inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of di­ammonium thio­molybdate

aInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 6 January 2010; accepted 25 January 2010; online 30 January 2010)

In contrast to the previous structure determinations of the title structure, (NH4)2[MoS4], the present determination at 173 K localized the positions of the H atoms. The title structure belongs to the β-K2SO4 family and all the ions are located on crystallographic mirror planes. The ions are held together by N—H⋯S hydrogen bonds (some of which are bifurcated), forming a three-dimensional network. One of the N atoms has nine contacts to the S atoms shorter than 4 Å, and the other has ten.

Related literature

For preparation of the title compound, see: Herzog et al. (1981[Herzog, S., Gustav, K. & Strähle, J. (1981). Handbuch der Präparativen Chemie, Vol. 3, edited by G. Brauer, pp. 1551-1552. Stuttgart: Ferdinand Enke Verlag.]). For structures of the β-K2SO4 family, see: Fábry & Pérez-Mato (1994[Fábry, J. & Pérez-Mato, J. M. (1994). Phase Trans. 499, 193-229.]). For other structure determinations of the title compound, see: Lapasset et al. (1976[Lapasset, J., Chezau, N. & Belougne, P. (1976). Acta Cryst. B32, 3087-3088.]); Schäfer et al. (1964[Schäfer, H., Schäfer, G. & Weiss, A. (1964). Z. Naturforsch. Teil B, 19, 76. ]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

Experimental

Crystal data
  • (NH4)2[MoS4]

  • Mr = 260.26

  • Orthorhombic, P n m a

  • a = 9.5867 (4) Å

  • b = 6.9451 (4) Å

  • c = 12.2005 (5) Å

  • V = 812.32 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 173 K

  • 0.25 × 0.24 × 0.11 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.569, Tmax = 0.767

  • 14872 measured reflections

  • 859 independent reflections

  • 833 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.060

  • S = 1.19

  • 859 reflections

  • 61 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 (2) 2.76 (4) 3.491 (3) 144 (6)
N1—H1B⋯S1ii 0.88 (2) 2.92 (5) 3.607 (3) 135 (5)
N1—H1B⋯S3 0.88 (2) 2.87 (3) 3.497 (3) 129 (3)
N1—H1B⋯S3iii 0.88 (2) 2.87 (3) 3.497 (3) 129 (3)
N1—H1C⋯S3iv 0.88 (2) 2.76 (3) 3.550 (3) 150 (4)
N1—H1C⋯S3iv 0.88 (2) 2.76 (3) 3.550 (3) 150 (4)
N2—H2C⋯S3v 0.88 (2) 2.65 (3) 3.405 (2) 144 (4)
N2—H2A⋯S3vi 0.88 (2) 2.76 (2) 3.481 (2) 140 (1)
N2—H2A⋯S3vii 0.88 (2) 2.76 (2) 3.481 (2) 140 (1)
N2—H2B⋯S1 0.88 (2) 2.61 (4) 3.414 (3) 153 (6)
N2—H2B⋯S2 0.88 (2) 2.70 (6) 3.250 (3) 122 (5)
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (v) -x, -y+1, -z+1; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure of the title compound, (NH4)2MoS4, previously determined using Weissenberg exposures (Schäfer et al., 1964) and using a point detector diffractometer (Lapasset et al., 1976) has been redetermined at low temperature since the two previous structure determinations did not include the positions of the H atoms.

The crystal structure belongs to the β-K2SO4 family (Fábry & Pérez-Mato, 1994). The anions and cations are held together by N—H···S hydrogen bonds forming a three-dimensional network involving all H atoms.

Related literature top

For preparation of the title compound, see: Herzog et al. (1981). For structures of the β-K2SO4 family, see: Fábry & Pérez-Mato (1994). For other structure determinations of the title compound, see: Lapasset et al. (1976); Schäfer et al. (1964). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The ammonium tetrathiomolybdate (NH4)2MoS4 was synthesized by the reaction from (NH4)6Mo7O24.4H2O with H2S in the presence of NH3 (Herzog et al., 1981) as shown by the equation:

(NH4)6Mo7O24 + 28 H2S + 8 NH3 7(NH4)2MoS4 + 24 H2O.

H2S was bubbled for 30 minutes through a solution of 4.94 g (4.0 mmol) (NH4)6Mo7O24.4H2O in 50 ml aqueous ammonia. At first the reaction solution became yellow then the colour changed from yellow towards red. The red colour indicated the end of the reaction (Herzog et al., 1981). X-ray quality crystals of (NH4)2MoS4 were grown from the reaction solution at ambient temperature. The crystals are pleochroic, changing colour from red to green according to the view angle.

Refinement top

Hydrogen atoms were located in a difference Fourier map and refined isotropically. The N—H distances were restrained to 0.878 (20) Å. The value 0.878Å has been retrieved from the structures XUDGET, TERNOT, TEJMUQ, TEJMOK, KOLKAY, KEVVEN, ICOMUI contained in the Cambridge Crystallographic Database (Version 5.31; Allen, 2002). The condition of the search in the Cambridge Crystallographic Database: The structures contained [NH4]+, K was the possibly heaviest atom in the structure, and the structures have been determined with R-factor 0.03.

Structure description top

The crystal structure of the title compound, (NH4)2MoS4, previously determined using Weissenberg exposures (Schäfer et al., 1964) and using a point detector diffractometer (Lapasset et al., 1976) has been redetermined at low temperature since the two previous structure determinations did not include the positions of the H atoms.

The crystal structure belongs to the β-K2SO4 family (Fábry & Pérez-Mato, 1994). The anions and cations are held together by N—H···S hydrogen bonds forming a three-dimensional network involving all H atoms.

For preparation of the title compound, see: Herzog et al. (1981). For structures of the β-K2SO4 family, see: Fábry & Pérez-Mato (1994). For other structure determinations of the title compound, see: Lapasset et al. (1976); Schäfer et al. (1964). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the three molecules in the asymmetric unit of the title compound, with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level and the H atoms are shown as small spheres of arbitrary radii.
diammonium thiomolybdate top
Crystal data top
(NH4)2[MoS4]F(000) = 512
Mr = 260.26Dx = 2.128 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 14093 reflections
a = 9.5867 (4) Åθ = 2.7–26.4°
b = 6.9451 (4) ŵ = 2.55 mm1
c = 12.2005 (5) ÅT = 173 K
V = 812.32 (7) Å3Plate, dark green
Z = 40.25 × 0.24 × 0.11 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
859 independent reflections
Radiation source: fine-focus sealed tube833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 25.9°, θmin = 2.7°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1111
Tmin = 0.569, Tmax = 0.767k = 88
14872 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.2462P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
859 reflectionsΔρmax = 0.51 e Å3
61 parametersΔρmin = 0.88 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0173 (13)
Crystal data top
(NH4)2[MoS4]V = 812.32 (7) Å3
Mr = 260.26Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.5867 (4) ŵ = 2.55 mm1
b = 6.9451 (4) ÅT = 173 K
c = 12.2005 (5) Å0.25 × 0.24 × 0.11 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
859 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
833 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.767Rint = 0.072
14872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0226 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.51 e Å3
859 reflectionsΔρmin = 0.88 e Å3
61 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.25414 (2)0.75000.42734 (2)0.01490 (16)
S10.03014 (7)0.75000.38769 (6)0.0229 (2)
S20.28425 (9)0.75000.60460 (7)0.0246 (2)
S30.35338 (5)0.49616 (7)0.35742 (5)0.0259 (2)
N10.6660 (3)0.75000.3880 (2)0.0257 (6)
H1A0.746 (4)0.75000.355 (5)0.072 (19)*
H1B0.590 (4)0.75000.347 (4)0.089 (19)*
H1C0.665 (5)0.850 (5)0.433 (3)0.114 (18)*
N20.0471 (3)0.75000.6609 (2)0.0223 (5)
H2A0.002 (5)0.75000.723 (3)0.09 (2)*
H2B0.003 (6)0.75000.600 (3)0.10 (2)*
H2C0.097 (5)0.644 (5)0.656 (4)0.114 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0146 (2)0.0149 (2)0.0152 (2)0.0000.00038 (8)0.000
S10.0161 (4)0.0297 (4)0.0228 (4)0.0000.0034 (3)0.000
S20.0214 (4)0.0349 (4)0.0175 (4)0.0000.0024 (3)0.000
S30.0235 (3)0.0196 (3)0.0346 (3)0.00079 (18)0.0062 (2)0.0074 (2)
N10.0235 (14)0.0268 (14)0.0267 (15)0.0000.0028 (11)0.000
N20.0219 (13)0.0258 (13)0.0193 (13)0.0000.0030 (10)0.000
Geometric parameters (Å, º) top
Mo1—S3i2.1773 (5)N1—H1B0.88 (2)
Mo1—S32.1773 (5)N1—H1C0.883 (19)
Mo1—S22.1818 (9)N2—H2A0.88 (2)
Mo1—S12.2013 (8)N2—H2B0.88 (2)
N1—H1A0.86 (2)N2—H2C0.879 (19)
S3i—Mo1—S3108.13 (3)H1A—N1—H1B118 (6)
S3i—Mo1—S2109.30 (2)H1A—N1—H1C107 (4)
S3—Mo1—S2109.30 (2)H1B—N1—H1C110 (3)
S3i—Mo1—S1109.885 (19)H2A—N2—H2B117 (5)
S3—Mo1—S1109.885 (19)H2A—N2—H2C109 (3)
S2—Mo1—S1110.30 (3)H2B—N2—H2C103 (3)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1ii0.86 (2)2.76 (4)3.491 (3)144 (6)
N1—H1B···S1iii0.88 (2)2.92 (5)3.607 (3)135 (5)
N1—H1B···S30.88 (2)2.87 (3)3.497 (3)129 (3)
N1—H1B···S3i0.88 (2)2.87 (3)3.497 (3)129 (3)
N1—H1C···S3iv0.88 (2)2.76 (3)3.550 (3)150 (4)
N1—H1C···S3iv0.88 (2)2.76 (3)3.550 (3)150 (4)
N2—H2C···S3v0.88 (2)2.65 (3)3.405 (2)144 (4)
N2—H2A···S3vi0.88 (2)2.76 (2)3.481 (2)140 (1)
N2—H2A···S3vii0.88 (2)2.76 (2)3.481 (2)140 (1)
N2—H2B···S10.88 (2)2.61 (4)3.414 (3)153 (6)
N2—H2B···S20.88 (2)2.70 (6)3.250 (3)122 (5)
Symmetry codes: (i) x, y+3/2, z; (ii) x+1, y, z; (iii) x+1/2, y, z+1/2; (iv) x+1, y+1/2, z+1; (v) x, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula(NH4)2[MoS4]
Mr260.26
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)173
a, b, c (Å)9.5867 (4), 6.9451 (4), 12.2005 (5)
V3)812.32 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.25 × 0.24 × 0.11
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.569, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
14872, 859, 833
Rint0.072
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.060, 1.19
No. of reflections859
No. of parameters61
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.88

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.86 (2)2.76 (4)3.491 (3)144 (6)
N1—H1B···S1ii0.88 (2)2.92 (5)3.607 (3)135 (5)
N1—H1B···S30.88 (2)2.87 (3)3.497 (3)129 (3)
N1—H1B···S3iii0.88 (2)2.87 (3)3.497 (3)129 (3)
N1—H1C···S3iv0.883 (19)2.76 (3)3.550 (3)150 (4)
N1—H1C···S3iv0.883 (19)2.76 (3)3.550 (3)150 (4)
N2—H2C···S3v0.879 (19)2.65 (3)3.405 (2)144 (4)
N2—H2A···S3vi0.88 (2)2.762 (17)3.481 (2)140.3 (12)
N2—H2A···S3vii0.88 (2)2.762 (17)3.481 (2)140.3 (12)
N2—H2B···S10.88 (2)2.61 (4)3.414 (3)153 (6)
N2—H2B···S20.88 (2)2.70 (6)3.250 (3)122 (5)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y, z+1/2; (iii) x, y+3/2, z; (iv) x+1, y+1/2, z+1; (v) x, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1, z+1/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFábry, J. & Pérez-Mato, J. M. (1994). Phase Trans. 499, 193–229.  Google Scholar
First citationHerzog, S., Gustav, K. & Strähle, J. (1981). Handbuch der Präparativen Chemie, Vol. 3, edited by G. Brauer, pp. 1551–1552. Stuttgart: Ferdinand Enke Verlag.  Google Scholar
First citationLapasset, J., Chezau, N. & Belougne, P. (1976). Acta Cryst. B32, 3087–3088.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchäfer, H., Schäfer, G. & Weiss, A. (1964). Z. Naturforsch. Teil B, 19, 76.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds