metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methano­ldioxido{1-[(2RS)-(2-oxidoprop­yl)iminometh­yl]-2-naphtholato}molybdenium(VI)

aChemistry Department, Shahid Bahonar University of Kerman, Kerman, Iran, bShahid Bahonar University of Kerman, Kerman, Iran, and cBirjand University, Birjand, Iran
*Correspondence e-mail: i_shoaie@yahoo.com

(Received 10 October 2009; accepted 21 January 2010; online 27 January 2010)

Crystals of the title compound, [Mo(C14H13NO2)O2(CH4O)], were obtained by recrystallization from methanol. The MoVI atom is coordinated by two oxide O atoms and by two O atoms and one N atom of the tridentate 1-[(2-oxidoprop­yl)iminometh­yl]-2-naphtholate Schiff base ligand. The coordination sphere is completed by the O atom of a methanol mol­ecule, yielding a distorted octa­hedron. O—H⋯O hydrogen bonding yields centrosymmetric dimers.

Related literature

For related structures with O= MoVI=O units and for the synthesis, see: Arnaiz et al. (2000[Arnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141-2147.]); Holm et al. (1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Syamal & Maurya (1989[Syamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183-238.]). For the prperties of related compounds, see: Arnold et al. (2001[Arnold, U., Serpa da Cruz, R., Mandelli, D. & Schuchardt, U. (2001). J. Mol. Catal. A, 165, 149-158.]); Bagherzadeh et al. (2009[Bagherzadeh, M., Tahsini, L., Latifi, R. & Woob, L. K. (2009). Inorg. Chim. Acta, 362, 3698-3702.]); Bruno et al. (2006[Bruno, S. M., Monteiro, B., Balula, M. S., Pedro, F. M., Abrantes, M., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Kuhn, F. E. & Goncalves, I. S. (2006). J. Mol. Catal. A Chem. 260, 11-18.]); Holm (1987[Holm, R. H. (1987). Chem. Rev. 87, 1401-1449.]); Maurya et al. (1997[Maurya, R. C., Mishra, D. D., Rao, S. N., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect. A, 36, 599-601.]); Schurig & Betschinger (1992[Schurig, V. & Betschinger, F. (1992). Chem. Rev. 92, 873-888.]); Sheikhshoaie et al. (2009[Sheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733-738.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C14H13NO2)O2(CH4O)]

  • Mr = 387.24

  • Monoclinic, P 21 /c

  • a = 7.9064 (5) Å

  • b = 15.078 (1) Å

  • c = 12.6796 (8) Å

  • β = 93.959 (1)°

  • V = 1507.96 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 100 K

  • 0.19 × 0.16 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.849, Tmax = 0.870

  • 18948 measured reflections

  • 4393 independent reflections

  • 3951 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.01

  • 4393 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O2i 0.85 1.82 2.6667 (16) 179
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal oxo compounds containing Schiff base ligands have been in the focus of scientific interest for many years. These compounds are involved in oxygen transfer chemistry in both biological and industrial processes (Maurya et al., 1997), effective catalysts for epoxidation (Bagherzadeh et al., 2009; Holm, 1987; Schurig & Betschinger, 1992; Arnold et al., 2001). The success of molybdenum(VI) complexes in reactions to produce racemic epoxides led to the belief that some derivatives of these complexes could be applied as chiral catalysts (Bruno et al., 2006), and oxidation catalysis (Sheikhshoaie et al., 2009). Continuing our interest in the structural chemistry of dioxomolybdenum(VI) Schiff base complexes, we have synthesized and structurally characterized the title complex.

The molecular structure of the title complex is illustrated in Figure 1. The MoVI ion is in a distored octahedral environment being coordinated by two oxido O atoms (O4 and O3), three atoms (two oxygen and one nitrogen atoms) of the tridentate Schiff base ligand and one oxygen atom from methanol. The oxido-O atoms are in cis position with short Mo=O bonds (1.7001 (12) and 1.7140 (12)Å, respectively). The OH group of the methanol molecule acts as H bond donor, yielding centrosymmetric dimers (Fig. 2).

Related literature top

For related structures with O= MoVI=O units and for the synthesis, see: Arnaiz et al. (2000); Holm et al. (1996); Syamal &Maurya (1989). For the prperties of related compounds, see: Arnold et al. (2001); Bagherzadeh et al. (2009); Bruno et al. (2006); Holm (1987); Maurya et al. (1997); Schurig & Betschinger (1992); Sheikhshoaie et al. (2009).

Experimental top

To a solution of 0.229 mg (1 mmol) of tridentate Schiff base ligand 1-((E)-(2-hydroxypropylimino)methyl)naphthalen-2-ol) in 15 ml dry methanol was added a solution of 0.327 mg (1 mmol) of MoO2(acac)2 in 10 ml dry methanol, and refluxed for an additional 2 h. {[(1-amino-2-hydroxypropane)nitilomethylidyne-(2-naphthalato)]-dioxidomolybdenum(VI)(Methanol)} was obtained as a yellow microcrystalline precipitate. The precipitate was filtered off, washed with 5 ml absolute ethanol. Small yellow crystals formed upon recrystallisation from methanol.

Refinement top

The hydrogen atoms of OH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model, the Uiso(H) parameters were fixed to 1.2 Ueq(Ci), for methyl groups to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded

Structure description top

Transition metal oxo compounds containing Schiff base ligands have been in the focus of scientific interest for many years. These compounds are involved in oxygen transfer chemistry in both biological and industrial processes (Maurya et al., 1997), effective catalysts for epoxidation (Bagherzadeh et al., 2009; Holm, 1987; Schurig & Betschinger, 1992; Arnold et al., 2001). The success of molybdenum(VI) complexes in reactions to produce racemic epoxides led to the belief that some derivatives of these complexes could be applied as chiral catalysts (Bruno et al., 2006), and oxidation catalysis (Sheikhshoaie et al., 2009). Continuing our interest in the structural chemistry of dioxomolybdenum(VI) Schiff base complexes, we have synthesized and structurally characterized the title complex.

The molecular structure of the title complex is illustrated in Figure 1. The MoVI ion is in a distored octahedral environment being coordinated by two oxido O atoms (O4 and O3), three atoms (two oxygen and one nitrogen atoms) of the tridentate Schiff base ligand and one oxygen atom from methanol. The oxido-O atoms are in cis position with short Mo=O bonds (1.7001 (12) and 1.7140 (12)Å, respectively). The OH group of the methanol molecule acts as H bond donor, yielding centrosymmetric dimers (Fig. 2).

For related structures with O= MoVI=O units and for the synthesis, see: Arnaiz et al. (2000); Holm et al. (1996); Syamal &Maurya (1989). For the prperties of related compounds, see: Arnold et al. (2001); Bagherzadeh et al. (2009); Bruno et al. (2006); Holm (1987); Maurya et al. (1997); Schurig & Betschinger (1992); Sheikhshoaie et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Thermal ellispoids at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonding pattern in the title compound yielding centrosymmetric dimers. H bonds indicated by dashed lines. Moiety to the left generated by (i) 1–x, –y, 1–z.
Methanoldioxido{1-[(2RS)-(2-oxidopropyl)iminomethyl]-2- naphtholato}molybdenium(VI) top
Crystal data top
[Mo(C14H13NO2)O2(CH4O)]F(000) = 784
Mr = 387.24Dx = 1.706 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 211 reflections
a = 7.9064 (5) Åθ = 3–30°
b = 15.078 (1) ŵ = 0.89 mm1
c = 12.6796 (8) ÅT = 100 K
β = 93.959 (1)°Prism, pale yellow
V = 1507.96 (17) Å30.19 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4393 independent reflections
Radiation source: fine-focus sealed tube3951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.849, Tmax = 0.870k = 2121
18948 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0248P)2 + 1.35P]
where P = (Fo2 + 2Fc2)/3
4393 reflections(Δ/σ)max = 0.008
202 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Mo(C14H13NO2)O2(CH4O)]V = 1507.96 (17) Å3
Mr = 387.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.9064 (5) ŵ = 0.89 mm1
b = 15.078 (1) ÅT = 100 K
c = 12.6796 (8) Å0.19 × 0.16 × 0.16 mm
β = 93.959 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4393 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3951 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.870Rint = 0.026
18948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.01Δρmax = 0.48 e Å3
4393 reflectionsΔρmin = 0.65 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.530764 (16)0.118564 (9)0.344992 (10)0.01228 (4)
O10.58279 (14)0.07661 (8)0.20452 (9)0.0154 (2)
O20.58637 (14)0.12750 (7)0.49712 (9)0.0149 (2)
O30.51942 (15)0.22791 (8)0.31257 (10)0.0203 (2)
O40.32656 (14)0.08304 (9)0.35495 (10)0.0197 (2)
O50.60141 (16)0.02912 (8)0.38095 (10)0.0191 (2)
H5O0.54240.06120.41950.029 (6)*
N10.81591 (16)0.11919 (9)0.36213 (10)0.0132 (2)
C10.86943 (19)0.12061 (10)0.17666 (12)0.0122 (3)
C20.70542 (19)0.09463 (10)0.14066 (12)0.0129 (3)
C30.6632 (2)0.08250 (11)0.03095 (13)0.0157 (3)
H3A0.55100.06600.00720.019*
C40.7821 (2)0.09422 (11)0.04064 (13)0.0178 (3)
H4A0.75310.08270.11330.021*
C51.0683 (2)0.14082 (12)0.08389 (13)0.0197 (3)
H5A1.03910.12930.15650.024*
C61.2258 (2)0.17414 (12)0.05370 (14)0.0219 (3)
H6A1.30490.18590.10510.026*
C71.2691 (2)0.19074 (11)0.05381 (14)0.0191 (3)
H7A1.37770.21430.07480.023*
C81.15642 (19)0.17334 (11)0.12916 (13)0.0156 (3)
H8A1.18830.18500.20140.019*
C90.9488 (2)0.12333 (11)0.00845 (12)0.0152 (3)
C100.99294 (19)0.13813 (10)0.10045 (12)0.0126 (3)
C110.91962 (19)0.12357 (10)0.28859 (12)0.0138 (3)
H11A1.03700.12910.30900.017*
C120.8805 (2)0.11752 (12)0.47316 (12)0.0180 (3)
H12A0.98980.14960.48240.022*
H12B0.89830.05560.49750.022*
C130.7473 (2)0.16280 (11)0.53555 (13)0.0171 (3)
H13A0.74930.22800.52150.021*
C140.7770 (2)0.14687 (12)0.65327 (13)0.0207 (3)
H14A0.68810.17650.69040.031*
H14B0.88790.17070.67820.031*
H14C0.77410.08300.66750.031*
C150.6958 (2)0.08893 (12)0.32155 (16)0.0254 (4)
H15A0.75960.12960.36970.038*
H15B0.77490.05550.28050.038*
H15C0.61820.12300.27350.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00938 (6)0.01464 (7)0.01329 (7)0.00158 (5)0.00413 (4)0.00367 (5)
O10.0115 (5)0.0216 (6)0.0134 (5)0.0023 (4)0.0032 (4)0.0024 (4)
O20.0145 (5)0.0171 (5)0.0139 (5)0.0004 (4)0.0057 (4)0.0014 (4)
O30.0199 (6)0.0187 (6)0.0232 (6)0.0048 (5)0.0084 (5)0.0080 (5)
O40.0122 (5)0.0270 (6)0.0203 (6)0.0003 (5)0.0038 (4)0.0053 (5)
O50.0249 (6)0.0135 (5)0.0205 (6)0.0016 (5)0.0130 (5)0.0023 (4)
N10.0117 (6)0.0159 (6)0.0121 (6)0.0016 (5)0.0018 (4)0.0015 (5)
C10.0120 (6)0.0139 (7)0.0110 (6)0.0004 (5)0.0033 (5)0.0007 (5)
C20.0122 (6)0.0129 (7)0.0138 (7)0.0002 (5)0.0040 (5)0.0010 (5)
C30.0150 (7)0.0166 (7)0.0155 (7)0.0029 (6)0.0014 (5)0.0012 (6)
C40.0195 (8)0.0217 (8)0.0125 (7)0.0011 (6)0.0024 (6)0.0024 (6)
C50.0208 (8)0.0255 (8)0.0137 (7)0.0009 (6)0.0073 (6)0.0007 (6)
C60.0201 (8)0.0260 (9)0.0212 (8)0.0014 (7)0.0118 (6)0.0013 (7)
C70.0136 (7)0.0208 (8)0.0238 (8)0.0018 (6)0.0074 (6)0.0007 (6)
C80.0127 (7)0.0180 (7)0.0164 (7)0.0005 (5)0.0032 (6)0.0007 (6)
C90.0159 (7)0.0169 (7)0.0133 (7)0.0008 (6)0.0048 (5)0.0001 (5)
C100.0129 (6)0.0120 (7)0.0132 (7)0.0006 (5)0.0043 (5)0.0015 (5)
C110.0117 (6)0.0159 (7)0.0139 (7)0.0003 (5)0.0016 (5)0.0010 (5)
C120.0143 (7)0.0290 (8)0.0109 (7)0.0033 (6)0.0019 (5)0.0001 (6)
C130.0181 (7)0.0171 (8)0.0165 (7)0.0018 (6)0.0044 (6)0.0002 (6)
C140.0238 (8)0.0252 (8)0.0135 (7)0.0032 (7)0.0038 (6)0.0015 (6)
C150.0293 (9)0.0179 (8)0.0310 (10)0.0028 (7)0.0161 (8)0.0015 (7)
Geometric parameters (Å, º) top
Mo1—O31.7001 (12)C5—C91.415 (2)
Mo1—O41.7140 (12)C5—H5A0.9500
Mo1—O21.9533 (11)C6—C71.405 (3)
Mo1—O11.9604 (11)C6—H6A0.9500
Mo1—N12.2500 (13)C7—C81.376 (2)
Mo1—O52.3331 (12)C7—H7A0.9500
O1—C21.3334 (18)C8—C101.421 (2)
O2—C131.433 (2)C8—H8A0.9500
O5—C151.420 (2)C9—C101.418 (2)
O5—H5O0.8499C11—H11A0.9500
N1—C111.2852 (19)C12—C131.522 (2)
N1—C121.464 (2)C12—H12A0.9900
C1—C21.401 (2)C12—H12B0.9900
C1—C101.445 (2)C13—C141.514 (2)
C1—C111.448 (2)C13—H13A1.0000
C2—C31.420 (2)C14—H14A0.9800
C3—C41.362 (2)C14—H14B0.9800
C3—H3A0.9500C14—H14C0.9800
C4—C91.422 (2)C15—H15A0.9800
C4—H4A0.9500C15—H15B0.9800
C5—C61.373 (2)C15—H15C0.9800
O3—Mo1—O4106.65 (6)C7—C6—H6A120.3
O3—Mo1—O2100.16 (6)C8—C7—C6120.91 (16)
O4—Mo1—O295.61 (5)C8—C7—H7A119.5
O3—Mo1—O195.98 (5)C6—C7—H7A119.5
O4—Mo1—O1102.94 (5)C7—C8—C10120.96 (15)
O2—Mo1—O1150.75 (5)C7—C8—H8A119.5
O3—Mo1—N193.16 (5)C10—C8—H8A119.5
O4—Mo1—N1159.54 (5)C5—C9—C10119.88 (15)
O2—Mo1—N175.44 (5)C5—C9—C4120.82 (15)
O1—Mo1—N179.48 (5)C10—C9—C4119.25 (14)
O3—Mo1—O5168.75 (5)C9—C10—C8117.79 (13)
O4—Mo1—O584.34 (5)C9—C10—C1119.36 (14)
O2—Mo1—O580.69 (4)C8—C10—C1122.80 (14)
O1—Mo1—O578.88 (4)N1—C11—C1124.35 (14)
N1—Mo1—O576.13 (5)N1—C11—H11A117.8
C2—O1—Mo1133.87 (10)C1—C11—H11A117.8
C13—O2—Mo1119.69 (9)N1—C12—C13106.52 (13)
C15—O5—Mo1129.06 (10)N1—C12—H12A110.4
C15—O5—H5O105.9C13—C12—H12A110.4
Mo1—O5—H5O121.4N1—C12—H12B110.4
C11—N1—C12120.05 (13)C13—C12—H12B110.4
C11—N1—Mo1127.98 (11)H12A—C12—H12B108.6
C12—N1—Mo1111.93 (9)O2—C13—C14110.47 (13)
C2—C1—C10119.11 (14)O2—C13—C12106.65 (13)
C2—C1—C11120.87 (13)C14—C13—C12112.07 (14)
C10—C1—C11119.86 (13)O2—C13—H13A109.2
O1—C2—C1123.69 (14)C14—C13—H13A109.2
O1—C2—C3115.93 (14)C12—C13—H13A109.2
C1—C2—C3120.34 (14)C13—C14—H14A109.5
C4—C3—C2120.66 (15)C13—C14—H14B109.5
C4—C3—H3A119.7H14A—C14—H14B109.5
C2—C3—H3A119.7C13—C14—H14C109.5
C3—C4—C9121.14 (15)H14A—C14—H14C109.5
C3—C4—H4A119.4H14B—C14—H14C109.5
C9—C4—H4A119.4O5—C15—H15A109.5
C6—C5—C9121.00 (16)O5—C15—H15B109.5
C6—C5—H5A119.5H15A—C15—H15B109.5
C9—C5—H5A119.5O5—C15—H15C109.5
C5—C6—C7119.43 (15)H15A—C15—H15C109.5
C5—C6—H6A120.3H15B—C15—H15C109.5
O3—Mo1—O1—C257.22 (14)O1—C2—C3—C4176.28 (15)
O4—Mo1—O1—C2165.86 (14)C1—C2—C3—C41.3 (2)
O2—Mo1—O1—C266.15 (18)C2—C3—C4—C93.3 (3)
N1—Mo1—O1—C234.90 (14)C9—C5—C6—C70.3 (3)
O5—Mo1—O1—C2112.66 (14)C5—C6—C7—C80.6 (3)
O3—Mo1—O2—C1366.97 (11)C6—C7—C8—C100.0 (3)
O4—Mo1—O2—C13175.04 (11)C6—C5—C9—C101.6 (3)
O1—Mo1—O2—C1355.48 (15)C6—C5—C9—C4175.93 (17)
N1—Mo1—O2—C1323.68 (11)C3—C4—C9—C5175.91 (16)
O5—Mo1—O2—C13101.65 (11)C3—C4—C9—C101.6 (2)
O3—Mo1—O5—C1543.8 (3)C5—C9—C10—C82.1 (2)
O4—Mo1—O5—C15124.28 (15)C4—C9—C10—C8175.50 (15)
O2—Mo1—O5—C15139.07 (15)C5—C9—C10—C1179.57 (15)
O1—Mo1—O5—C1519.88 (15)C4—C9—C10—C12.0 (2)
N1—Mo1—O5—C1561.89 (15)C7—C8—C10—C91.3 (2)
O3—Mo1—N1—C1172.74 (14)C7—C8—C10—C1178.68 (15)
O4—Mo1—N1—C11121.60 (18)C2—C1—C10—C93.9 (2)
O2—Mo1—N1—C11172.43 (14)C11—C1—C10—C9171.46 (14)
O1—Mo1—N1—C1122.76 (13)C2—C1—C10—C8173.43 (15)
O5—Mo1—N1—C11103.77 (14)C11—C1—C10—C811.2 (2)
O3—Mo1—N1—C12104.86 (11)C12—N1—C11—C1176.40 (15)
O4—Mo1—N1—C1260.8 (2)Mo1—N1—C11—C16.2 (2)
O2—Mo1—N1—C125.18 (10)C2—C1—C11—N113.1 (2)
O1—Mo1—N1—C12159.63 (11)C10—C1—C11—N1171.56 (15)
O5—Mo1—N1—C1278.62 (11)C11—N1—C12—C13148.93 (15)
Mo1—O1—C2—C129.3 (2)Mo1—N1—C12—C1328.89 (15)
Mo1—O1—C2—C3153.24 (12)Mo1—O2—C13—C14168.83 (10)
C10—C1—C2—O1179.71 (14)Mo1—O2—C13—C1246.80 (15)
C11—C1—C2—O14.4 (2)N1—C12—C13—O245.45 (16)
C10—C1—C2—C32.3 (2)N1—C12—C13—C14166.45 (13)
C11—C1—C2—C3173.00 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O2i0.851.822.6667 (16)179
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Mo(C14H13NO2)O2(CH4O)]
Mr387.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.9064 (5), 15.078 (1), 12.6796 (8)
β (°) 93.959 (1)
V3)1507.96 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.19 × 0.16 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.849, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
18948, 4393, 3951
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.01
No. of reflections4393
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.65

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O2i0.851.822.6667 (16)179
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

We are grateful to the Shahid Bahonar University of Kerman for financial support of this work.

References

First citationArnaiz, F. J., Aguado, R., Pedrosa, M. R., De Cian, A. & Fischer, A. (2000). Polyhedron, 19, 2141–2147.  Web of Science CSD CrossRef CAS Google Scholar
First citationArnold, U., Serpa da Cruz, R., Mandelli, D. & Schuchardt, U. (2001). J. Mol. Catal. A, 165, 149-158.  CrossRef CAS Google Scholar
First citationBagherzadeh, M., Tahsini, L., Latifi, R. & Woob, L. K. (2009). Inorg. Chim. Acta, 362, 3698–3702.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, S. M., Monteiro, B., Balula, M. S., Pedro, F. M., Abrantes, M., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Kuhn, F. E. & Goncalves, I. S. (2006). J. Mol. Catal. A Chem. 260, 11–18.  Web of Science CrossRef CAS Google Scholar
First citationHolm, R. H. (1987). Chem. Rev. 87, 1401–1449.  CrossRef CAS Web of Science Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMaurya, R. C., Mishra, D. D., Rao, S. N., Verma, R. & Rao, N. N. (1997). Indian J. Chem. Sect. A, 36, 599–601.  Google Scholar
First citationSchurig, V. & Betschinger, F. (1992). Chem. Rev. 92, 873–888.  CrossRef CAS Web of Science Google Scholar
First citationSheikhshoaie, I., Rezaeifard, A., Monadi, N. & Kaafi, S. (2009). Polyhedron, 28, 733-738.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyamal, A. & Maurya, M. R. (1989). Coord. Chem. Rev. 95, 183–238.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds