 81.74 (5), 87.98 (4) |
V (Å3) | 1008 (1) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.875, 0.914 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4551, 3413, 2691 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.139, 1.11 |
No. of reflections | 3413 |
No. of parameters | 256 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.42 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.86 | 2.47 | 3.182 (3) | 140.7 |
N2—H2···O1 | 0.86 | 1.99 | 2.675 (3) | 136.3 |
N1—H1···O4ii | 0.86 | 1.96 | 2.787 (3) | 161.1 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+2, −z+1. |
References
Bailey, P. J., Grant, K. J. & Parsons, S. (1997). Acta Cryst. C53, 247–248. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Darlington, A., Vishnevetskia, K. & Blake, T. T. (1996). Physiol. Plant. 97, 217–222. CrossRef CAS Web of Science Google Scholar
Dowding, J. & Leeds, W. G. (1971). Ger. Patent No. 2 040 580. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859–o1860. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221–o2222. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444–o2445. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Bolte, M. & Badshah, A. (2009). Acta Cryst. E65, o142. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Badshah, A., Bolte, M. & Ahmad, I. (2007). Acta Cryst. E63, o1073–o1075. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sasse, K., Barden, R., Eue, L. & Hack, H. (1969). S. Afr. Patent No. 900 256. Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Earlier studies have shown that thiourea and urea derivatives have played an important role in developing agrochemicals and pharmacological agents (Dowding & Leeds, 1971; Sasse et al., 1969; Darlington et al., 1996). As part of our interest in N,N'-disubstituted thioureas, we now report the crystal structure of the title compound (I).
The N—C bonds in (I), see Fig. 1, differ significantly from one another but are short in comparison with the typical value for an N—C single bond (1.479 Å). Owing to the introduction of the C=O electron-acceptor group the adjacent C-S bond length [1.652 (2)Å ] is shorter than previously reported C=S distances (1.710 (7)Å) (Bailey, et al., 1997). These distances are similar to those usually found in other substituted thioureas (Khawar Rauf et al., 2006a, 2006b, 2006c, 2007, 2009). The dihedral angle between the aromatic rings is 32.93 (12)°, and the corresponding angles with the thiourea plane are 83.52 (7)° for the C2–C7 ring and 50.61 (7)° for the C9–C14 ring.The thiocarbonyl and carbonyl groups are almost coplanar.
Inter- and intramolecular N—H···O hydrogen bonds exist between the thiourea N—H-atoms and carbonyl-O atoms. In addition, each dimethylformamide solvate molecule also has a hydrogen bond to the N of the thiourea groups (2.787 (3) Å: Table 1, Fig. 2).