metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{[2-({[2-(2-pyrid­yl)eth­yl](2-pyridylmeth­yl)amino}meth­yl)phenol]zinc(II)} bis­­(perchlorate) dihydrate

aDepto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br

(Received 23 January 2010; accepted 26 January 2010; online 30 January 2010)

The title compound, [Zn2Cl2(C20H21N3O)2](ClO4)2·2H2O, consists of a dinuclear ZnII cationic complex, two disordered perchlorate anions and two water mol­ecules as solvate. The [Zn2(μ-Cl)2(HL)2]2+ cation [HL is 2-({[2-(2-pyrid­yl)eth­yl](2-pyridylmeth­yl)amino}meth­yl)phenol] has a centrosymmetric structure with the ZnII ions in a distorted octa­hedral environment surrounded by an N3OCl2 donor set. HL acts as a tetra­dentate ligand through three N atoms from one amine group and two pyridyl arms and one O atom from the phenolic arm. The three N-donor sites of the HL ligand are arranged in meridional fashion, with the pyridine rings coordinated in trans positions with respect to each other. Consequently, the amine and phenol groups are trans to the asymmetric di-μ-chlorido exogenous bridges. A polymeric chain is formed along [010] by C(12)R42(8) inter­molecular hydrogen bonding. The perchlorate anion is disordered and was modelled by two sites in a 0.345 (18):0.655 (18) ratio. Water–perchlorate O—H⋯O inter­actions form cyclic structures, while phenol–water O—H⋯O inter­actions generate an infinite chain. In addition, weak inter­molecular C—H⋯π(Ph) inter­actions between pyridine donor and phenol acceptor groups of neighboring cations build a two-dimensional polymeric structure parallel to (110).

Related literature

For general background to zinc enzymes, see: Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]) and for general background to mimetic models of zinc enzymes, see: Boseggia et al. (2004[Boseggia, E., Gatos, M., Lucatello, L., Mancin, F., Moro, S., Palumbo, M., Sissi, C., Tecilla, P., Tonellato, U. & Zagotto, G. (2004). J. Am. Chem. Soc. 126, 4543-4549.]); Mancin & Tecillia (2007[Mancin, F. & Tecillia, P. (2007). New J. Chem. 31, 800-817.]); Mitić et al. (2006[Mitić, N., Smith, S. J., Neves, A., Guddat, L. W., Gahan, L. R. & Schenk, G. (2006). Chem. Rev. 106, 3338-3363.]); Morrow & Iranzo (2004[Morrow, J. R. & Iranzo, O. (2004). Curr. Opin. Chem. Biol. 8, 192-200.]); Rajski & Williams (1998[Rajski, S. R. & Williams, R. M. (1998). Chem. Rev. 98, 2723-2795.]). For the biological activity of zinc complexes, see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]); Singla & Wadhwa (1995[Singla, A. K. & Wadhwa, H. (1995). Int. J. Pharm. 120, 145-155.]); Zhou et al. (2003[Zhou, Q., Hambley, T. W., Kennedy, B. J. & Lay, P. A. (2003). Inorg. Chem. 42, 8557-8566.]). For related structures, see: Ojida et al. (2006[Ojida, A., Nonaka, H., Miyahara, Y., Tamaru, S., Sada, K. & Hamachi, I. (2006). Angew. Chem. Int. Ed. 45, 5518-5521.]); Trösch & Vahrenkamp (1998[Trösch, A. & Vahrenkamp, H. (1998). Eur. J. Inorg. Chem. pp. 827-832.]); Gross & Vahrenkamp (2005[Gross, F. & Vahrenkamp, H. (2005). Inorg. Chem. 44, 3321-3329.]). For the preparation of the HL ligand, see: Yan & Que (1988[Yan, S. & Que, L. (1988). J. Am. Chem. Soc. 110, 5222-25224.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2Cl2(C20H21N3O)2](ClO4)2·2H2O

  • Mr = 1075.37

  • Monoclinic, P 21 /n

  • a = 12.3394 (14) Å

  • b = 13.2714 (9) Å

  • c = 14.751 (2) Å

  • β = 107.779 (9)°

  • V = 2300.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 293 K

  • 0.50 × 0.46 × 0.33 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan [PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and North et al. (1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])] Tmin = 0.554, Tmax = 0.666

  • 4253 measured reflections

  • 4088 independent reflections

  • 2810 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.05

  • 4088 reflections

  • 326 parameters

  • 124 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O1W 0.93 1.67 2.598 (4) 170
O1W—H1WA⋯O2P 0.86 2.34 2.928 (15) 126
O1W—H1WB⋯O2Pi 0.84 2.32 2.777 (15) 114
C35—H35⋯Cgii 0.93 3.14 3.944 148
Symmetry code: (i) -x+1, -y, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Zinc is found in an all known forms of life as a trace element. It plays important roles in biological systems and its divalent ion is present in the active sites of several classes of metalloenzymes (Parkin, 2004). The design of artificial nucleases has recently received considerable interest due to their potential applications in catalysis, molecular biology and drug development (Mitić et al., 2006; Morrow & Iranzo, 2004; Rajski & Williams, 1998). Intense efforts have been devoted to the improvement of mimetic models for nucleases and peptidases through mono and polynuclear complexes (Boseggia et al., 2004; Mancin & Tecillia, 2007; Mitić et al., 2006). Recent studies have demonstrated that zinc complexes show anti-inflammatory and anti-tumoral activity (Beraldo & Gambino, 2004; Singla & Wadhwa, 1995; Zhou et al., 2003).

The cation of (I) is a dinuclear ZnII complex showing centrosymmentric molecular structure with local symmetry Ci. Zinc(II) ions are in distorted octahedral environment surrounded by N3O donor set of the HL ligand (HL is (2-pyridylethyl)(2-pyridylmethyl)(2-hydroxybenzyl)amine) and two Cl- as exogenous bridges (Fig. 1). HL ligand acts as a typical four-chelating ligand and it is coordinated to the metal center through its three nitrogen atoms of the amine group and two pyridinic arms and one oxygen atom from protonated phenolic arm. The three N-donor sites of the HL ligand are arranged in meridional fashion, where pyridine rings are coordinated in trans positions with respect to each other. Consequently, the amine and phenol groups are trans to the asymmetric bis(µ-chloro) bridges.

Bond lengths around metal center are in the expected range and comparable to other zinc(II) complexes with N2O donor set (Ojida et al., 2006; Trösch & Vahrenkamp, 1998; Gross & Vahrenkamp, 2005). The long distance Zn—Ophenol is typical for the coordination of protonated phenol group. The asymmetric bridge is due to the fact that two different groups with different trans effect are in trans positions to the chloro bridge. The distance Zn—Cl is shorter when amine group is trans to the bridge, whereas this distance is longer when phenol group is trans to µ-Cl. The cis angles are ranging from 77.69 (14)° to 100.55 (9)°, being the more closed angle restricted by a five-membered chelate ring formed by 2-methylpyridine arm. Although 2-ethylpyridine arm makes six-membered chelate ring, 2-methylpyridine arm also induces the greatest deviation from the ideal trans angle for N22—Zn1—N32.

The three-dimensional packing of (I) is governed by an extensive and interesting hydrogen bonding network (Fig. 2). Water molecules of crystallization and perchlorate anions form a cyclic structures by O1W—H···O interactions with a graph set of R42(8). These rings link the dinuclear cations through O10—H···O1W interactions between phenol and water groups building infinite one-dimensional chains along [010] direction with C(12) graph set. In addition, weak C—H···π(phenol) intermolecular interactions between pyridine (donor) and phenol (acceptor) groups of neighboring molecules also contribute to the stabilization of the crystalline structure aggregating the linear chains in two-dimensional polymer parallel to (110) plane. The calculated distance H35···centroidphenol is 3.136 Å and the angle C35—H35—Centroid is 147.55°. Finally, the molecules of (I) are stacked viewing along [100] in perpendicular projection of the linear chains.

Related literature top

For general background to zinc enzymes, see: Parkin (2004) and for general background to mimetic models of zinc enzymes, see: Boseggia et al. (2004); Mancin & Tecillia (2007); Mitić et al. (2006); Morrow & Iranzo (2004); Rajski & Williams (1998). For the biological activity of zinc complexes, see: Beraldo & Gambino (2004); Singla & Wadhwa (1995); Zhou et al. (2003). For related structures, see: Ojida et al. (2006); Trösch & Vahrenkamp (1998); Gross & Vahrenkamp (2005). For the preparation of the HL ligand, see: Yan & Que (1988).

Experimental top

HL ligand has been prepared according to the procedure described by Yan & Que (1988). To a solution of HL (0.239 g, 0.78 mmol) in methanol (10 ml) was dropped 10 ml of the suspension containing 0.291 g of Zn(ClO)4.6H2O (0.78 mmol) in methanol. The mixture was stirred for 15 minutes at room temperature. After one hour on standing, a white precipitate was formed and it was filtered off and dried under vacuum (yield 0.63 g, 74%). The white powder was recrystallized in ethanol affording colorless crystals.

Refinement top

H atoms were placed at their idealized positions with distances of 0.97 and 0.93 Å for CH2 and CHAr, respectively. Uiso of the H atoms were fixed at 1.2 times of the Ueq of the preceding atom. Hydrogen atoms of the phenol and water of crystallization were found from Fourier difference map and treated with riding model and its Uiso were also fixed at 1.2 times Ueq of the parent O atom. Perchlorate anion is disordered with two alternative positions for all oxygen atoms. The occupancy for disordered atoms of 0.655 (18) and 0.345 (18) were refined. Although disordered O atoms and some carbon atoms show abnormal adp, all non-hydrogen atoms were refined anisotropically with positive definite thermal tensor. Further, the final indices wR2 decreased more than 33% (from about 0.18 to 0.1211) after anisotropic refinement of the disordered atoms.

Structure description top

Zinc is found in an all known forms of life as a trace element. It plays important roles in biological systems and its divalent ion is present in the active sites of several classes of metalloenzymes (Parkin, 2004). The design of artificial nucleases has recently received considerable interest due to their potential applications in catalysis, molecular biology and drug development (Mitić et al., 2006; Morrow & Iranzo, 2004; Rajski & Williams, 1998). Intense efforts have been devoted to the improvement of mimetic models for nucleases and peptidases through mono and polynuclear complexes (Boseggia et al., 2004; Mancin & Tecillia, 2007; Mitić et al., 2006). Recent studies have demonstrated that zinc complexes show anti-inflammatory and anti-tumoral activity (Beraldo & Gambino, 2004; Singla & Wadhwa, 1995; Zhou et al., 2003).

The cation of (I) is a dinuclear ZnII complex showing centrosymmentric molecular structure with local symmetry Ci. Zinc(II) ions are in distorted octahedral environment surrounded by N3O donor set of the HL ligand (HL is (2-pyridylethyl)(2-pyridylmethyl)(2-hydroxybenzyl)amine) and two Cl- as exogenous bridges (Fig. 1). HL ligand acts as a typical four-chelating ligand and it is coordinated to the metal center through its three nitrogen atoms of the amine group and two pyridinic arms and one oxygen atom from protonated phenolic arm. The three N-donor sites of the HL ligand are arranged in meridional fashion, where pyridine rings are coordinated in trans positions with respect to each other. Consequently, the amine and phenol groups are trans to the asymmetric bis(µ-chloro) bridges.

Bond lengths around metal center are in the expected range and comparable to other zinc(II) complexes with N2O donor set (Ojida et al., 2006; Trösch & Vahrenkamp, 1998; Gross & Vahrenkamp, 2005). The long distance Zn—Ophenol is typical for the coordination of protonated phenol group. The asymmetric bridge is due to the fact that two different groups with different trans effect are in trans positions to the chloro bridge. The distance Zn—Cl is shorter when amine group is trans to the bridge, whereas this distance is longer when phenol group is trans to µ-Cl. The cis angles are ranging from 77.69 (14)° to 100.55 (9)°, being the more closed angle restricted by a five-membered chelate ring formed by 2-methylpyridine arm. Although 2-ethylpyridine arm makes six-membered chelate ring, 2-methylpyridine arm also induces the greatest deviation from the ideal trans angle for N22—Zn1—N32.

The three-dimensional packing of (I) is governed by an extensive and interesting hydrogen bonding network (Fig. 2). Water molecules of crystallization and perchlorate anions form a cyclic structures by O1W—H···O interactions with a graph set of R42(8). These rings link the dinuclear cations through O10—H···O1W interactions between phenol and water groups building infinite one-dimensional chains along [010] direction with C(12) graph set. In addition, weak C—H···π(phenol) intermolecular interactions between pyridine (donor) and phenol (acceptor) groups of neighboring molecules also contribute to the stabilization of the crystalline structure aggregating the linear chains in two-dimensional polymer parallel to (110) plane. The calculated distance H35···centroidphenol is 3.136 Å and the angle C35—H35—Centroid is 147.55°. Finally, the molecules of (I) are stacked viewing along [100] in perpendicular projection of the linear chains.

For general background to zinc enzymes, see: Parkin (2004) and for general background to mimetic models of zinc enzymes, see: Boseggia et al. (2004); Mancin & Tecillia (2007); Mitić et al. (2006); Morrow & Iranzo (2004); Rajski & Williams (1998). For the biological activity of zinc complexes, see: Beraldo & Gambino (2004); Singla & Wadhwa (1995); Zhou et al. (2003). For related structures, see: Ojida et al. (2006); Trösch & Vahrenkamp (1998); Gross & Vahrenkamp (2005). For the preparation of the HL ligand, see: Yan & Que (1988).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with partial labeling scheme. Hydrogen atoms were omitted for clarity. Displacement ellipsoids are shown at the 30% probability level. Symmetry code: -x+1, -y+1, -z+1.
[Figure 2] Fig. 2. Partial packing of the title compound showing one-dimensional chain along [010] (symmetry code: -x+1, -y, -z+1) (top) and two-dimensional polymer parallel to (110) plane (symmetry code: -x+2, -y+1, -z+1) (bottom).
Di-µ-chlorido-bis{[2-({[2-(2-pyridyl)ethyl](2- pyridylmethyl)amino}methyl)phenol]zinc(II)} bis(perchlorate) dihydrate top
Crystal data top
[Zn2Cl2(C20H21N3O)2](ClO4)2·2H2OF(000) = 1104
Mr = 1075.37Dx = 1.553 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.3394 (14) Åθ = 8.3–17.1°
b = 13.2714 (9) ŵ = 1.34 mm1
c = 14.751 (2) ÅT = 293 K
β = 107.779 (9)°Irregular block, colorless
V = 2300.2 (5) Å30.50 × 0.46 × 0.33 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2810 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 25.1°, θmin = 1.9°
ω–2θ scansh = 1414
Absorption correction: ψ scan
[PLATON (Spek, 2009) and North et al. (1968)]
k = 150
Tmin = 0.554, Tmax = 0.666l = 170
4253 measured reflections3 standard reflections every 200 reflections
4088 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0568P)2 + 1.725P]
where P = (Fo2 + 2Fc2)/3
4088 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.47 e Å3
124 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Zn2Cl2(C20H21N3O)2](ClO4)2·2H2OV = 2300.2 (5) Å3
Mr = 1075.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.3394 (14) ŵ = 1.34 mm1
b = 13.2714 (9) ÅT = 293 K
c = 14.751 (2) Å0.50 × 0.46 × 0.33 mm
β = 107.779 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2810 reflections with I > 2σ(I)
Absorption correction: ψ scan
[PLATON (Spek, 2009) and North et al. (1968)]
Rint = 0.022
Tmin = 0.554, Tmax = 0.6663 standard reflections every 200 reflections
4253 measured reflections intensity decay: 1%
4088 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042124 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
4088 reflectionsΔρmin = 0.38 e Å3
326 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.62107 (4)0.44256 (4)0.58271 (3)0.05155 (18)
Cl10.47634 (10)0.38528 (8)0.44263 (7)0.0603 (3)
O100.6920 (3)0.2883 (2)0.5950 (2)0.0606 (7)
H100.64210.23760.56390.073*
N10.7553 (3)0.4677 (3)0.7236 (2)0.0572 (9)
C100.8077 (4)0.3716 (4)0.7702 (3)0.0635 (12)
H10A0.74840.32980.78100.076*
H10B0.86120.38750.83190.076*
C110.8689 (4)0.3121 (3)0.7133 (3)0.0576 (11)
C120.8065 (4)0.2698 (3)0.6261 (3)0.0531 (10)
C130.8592 (4)0.2119 (3)0.5741 (3)0.0645 (12)
H130.81760.18600.51520.077*
C140.9746 (5)0.1929 (4)0.6105 (4)0.0788 (15)
H141.01020.15320.57610.095*
C151.0369 (5)0.2315 (4)0.6964 (4)0.0830 (16)
H151.11430.21770.72050.100*
C160.9841 (4)0.2916 (4)0.7478 (4)0.0757 (14)
H161.02690.31840.80600.091*
C200.6837 (4)0.5105 (4)0.7793 (3)0.0656 (12)
H20A0.66110.57850.75790.079*
H20B0.72760.51330.84620.079*
C210.5802 (4)0.4470 (3)0.7672 (3)0.0613 (11)
N220.5338 (3)0.4064 (3)0.6806 (2)0.0550 (9)
C230.4413 (4)0.3488 (4)0.6644 (4)0.0654 (12)
H230.41050.31970.60460.078*
C240.3901 (5)0.3313 (4)0.7336 (4)0.0838 (16)
H240.32570.29080.72100.101*
C250.4356 (6)0.3747 (5)0.8221 (4)0.0969 (19)
H250.40100.36570.86930.116*
C260.5320 (5)0.4309 (4)0.8391 (4)0.0836 (16)
H260.56540.45850.89920.100*
C290.8489 (4)0.5393 (4)0.7227 (4)0.0754 (14)
H29A0.91410.50080.71870.090*
H29B0.87170.57610.78240.090*
C300.8161 (5)0.6143 (4)0.6411 (4)0.0844 (16)
H30A0.74210.64250.63650.101*
H30B0.87080.66900.65470.101*
C310.8117 (5)0.5679 (4)0.5478 (4)0.0785 (15)
N320.7396 (3)0.4907 (3)0.5160 (3)0.0622 (9)
C330.7388 (5)0.4462 (4)0.4339 (4)0.0786 (15)
H330.68860.39300.41170.094*
C340.8076 (7)0.4745 (6)0.3813 (5)0.110 (2)
H340.80590.44070.32560.132*
C350.8784 (7)0.5538 (7)0.4133 (7)0.131 (3)
H350.92460.57610.37790.157*
C360.8832 (5)0.6015 (5)0.4963 (6)0.105 (2)
H360.93280.65510.51830.126*
O1W0.5727 (3)0.1334 (3)0.5140 (3)0.1020 (13)
H1WA0.50200.14860.49140.122*
H1WB0.59990.11200.47160.122*
Cl20.30150 (12)0.07028 (13)0.58931 (11)0.0868 (4)
O1P0.2155 (15)0.0026 (14)0.5614 (12)0.141 (11)0.345 (18)
O1P'0.2667 (19)0.0214 (9)0.5796 (12)0.312 (16)0.655 (18)
O2P0.3503 (13)0.0570 (12)0.5146 (9)0.094 (6)0.345 (18)
O2P'0.3620 (13)0.0972 (14)0.5372 (9)0.280 (13)0.655 (18)
O3P0.3813 (14)0.0494 (19)0.6654 (11)0.32 (3)0.345 (18)
O3P'0.3603 (13)0.0915 (9)0.6789 (5)0.193 (7)0.655 (18)
O4P0.2611 (19)0.1602 (10)0.5814 (18)0.37 (4)0.345 (18)
O4P'0.2149 (12)0.1330 (15)0.5729 (12)0.333 (16)0.655 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0624 (3)0.0507 (3)0.0425 (3)0.0015 (2)0.0173 (2)0.0019 (2)
Cl10.0718 (7)0.0522 (6)0.0512 (6)0.0066 (5)0.0105 (5)0.0085 (5)
O100.0609 (19)0.0487 (16)0.0676 (19)0.0033 (14)0.0125 (15)0.0097 (14)
N10.065 (2)0.055 (2)0.0480 (19)0.0006 (17)0.0122 (16)0.0086 (16)
C100.069 (3)0.074 (3)0.044 (2)0.008 (2)0.012 (2)0.005 (2)
C110.063 (3)0.056 (3)0.054 (2)0.009 (2)0.019 (2)0.012 (2)
C120.063 (3)0.042 (2)0.058 (2)0.005 (2)0.025 (2)0.0069 (19)
C130.076 (3)0.054 (3)0.070 (3)0.005 (2)0.032 (3)0.002 (2)
C140.088 (4)0.068 (3)0.096 (4)0.011 (3)0.052 (3)0.009 (3)
C150.060 (3)0.090 (4)0.105 (4)0.013 (3)0.034 (3)0.023 (3)
C160.068 (3)0.089 (4)0.066 (3)0.003 (3)0.015 (3)0.012 (3)
C200.085 (3)0.066 (3)0.043 (2)0.005 (3)0.015 (2)0.013 (2)
C210.080 (3)0.056 (3)0.051 (2)0.016 (2)0.024 (2)0.000 (2)
N220.064 (2)0.055 (2)0.050 (2)0.0066 (18)0.0238 (17)0.0015 (16)
C230.074 (3)0.059 (3)0.071 (3)0.007 (2)0.032 (3)0.007 (2)
C240.086 (4)0.075 (4)0.105 (4)0.003 (3)0.051 (3)0.015 (3)
C250.124 (5)0.102 (5)0.090 (4)0.007 (4)0.070 (4)0.012 (4)
C260.115 (5)0.087 (4)0.061 (3)0.018 (4)0.044 (3)0.002 (3)
C290.080 (3)0.069 (3)0.073 (3)0.014 (3)0.017 (3)0.014 (3)
C300.072 (3)0.061 (3)0.120 (5)0.008 (3)0.027 (3)0.005 (3)
C310.079 (3)0.060 (3)0.105 (4)0.013 (3)0.042 (3)0.015 (3)
N320.073 (2)0.053 (2)0.068 (2)0.003 (2)0.032 (2)0.0069 (19)
C330.089 (4)0.090 (4)0.068 (3)0.025 (3)0.041 (3)0.019 (3)
C340.136 (6)0.121 (6)0.102 (5)0.042 (5)0.077 (5)0.039 (4)
C350.133 (7)0.137 (7)0.162 (8)0.043 (6)0.103 (6)0.068 (6)
C360.089 (4)0.089 (4)0.156 (6)0.003 (3)0.065 (5)0.036 (5)
O1W0.081 (2)0.078 (3)0.142 (4)0.003 (2)0.025 (2)0.037 (2)
Cl20.0735 (9)0.1060 (12)0.0876 (9)0.0081 (8)0.0345 (8)0.0347 (8)
O1P0.147 (14)0.137 (18)0.108 (13)0.099 (13)0.005 (12)0.025 (13)
O1P'0.50 (4)0.166 (13)0.37 (3)0.155 (18)0.28 (3)0.142 (17)
O2P0.122 (11)0.103 (10)0.066 (7)0.021 (9)0.041 (7)0.039 (7)
O2P'0.315 (19)0.41 (3)0.185 (13)0.25 (2)0.177 (14)0.159 (15)
O3P0.107 (16)0.50 (7)0.27 (4)0.09 (3)0.074 (19)0.14 (4)
O3P'0.36 (2)0.140 (9)0.064 (5)0.051 (10)0.037 (8)0.027 (5)
O4P0.105 (18)0.127 (18)0.84 (10)0.018 (13)0.07 (3)0.24 (4)
O4P'0.092 (9)0.48 (4)0.37 (2)0.118 (15)0.027 (10)0.17 (2)
Geometric parameters (Å, º) top
Zn1—N322.096 (4)C23—H230.9300
Zn1—N222.103 (3)C24—C251.380 (8)
Zn1—O102.212 (3)C24—H240.9300
Zn1—N12.252 (3)C25—C261.360 (8)
Zn1—Cl12.4048 (12)C25—H250.9300
Zn1—Cl1i2.5555 (12)C26—H260.9300
Cl1—Zn1i2.5555 (12)C29—C301.519 (7)
O10—C121.368 (5)C29—H29A0.9700
O10—H100.9333C29—H29B0.9700
N1—C201.491 (5)C30—C311.494 (8)
N1—C101.498 (6)C30—H30A0.9700
N1—C291.499 (6)C30—H30B0.9700
C10—C111.512 (6)C31—N321.345 (6)
C10—H10A0.9700C31—C361.400 (8)
C10—H10B0.9700N32—C331.344 (6)
C11—C161.383 (6)C33—C341.366 (8)
C11—C121.400 (6)C33—H330.9300
C12—C131.380 (6)C34—C351.358 (11)
C13—C141.383 (7)C34—H340.9300
C13—H130.9300C35—C361.364 (10)
C14—C151.365 (8)C35—H350.9300
C14—H140.9300C36—H360.9300
C15—C161.391 (7)O1W—H1WA0.8581
C15—H150.9300O1W—H1WB0.8444
C16—H160.9300Cl2—O2P'1.274 (9)
C20—C211.494 (7)Cl2—O3P1.277 (11)
C20—H20A0.9700Cl2—O1P'1.283 (10)
C20—H20B0.9700Cl2—O4P1.284 (11)
C21—N221.344 (5)Cl2—O4P'1.318 (10)
C21—C261.382 (6)Cl2—O3P'1.329 (8)
N22—C231.334 (6)Cl2—O1P1.354 (10)
C23—C241.374 (6)Cl2—O2P1.418 (10)
N32—Zn1—N22165.61 (15)C23—N22—C21119.6 (4)
N32—Zn1—O1090.28 (13)C23—N22—Zn1126.7 (3)
N22—Zn1—O1090.33 (12)C21—N22—Zn1113.7 (3)
N32—Zn1—N188.07 (14)N22—C23—C24121.7 (5)
N22—Zn1—N177.69 (14)N22—C23—H23119.1
O10—Zn1—N184.28 (12)C24—C23—H23119.1
N32—Zn1—Cl197.72 (11)C23—C24—C25119.0 (5)
N22—Zn1—Cl196.67 (11)C23—C24—H24120.5
O10—Zn1—Cl187.09 (8)C25—C24—H24120.5
N1—Zn1—Cl1169.64 (10)C26—C25—C24119.0 (5)
N32—Zn1—Cl1i91.34 (10)C26—C25—H25120.5
N22—Zn1—Cl1i89.29 (10)C24—C25—H25120.5
O10—Zn1—Cl1i174.95 (8)C25—C26—C21120.0 (5)
N1—Zn1—Cl1i100.55 (9)C25—C26—H26120.0
Cl1—Zn1—Cl1i87.95 (4)C21—C26—H26120.0
Zn1—Cl1—Zn1i92.05 (4)N1—C29—C30113.7 (4)
C12—O10—Zn1122.4 (2)N1—C29—H29A108.8
C12—O10—H10119.6C30—C29—H29A108.8
Zn1—O10—H10116.2N1—C29—H29B108.8
C20—N1—C10108.4 (3)C30—C29—H29B108.8
C20—N1—C29110.6 (4)H29A—C29—H29B107.7
C10—N1—C29108.5 (4)C31—C30—C29112.7 (4)
C20—N1—Zn1100.0 (2)C31—C30—H30A109.0
C10—N1—Zn1113.0 (3)C29—C30—H30A109.0
C29—N1—Zn1116.0 (3)C31—C30—H30B109.0
N1—C10—C11114.1 (3)C29—C30—H30B109.0
N1—C10—H10A108.7H30A—C30—H30B107.8
C11—C10—H10A108.7N32—C31—C36120.9 (6)
N1—C10—H10B108.7N32—C31—C30118.0 (4)
C11—C10—H10B108.7C36—C31—C30121.2 (6)
H10A—C10—H10B107.6C33—N32—C31118.1 (4)
C16—C11—C12118.3 (4)C33—N32—Zn1118.4 (3)
C16—C11—C10122.0 (4)C31—N32—Zn1123.4 (3)
C12—C11—C10119.5 (4)N32—C33—C34123.8 (6)
O10—C12—C13121.8 (4)N32—C33—H33118.1
O10—C12—C11117.3 (4)C34—C33—H33118.1
C13—C12—C11120.9 (4)C35—C34—C33117.5 (7)
C12—C13—C14119.3 (5)C35—C34—H34121.3
C12—C13—H13120.3C33—C34—H34121.3
C14—C13—H13120.3C34—C35—C36121.2 (7)
C15—C14—C13120.8 (5)C34—C35—H35119.4
C15—C14—H14119.6C36—C35—H35119.4
C13—C14—H14119.6C35—C36—C31118.5 (7)
C14—C15—C16119.8 (5)C35—C36—H36120.7
C14—C15—H15120.1C31—C36—H36120.7
C16—C15—H15120.1H1WA—O1W—H1WB112.3
C11—C16—C15120.8 (5)O2P'—Cl2—O1P'115.8 (9)
C11—C16—H16119.6O3P—Cl2—O4P117.1 (10)
C15—C16—H16119.6O2P'—Cl2—O4P'107.6 (9)
N1—C20—C21110.4 (3)O1P'—Cl2—O4P'110.7 (7)
N1—C20—H20A109.6O2P'—Cl2—O3P'107.3 (7)
C21—C20—H20A109.6O1P'—Cl2—O3P'111.9 (8)
N1—C20—H20B109.6O4P'—Cl2—O3P'102.4 (7)
C21—C20—H20B109.6O3P—Cl2—O1P116.5 (11)
H20A—C20—H20B108.1O4P—Cl2—O1P110.0 (8)
N22—C21—C26120.6 (5)O3P—Cl2—O2P105.0 (9)
N22—C21—C20116.1 (4)O4P—Cl2—O2P106.8 (11)
C26—C21—C20123.2 (4)O1P—Cl2—O2P99.2 (8)
N32—Zn1—Cl1—Zn1i91.08 (11)C20—C21—N22—C23179.9 (4)
N22—Zn1—Cl1—Zn1i89.05 (10)C26—C21—N22—Zn1179.4 (4)
O10—Zn1—Cl1—Zn1i179.03 (8)C20—C21—N22—Zn10.4 (5)
N1—Zn1—Cl1—Zn1i145.4 (5)N32—Zn1—N22—C23166.2 (5)
N32—Zn1—O10—C1245.9 (3)O10—Zn1—N22—C2373.8 (4)
N22—Zn1—O10—C12119.7 (3)N1—Zn1—N22—C23157.9 (4)
N1—Zn1—O10—C1242.1 (3)Cl1—Zn1—N22—C2313.3 (4)
Cl1—Zn1—O10—C12143.6 (3)Cl1i—Zn1—N22—C23101.2 (4)
N32—Zn1—N1—C20141.0 (3)N32—Zn1—N22—C2113.3 (7)
N22—Zn1—N1—C2037.0 (3)O10—Zn1—N22—C21105.7 (3)
O10—Zn1—N1—C20128.6 (3)N1—Zn1—N22—C2121.6 (3)
Cl1—Zn1—N1—C2094.8 (6)Cl1—Zn1—N22—C21167.2 (3)
Cl1i—Zn1—N1—C2050.0 (3)Cl1i—Zn1—N22—C2179.3 (3)
N32—Zn1—N1—C10104.0 (3)C21—N22—C23—C241.5 (7)
N22—Zn1—N1—C1078.0 (3)Zn1—N22—C23—C24179.1 (4)
O10—Zn1—N1—C1013.5 (3)N22—C23—C24—C250.1 (8)
Cl1—Zn1—N1—C1020.2 (7)C23—C24—C25—C262.1 (9)
Cl1i—Zn1—N1—C10165.0 (3)C24—C25—C26—C212.5 (9)
N32—Zn1—N1—C2922.2 (3)N22—C21—C26—C251.0 (8)
N22—Zn1—N1—C29155.8 (3)C20—C21—C26—C25178.0 (5)
O10—Zn1—N1—C29112.6 (3)C20—N1—C29—C3089.1 (5)
Cl1—Zn1—N1—C29146.4 (5)C10—N1—C29—C30152.1 (4)
Cl1i—Zn1—N1—C2968.8 (3)Zn1—N1—C29—C3023.7 (5)
C20—N1—C10—C11171.6 (4)N1—C29—C30—C3174.9 (6)
C29—N1—C10—C1168.3 (5)C29—C30—C31—N3259.3 (6)
Zn1—N1—C10—C1161.8 (4)C29—C30—C31—C36118.6 (6)
N1—C10—C11—C16118.6 (5)C36—C31—N32—C330.6 (7)
N1—C10—C11—C1266.2 (5)C30—C31—N32—C33177.3 (4)
Zn1—O10—C12—C13126.7 (4)C36—C31—N32—Zn1175.2 (4)
Zn1—O10—C12—C1153.2 (4)C30—C31—N32—Zn16.9 (6)
C16—C11—C12—O10177.9 (4)N22—Zn1—N32—C33152.3 (5)
C10—C11—C12—O102.5 (6)O10—Zn1—N32—C3359.9 (3)
C16—C11—C12—C132.2 (6)N1—Zn1—N32—C33144.1 (3)
C10—C11—C12—C13177.6 (4)Cl1—Zn1—N32—C3327.2 (3)
O10—C12—C13—C14177.9 (4)Cl1i—Zn1—N32—C33115.3 (3)
C11—C12—C13—C142.2 (6)N22—Zn1—N32—C3132.0 (8)
C12—C13—C14—C150.8 (7)O10—Zn1—N32—C31124.4 (4)
C13—C14—C15—C160.6 (8)N1—Zn1—N32—C3140.1 (4)
C12—C11—C16—C150.8 (7)Cl1—Zn1—N32—C31148.5 (4)
C10—C11—C16—C15176.1 (5)Cl1i—Zn1—N32—C3160.4 (4)
C14—C15—C16—C110.6 (8)C31—N32—C33—C340.4 (7)
C10—N1—C20—C2170.2 (4)Zn1—N32—C33—C34176.4 (4)
C29—N1—C20—C21171.0 (4)N32—C33—C34—C351.6 (9)
Zn1—N1—C20—C2148.2 (4)C33—C34—C35—C361.9 (11)
N1—C20—C21—N2236.3 (5)C34—C35—C36—C311.0 (11)
N1—C20—C21—C26144.7 (4)N32—C31—C36—C350.3 (9)
C26—C21—N22—C231.0 (6)C30—C31—C36—C35177.6 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O10—H10···O1W0.931.672.598 (4)170
O1W—H1WA···O2P0.862.342.928 (15)126
O1W—H1WA···O2P0.862.152.766 (13)128
O1W—H1WB···O1Pii0.842.343.117 (19)153
O1W—H1WB···O2Pii0.842.322.777 (15)114
C35—H35···Cgiii0.933.143.944148
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn2Cl2(C20H21N3O)2](ClO4)2·2H2O
Mr1075.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.3394 (14), 13.2714 (9), 14.751 (2)
β (°) 107.779 (9)
V3)2300.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.50 × 0.46 × 0.33
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
[PLATON (Spek, 2009) and North et al. (1968)]
Tmin, Tmax0.554, 0.666
No. of measured, independent and
observed [I > 2σ(I)] reflections
4253, 4088, 2810
Rint0.022
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.05
No. of reflections4088
No. of parameters326
No. of restraints124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.38

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O10—H10···O1W0.931.672.598 (4)170
O1W—H1WA···O2P0.862.342.928 (15)126
O1W—H1WB···O2Pi0.842.322.777 (15)114
C35—H35···Cgii0.933.143.944148
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálise for financial assistance.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoseggia, E., Gatos, M., Lucatello, L., Mancin, F., Moro, S., Palumbo, M., Sissi, C., Tecilla, P., Tonellato, U. & Zagotto, G. (2004). J. Am. Chem. Soc. 126, 4543–4549.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGross, F. & Vahrenkamp, H. (2005). Inorg. Chem. 44, 3321–3329.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMancin, F. & Tecillia, P. (2007). New J. Chem. 31, 800–817.  Web of Science CrossRef CAS Google Scholar
First citationMitić, N., Smith, S. J., Neves, A., Guddat, L. W., Gahan, L. R. & Schenk, G. (2006). Chem. Rev. 106, 3338–3363.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMorrow, J. R. & Iranzo, O. (2004). Curr. Opin. Chem. Biol. 8, 192–200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOjida, A., Nonaka, H., Miyahara, Y., Tamaru, S., Sada, K. & Hamachi, I. (2006). Angew. Chem. Int. Ed. 45, 5518–5521.  Web of Science CSD CrossRef CAS Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRajski, S. R. & Williams, R. M. (1998). Chem. Rev. 98, 2723–2795.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingla, A. K. & Wadhwa, H. (1995). Int. J. Pharm. 120, 145–155.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrösch, A. & Vahrenkamp, H. (1998). Eur. J. Inorg. Chem. pp. 827–832.  Google Scholar
First citationYan, S. & Que, L. (1988). J. Am. Chem. Soc. 110, 5222–25224.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhou, Q., Hambley, T. W., Kennedy, B. J. & Lay, P. A. (2003). Inorg. Chem. 42, 8557–8566.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds