metal-organic compounds
Methanoldioxido{1-[(2RS)-(2-oxidopropyl)iminomethyl]-2-naphtholato}molybdenium(VI)
aChemistry Department, Shahid Bahonar University of Kerman, Kerman, Iran, bShahid Bahonar University of Kerman, Kerman, Iran, and cBirjand University, Birjand, Iran
*Correspondence e-mail: i_shoaie@yahoo.com
Crystals of the title compound, [Mo(C14H13NO2)O2(CH4O)], were obtained by recrystallization from methanol. The MoVI atom is coordinated by two oxide O atoms and by two O atoms and one N atom of the tridentate 1-[(2-oxidopropyl)iminomethyl]-2-naphtholate Schiff base ligand. The coordination sphere is completed by the O atom of a methanol molecule, yielding a distorted octahedron. O—H⋯O hydrogen bonding yields centrosymmetric dimers.
Related literature
For related structures with O= MoVI=O units and for the synthesis, see: Arnaiz et al. (2000); Holm et al. (1996); Syamal & Maurya (1989). For the prperties of related compounds, see: Arnold et al. (2001); Bagherzadeh et al. (2009); Bruno et al. (2006); Holm (1987); Maurya et al. (1997); Schurig & Betschinger (1992); Sheikhshoaie et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S160053681000262X/fi2095sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681000262X/fi2095Isup2.hkl
To a solution of 0.229 mg (1 mmol) of tridentate Schiff base ligand 1-((E)-(2-hydroxypropylimino)methyl)naphthalen-2-ol) in 15 ml dry methanol was added a solution of 0.327 mg (1 mmol) of MoO2(acac)2 in 10 ml dry methanol, and refluxed for an additional 2 h. {[(1-amino-2-hydroxypropane)nitilomethylidyne-(2-naphthalato)]-dioxidomolybdenum(VI)(Methanol)} was obtained as a yellow microcrystalline precipitate. The precipitate was filtered off, washed with 5 ml absolute ethanol. Small yellow crystals formed upon recrystallisation from methanol.
The hydrogen atoms of OH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model, the Uiso(H) parameters were fixed to 1.2 Ueq(Ci), for methyl groups to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded
Transition metal
containing Schiff base ligands have been in the focus of scientific interest for many years. These compounds are involved in oxygen transfer chemistry in both biological and industrial processes (Maurya et al., 1997), effective catalysts for epoxidation (Bagherzadeh et al., 2009; Holm, 1987; Schurig & Betschinger, 1992; Arnold et al., 2001). The success of molybdenum(VI) complexes in reactions to produce racemic led to the belief that some derivatives of these complexes could be applied as chiral catalysts (Bruno et al., 2006), and oxidation catalysis (Sheikhshoaie et al., 2009). Continuing our interest in the structural chemistry of dioxomolybdenum(VI) Schiff base complexes, we have synthesized and structurally characterized the title complex.The molecular structure of the title complex is illustrated in Figure 1. The MoVI ion is in a distored octahedral environment being coordinated by two oxido O atoms (O4 and O3), three atoms (two oxygen and one nitrogen atoms) of the tridentate Schiff base ligand and one oxygen atom from methanol. The oxido-O atoms are in cis position with short Mo=O bonds (1.7001 (12) and 1.7140 (12)Å, respectively). The OH group of the methanol molecule acts as H bond donor, yielding centrosymmetric dimers (Fig. 2).
For related structures with O= MoVI=O units and for the synthesis, see: Arnaiz et al. (2000); Holm et al. (1996); Syamal &Maurya (1989). For the prperties of related compounds, see: Arnold et al. (2001); Bagherzadeh et al. (2009); Bruno et al. (2006); Holm (1987); Maurya et al. (1997); Schurig & Betschinger (1992); Sheikhshoaie et al. (2009).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mo(C14H13NO2)O2(CH4O)] | F(000) = 784 |
Mr = 387.24 | Dx = 1.706 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 211 reflections |
a = 7.9064 (5) Å | θ = 3–30° |
b = 15.078 (1) Å | µ = 0.89 mm−1 |
c = 12.6796 (8) Å | T = 100 K |
β = 93.959 (1)° | Prism, pale yellow |
V = 1507.96 (17) Å3 | 0.19 × 0.16 × 0.16 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 4393 independent reflections |
Radiation source: fine-focus sealed tube | 3951 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 30.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.849, Tmax = 0.870 | k = −21→21 |
18948 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0248P)2 + 1.35P] where P = (Fo2 + 2Fc2)/3 |
4393 reflections | (Δ/σ)max = 0.008 |
202 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
[Mo(C14H13NO2)O2(CH4O)] | V = 1507.96 (17) Å3 |
Mr = 387.24 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.9064 (5) Å | µ = 0.89 mm−1 |
b = 15.078 (1) Å | T = 100 K |
c = 12.6796 (8) Å | 0.19 × 0.16 × 0.16 mm |
β = 93.959 (1)° |
Bruker APEXII CCD area-detector diffractometer | 4393 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3951 reflections with I > 2σ(I) |
Tmin = 0.849, Tmax = 0.870 | Rint = 0.026 |
18948 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.48 e Å−3 |
4393 reflections | Δρmin = −0.65 e Å−3 |
202 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.530764 (16) | 0.118564 (9) | 0.344992 (10) | 0.01228 (4) | |
O1 | 0.58279 (14) | 0.07661 (8) | 0.20452 (9) | 0.0154 (2) | |
O2 | 0.58637 (14) | 0.12750 (7) | 0.49712 (9) | 0.0149 (2) | |
O3 | 0.51942 (15) | 0.22791 (8) | 0.31257 (10) | 0.0203 (2) | |
O4 | 0.32656 (14) | 0.08304 (9) | 0.35495 (10) | 0.0197 (2) | |
O5 | 0.60141 (16) | −0.02912 (8) | 0.38095 (10) | 0.0191 (2) | |
H5O | 0.5424 | −0.0612 | 0.4195 | 0.029 (6)* | |
N1 | 0.81591 (16) | 0.11919 (9) | 0.36213 (10) | 0.0132 (2) | |
C1 | 0.86943 (19) | 0.12061 (10) | 0.17666 (12) | 0.0122 (3) | |
C2 | 0.70542 (19) | 0.09463 (10) | 0.14066 (12) | 0.0129 (3) | |
C3 | 0.6632 (2) | 0.08250 (11) | 0.03095 (13) | 0.0157 (3) | |
H3A | 0.5510 | 0.0660 | 0.0072 | 0.019* | |
C4 | 0.7821 (2) | 0.09422 (11) | −0.04064 (13) | 0.0178 (3) | |
H4A | 0.7531 | 0.0827 | −0.1133 | 0.021* | |
C5 | 1.0683 (2) | 0.14082 (12) | −0.08389 (13) | 0.0197 (3) | |
H5A | 1.0391 | 0.1293 | −0.1565 | 0.024* | |
C6 | 1.2258 (2) | 0.17414 (12) | −0.05370 (14) | 0.0219 (3) | |
H6A | 1.3049 | 0.1859 | −0.1051 | 0.026* | |
C7 | 1.2691 (2) | 0.19074 (11) | 0.05381 (14) | 0.0191 (3) | |
H7A | 1.3777 | 0.2143 | 0.0748 | 0.023* | |
C8 | 1.15642 (19) | 0.17334 (11) | 0.12916 (13) | 0.0156 (3) | |
H8A | 1.1883 | 0.1850 | 0.2014 | 0.019* | |
C9 | 0.9488 (2) | 0.12333 (11) | −0.00845 (12) | 0.0152 (3) | |
C10 | 0.99294 (19) | 0.13813 (10) | 0.10045 (12) | 0.0126 (3) | |
C11 | 0.91962 (19) | 0.12357 (10) | 0.28859 (12) | 0.0138 (3) | |
H11A | 1.0370 | 0.1291 | 0.3090 | 0.017* | |
C12 | 0.8805 (2) | 0.11752 (12) | 0.47316 (12) | 0.0180 (3) | |
H12A | 0.9898 | 0.1496 | 0.4824 | 0.022* | |
H12B | 0.8983 | 0.0556 | 0.4975 | 0.022* | |
C13 | 0.7473 (2) | 0.16280 (11) | 0.53555 (13) | 0.0171 (3) | |
H13A | 0.7493 | 0.2280 | 0.5215 | 0.021* | |
C14 | 0.7770 (2) | 0.14687 (12) | 0.65327 (13) | 0.0207 (3) | |
H14A | 0.6881 | 0.1765 | 0.6904 | 0.031* | |
H14B | 0.8879 | 0.1707 | 0.6782 | 0.031* | |
H14C | 0.7741 | 0.0830 | 0.6675 | 0.031* | |
C15 | 0.6958 (2) | −0.08893 (12) | 0.32155 (16) | 0.0254 (4) | |
H15A | 0.7596 | −0.1296 | 0.3697 | 0.038* | |
H15B | 0.7749 | −0.0555 | 0.2805 | 0.038* | |
H15C | 0.6182 | −0.1230 | 0.2735 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.00938 (6) | 0.01464 (7) | 0.01329 (7) | 0.00158 (5) | 0.00413 (4) | 0.00367 (5) |
O1 | 0.0115 (5) | 0.0216 (6) | 0.0134 (5) | −0.0023 (4) | 0.0032 (4) | 0.0024 (4) |
O2 | 0.0145 (5) | 0.0171 (5) | 0.0139 (5) | −0.0004 (4) | 0.0057 (4) | 0.0014 (4) |
O3 | 0.0199 (6) | 0.0187 (6) | 0.0232 (6) | 0.0048 (5) | 0.0084 (5) | 0.0080 (5) |
O4 | 0.0122 (5) | 0.0270 (6) | 0.0203 (6) | −0.0003 (5) | 0.0038 (4) | 0.0053 (5) |
O5 | 0.0249 (6) | 0.0135 (5) | 0.0205 (6) | 0.0016 (5) | 0.0130 (5) | 0.0023 (4) |
N1 | 0.0117 (6) | 0.0159 (6) | 0.0121 (6) | 0.0016 (5) | 0.0018 (4) | 0.0015 (5) |
C1 | 0.0120 (6) | 0.0139 (7) | 0.0110 (6) | 0.0004 (5) | 0.0033 (5) | 0.0007 (5) |
C2 | 0.0122 (6) | 0.0129 (7) | 0.0138 (7) | 0.0002 (5) | 0.0040 (5) | 0.0010 (5) |
C3 | 0.0150 (7) | 0.0166 (7) | 0.0155 (7) | −0.0029 (6) | 0.0014 (5) | −0.0012 (6) |
C4 | 0.0195 (8) | 0.0217 (8) | 0.0125 (7) | −0.0011 (6) | 0.0024 (6) | −0.0024 (6) |
C5 | 0.0208 (8) | 0.0255 (8) | 0.0137 (7) | 0.0009 (6) | 0.0073 (6) | 0.0007 (6) |
C6 | 0.0201 (8) | 0.0260 (9) | 0.0212 (8) | −0.0014 (7) | 0.0118 (6) | 0.0013 (7) |
C7 | 0.0136 (7) | 0.0208 (8) | 0.0238 (8) | −0.0018 (6) | 0.0074 (6) | 0.0007 (6) |
C8 | 0.0127 (7) | 0.0180 (7) | 0.0164 (7) | −0.0005 (5) | 0.0032 (6) | 0.0007 (6) |
C9 | 0.0159 (7) | 0.0169 (7) | 0.0133 (7) | 0.0008 (6) | 0.0048 (5) | 0.0001 (5) |
C10 | 0.0129 (6) | 0.0120 (7) | 0.0132 (7) | 0.0006 (5) | 0.0043 (5) | 0.0015 (5) |
C11 | 0.0117 (6) | 0.0159 (7) | 0.0139 (7) | 0.0003 (5) | 0.0016 (5) | 0.0010 (5) |
C12 | 0.0143 (7) | 0.0290 (8) | 0.0109 (7) | 0.0033 (6) | 0.0019 (5) | −0.0001 (6) |
C13 | 0.0181 (7) | 0.0171 (8) | 0.0165 (7) | −0.0018 (6) | 0.0044 (6) | −0.0002 (6) |
C14 | 0.0238 (8) | 0.0252 (8) | 0.0135 (7) | −0.0032 (7) | 0.0038 (6) | −0.0015 (6) |
C15 | 0.0293 (9) | 0.0179 (8) | 0.0310 (10) | 0.0028 (7) | 0.0161 (8) | −0.0015 (7) |
Mo1—O3 | 1.7001 (12) | C5—C9 | 1.415 (2) |
Mo1—O4 | 1.7140 (12) | C5—H5A | 0.9500 |
Mo1—O2 | 1.9533 (11) | C6—C7 | 1.405 (3) |
Mo1—O1 | 1.9604 (11) | C6—H6A | 0.9500 |
Mo1—N1 | 2.2500 (13) | C7—C8 | 1.376 (2) |
Mo1—O5 | 2.3331 (12) | C7—H7A | 0.9500 |
O1—C2 | 1.3334 (18) | C8—C10 | 1.421 (2) |
O2—C13 | 1.433 (2) | C8—H8A | 0.9500 |
O5—C15 | 1.420 (2) | C9—C10 | 1.418 (2) |
O5—H5O | 0.8499 | C11—H11A | 0.9500 |
N1—C11 | 1.2852 (19) | C12—C13 | 1.522 (2) |
N1—C12 | 1.464 (2) | C12—H12A | 0.9900 |
C1—C2 | 1.401 (2) | C12—H12B | 0.9900 |
C1—C10 | 1.445 (2) | C13—C14 | 1.514 (2) |
C1—C11 | 1.448 (2) | C13—H13A | 1.0000 |
C2—C3 | 1.420 (2) | C14—H14A | 0.9800 |
C3—C4 | 1.362 (2) | C14—H14B | 0.9800 |
C3—H3A | 0.9500 | C14—H14C | 0.9800 |
C4—C9 | 1.422 (2) | C15—H15A | 0.9800 |
C4—H4A | 0.9500 | C15—H15B | 0.9800 |
C5—C6 | 1.373 (2) | C15—H15C | 0.9800 |
O3—Mo1—O4 | 106.65 (6) | C7—C6—H6A | 120.3 |
O3—Mo1—O2 | 100.16 (6) | C8—C7—C6 | 120.91 (16) |
O4—Mo1—O2 | 95.61 (5) | C8—C7—H7A | 119.5 |
O3—Mo1—O1 | 95.98 (5) | C6—C7—H7A | 119.5 |
O4—Mo1—O1 | 102.94 (5) | C7—C8—C10 | 120.96 (15) |
O2—Mo1—O1 | 150.75 (5) | C7—C8—H8A | 119.5 |
O3—Mo1—N1 | 93.16 (5) | C10—C8—H8A | 119.5 |
O4—Mo1—N1 | 159.54 (5) | C5—C9—C10 | 119.88 (15) |
O2—Mo1—N1 | 75.44 (5) | C5—C9—C4 | 120.82 (15) |
O1—Mo1—N1 | 79.48 (5) | C10—C9—C4 | 119.25 (14) |
O3—Mo1—O5 | 168.75 (5) | C9—C10—C8 | 117.79 (13) |
O4—Mo1—O5 | 84.34 (5) | C9—C10—C1 | 119.36 (14) |
O2—Mo1—O5 | 80.69 (4) | C8—C10—C1 | 122.80 (14) |
O1—Mo1—O5 | 78.88 (4) | N1—C11—C1 | 124.35 (14) |
N1—Mo1—O5 | 76.13 (5) | N1—C11—H11A | 117.8 |
C2—O1—Mo1 | 133.87 (10) | C1—C11—H11A | 117.8 |
C13—O2—Mo1 | 119.69 (9) | N1—C12—C13 | 106.52 (13) |
C15—O5—Mo1 | 129.06 (10) | N1—C12—H12A | 110.4 |
C15—O5—H5O | 105.9 | C13—C12—H12A | 110.4 |
Mo1—O5—H5O | 121.4 | N1—C12—H12B | 110.4 |
C11—N1—C12 | 120.05 (13) | C13—C12—H12B | 110.4 |
C11—N1—Mo1 | 127.98 (11) | H12A—C12—H12B | 108.6 |
C12—N1—Mo1 | 111.93 (9) | O2—C13—C14 | 110.47 (13) |
C2—C1—C10 | 119.11 (14) | O2—C13—C12 | 106.65 (13) |
C2—C1—C11 | 120.87 (13) | C14—C13—C12 | 112.07 (14) |
C10—C1—C11 | 119.86 (13) | O2—C13—H13A | 109.2 |
O1—C2—C1 | 123.69 (14) | C14—C13—H13A | 109.2 |
O1—C2—C3 | 115.93 (14) | C12—C13—H13A | 109.2 |
C1—C2—C3 | 120.34 (14) | C13—C14—H14A | 109.5 |
C4—C3—C2 | 120.66 (15) | C13—C14—H14B | 109.5 |
C4—C3—H3A | 119.7 | H14A—C14—H14B | 109.5 |
C2—C3—H3A | 119.7 | C13—C14—H14C | 109.5 |
C3—C4—C9 | 121.14 (15) | H14A—C14—H14C | 109.5 |
C3—C4—H4A | 119.4 | H14B—C14—H14C | 109.5 |
C9—C4—H4A | 119.4 | O5—C15—H15A | 109.5 |
C6—C5—C9 | 121.00 (16) | O5—C15—H15B | 109.5 |
C6—C5—H5A | 119.5 | H15A—C15—H15B | 109.5 |
C9—C5—H5A | 119.5 | O5—C15—H15C | 109.5 |
C5—C6—C7 | 119.43 (15) | H15A—C15—H15C | 109.5 |
C5—C6—H6A | 120.3 | H15B—C15—H15C | 109.5 |
O3—Mo1—O1—C2 | 57.22 (14) | O1—C2—C3—C4 | −176.28 (15) |
O4—Mo1—O1—C2 | 165.86 (14) | C1—C2—C3—C4 | 1.3 (2) |
O2—Mo1—O1—C2 | −66.15 (18) | C2—C3—C4—C9 | −3.3 (3) |
N1—Mo1—O1—C2 | −34.90 (14) | C9—C5—C6—C7 | 0.3 (3) |
O5—Mo1—O1—C2 | −112.66 (14) | C5—C6—C7—C8 | 0.6 (3) |
O3—Mo1—O2—C13 | −66.97 (11) | C6—C7—C8—C10 | 0.0 (3) |
O4—Mo1—O2—C13 | −175.04 (11) | C6—C5—C9—C10 | −1.6 (3) |
O1—Mo1—O2—C13 | 55.48 (15) | C6—C5—C9—C4 | 175.93 (17) |
N1—Mo1—O2—C13 | 23.68 (11) | C3—C4—C9—C5 | −175.91 (16) |
O5—Mo1—O2—C13 | 101.65 (11) | C3—C4—C9—C10 | 1.6 (2) |
O3—Mo1—O5—C15 | −43.8 (3) | C5—C9—C10—C8 | 2.1 (2) |
O4—Mo1—O5—C15 | 124.28 (15) | C4—C9—C10—C8 | −175.50 (15) |
O2—Mo1—O5—C15 | −139.07 (15) | C5—C9—C10—C1 | 179.57 (15) |
O1—Mo1—O5—C15 | 19.88 (15) | C4—C9—C10—C1 | 2.0 (2) |
N1—Mo1—O5—C15 | −61.89 (15) | C7—C8—C10—C9 | −1.3 (2) |
O3—Mo1—N1—C11 | −72.74 (14) | C7—C8—C10—C1 | −178.68 (15) |
O4—Mo1—N1—C11 | 121.60 (18) | C2—C1—C10—C9 | −3.9 (2) |
O2—Mo1—N1—C11 | −172.43 (14) | C11—C1—C10—C9 | 171.46 (14) |
O1—Mo1—N1—C11 | 22.76 (13) | C2—C1—C10—C8 | 173.43 (15) |
O5—Mo1—N1—C11 | 103.77 (14) | C11—C1—C10—C8 | −11.2 (2) |
O3—Mo1—N1—C12 | 104.86 (11) | C12—N1—C11—C1 | 176.40 (15) |
O4—Mo1—N1—C12 | −60.8 (2) | Mo1—N1—C11—C1 | −6.2 (2) |
O2—Mo1—N1—C12 | 5.18 (10) | C2—C1—C11—N1 | −13.1 (2) |
O1—Mo1—N1—C12 | −159.63 (11) | C10—C1—C11—N1 | 171.56 (15) |
O5—Mo1—N1—C12 | −78.62 (11) | C11—N1—C12—C13 | 148.93 (15) |
Mo1—O1—C2—C1 | 29.3 (2) | Mo1—N1—C12—C13 | −28.89 (15) |
Mo1—O1—C2—C3 | −153.24 (12) | Mo1—O2—C13—C14 | −168.83 (10) |
C10—C1—C2—O1 | 179.71 (14) | Mo1—O2—C13—C12 | −46.80 (15) |
C11—C1—C2—O1 | 4.4 (2) | N1—C12—C13—O2 | 45.45 (16) |
C10—C1—C2—C3 | 2.3 (2) | N1—C12—C13—C14 | 166.45 (13) |
C11—C1—C2—C3 | −173.00 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O2i | 0.85 | 1.82 | 2.6667 (16) | 179 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mo(C14H13NO2)O2(CH4O)] |
Mr | 387.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.9064 (5), 15.078 (1), 12.6796 (8) |
β (°) | 93.959 (1) |
V (Å3) | 1507.96 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.19 × 0.16 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.849, 0.870 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18948, 4393, 3951 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.056, 1.01 |
No. of reflections | 4393 |
No. of parameters | 202 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.65 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O2i | 0.85 | 1.82 | 2.6667 (16) | 179 |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
We are grateful to the Shahid Bahonar University of Kerman for financial support of this work.
References
Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147. Web of Science CSD CrossRef CAS Google Scholar
Arnold, U., Serpa da Cruz, R., Mandelli, D. & Schuchardt, U. (2001). J. Mol. Catal. A, 165, 149-158. CrossRef CAS Google Scholar
Bagherzadeh, M., Tahsini, L., Latifi, R. & Woob, L. K. (2009). Inorg. Chim. Acta, 362, 3698–3702. Web of Science CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, S. M., Monteiro, B., Balula, M. S., Pedro, F. M., Abrantes, M., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Kuhn, F. E. & Goncalves, I. S. (2006). J. Mol. Catal. A Chem. 260, 11–18. Web of Science CrossRef CAS Google Scholar
Holm, R. H. (1987). Chem. Rev. 87, 1401–1449. CrossRef CAS Web of Science Google Scholar
Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314. CrossRef PubMed CAS Web of Science Google Scholar
Maurya, R. C., Mishra, D. D., Rao, S. N., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect. A, 36, 599–601. Google Scholar
Schurig, V. & Betschinger, F. (1992). Chem. Rev. 92, 873–888. CrossRef CAS Web of Science Google Scholar
Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733-738. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183–238. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal oxo compounds containing Schiff base ligands have been in the focus of scientific interest for many years. These compounds are involved in oxygen transfer chemistry in both biological and industrial processes (Maurya et al., 1997), effective catalysts for epoxidation (Bagherzadeh et al., 2009; Holm, 1987; Schurig & Betschinger, 1992; Arnold et al., 2001). The success of molybdenum(VI) complexes in reactions to produce racemic epoxides led to the belief that some derivatives of these complexes could be applied as chiral catalysts (Bruno et al., 2006), and oxidation catalysis (Sheikhshoaie et al., 2009). Continuing our interest in the structural chemistry of dioxomolybdenum(VI) Schiff base complexes, we have synthesized and structurally characterized the title complex.
The molecular structure of the title complex is illustrated in Figure 1. The MoVI ion is in a distored octahedral environment being coordinated by two oxido O atoms (O4 and O3), three atoms (two oxygen and one nitrogen atoms) of the tridentate Schiff base ligand and one oxygen atom from methanol. The oxido-O atoms are in cis position with short Mo=O bonds (1.7001 (12) and 1.7140 (12)Å, respectively). The OH group of the methanol molecule acts as H bond donor, yielding centrosymmetric dimers (Fig. 2).