metal-organic compounds
Di-μ-chlorido-bis{[2-({[2-(2-pyridyl)ethyl](2-pyridylmethyl)amino}methyl)phenol]zinc(II)} bis(perchlorate) dihydrate
aDepto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
*Correspondence e-mail: adajb@qmc.ufsc.br
The title compound, [Zn2Cl2(C20H21N3O)2](ClO4)2·2H2O, consists of a dinuclear ZnII cationic complex, two disordered perchlorate anions and two water molecules as solvate. The [Zn2(μ-Cl)2(HL)2]2+ cation [HL is 2-({[2-(2-pyridyl)ethyl](2-pyridylmethyl)amino}methyl)phenol] has a centrosymmetric structure with the ZnII ions in a distorted octahedral environment surrounded by an N3OCl2 donor set. HL acts as a tetradentate ligand through three N atoms from one amine group and two pyridyl arms and one O atom from the phenolic arm. The three N-donor sites of the HL ligand are arranged in meridional fashion, with the pyridine rings coordinated in trans positions with respect to each other. Consequently, the amine and phenol groups are trans to the asymmetric di-μ-chlorido exogenous bridges. A polymeric chain is formed along [010] by C(12)R42(8) intermolecular hydrogen bonding. The perchlorate anion is disordered and was modelled by two sites in a 0.345 (18):0.655 (18) ratio. Water–perchlorate O—H⋯O interactions form cyclic structures, while phenol–water O—H⋯O interactions generate an infinite chain. In addition, weak intermolecular C—H⋯π(Ph) interactions between pyridine donor and phenol acceptor groups of neighboring cations build a two-dimensional polymeric structure parallel to (110).
Related literature
For general background to zinc enzymes, see: Parkin (2004) and for general background to mimetic models of zinc enzymes, see: Boseggia et al. (2004); Mancin & Tecillia (2007); Mitić et al. (2006); Morrow & Iranzo (2004); Rajski & Williams (1998). For the biological activity of zinc complexes, see: Beraldo & Gambino (2004); Singla & Wadhwa (1995); Zhou et al. (2003). For related structures, see: Ojida et al. (2006); Trösch & Vahrenkamp (1998); Gross & Vahrenkamp (2005). For the preparation of the HL ligand, see: Yan & Que (1988).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810003259/fj2277sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810003259/fj2277Isup2.hkl
HL ligand has been prepared according to the procedure described by Yan & Que (1988). To a solution of HL (0.239 g, 0.78 mmol) in methanol (10 ml) was dropped 10 ml of the suspension containing 0.291 g of Zn(ClO)4.6H2O (0.78 mmol) in methanol. The mixture was stirred for 15 minutes at room temperature. After one hour on standing, a white precipitate was formed and it was filtered off and dried under vacuum (yield 0.63 g, 74%). The white powder was recrystallized in ethanol affording colorless crystals.
H atoms were placed at their idealized positions with distances of 0.97 and 0.93 Å for CH2 and CHAr, respectively. Uiso of the H atoms were fixed at 1.2 times of the Ueq of the preceding atom. Hydrogen atoms of the phenol and water of crystallization were found from Fourier difference map and treated with riding model and its Uiso were also fixed at 1.2 times Ueq of the parent O atom. Perchlorate anion is disordered with two alternative positions for all oxygen atoms. The occupancy for disordered atoms of 0.655 (18) and 0.345 (18) were refined. Although disordered O atoms and some carbon atoms show abnormal adp, all non-hydrogen atoms were refined anisotropically with positive definite thermal tensor. Further, the final indices wR2 decreased more than 33% (from about 0.18 to 0.1211) after anisotropic
of the disordered atoms.Zinc is found in an all known forms of life as a
It plays important roles in biological systems and its divalent ion is present in the active sites of several classes of metalloenzymes (Parkin, 2004). The design of artificial nucleases has recently received considerable interest due to their potential applications in catalysis, molecular biology and drug development (Mitić et al., 2006; Morrow & Iranzo, 2004; Rajski & Williams, 1998). Intense efforts have been devoted to the improvement of mimetic models for nucleases and peptidases through mono and polynuclear complexes (Boseggia et al., 2004; Mancin & Tecillia, 2007; Mitić et al., 2006). Recent studies have demonstrated that zinc complexes show anti-inflammatory and anti-tumoral activity (Beraldo & Gambino, 2004; Singla & Wadhwa, 1995; Zhou et al., 2003).The cation of (I) is a dinuclear ZnII complex showing centrosymmentric molecular structure with
Ci. Zinc(II) ions are in distorted octahedral environment surrounded by N3O donor set of the HL ligand (HL is (2-pyridylethyl)(2-pyridylmethyl)(2-hydroxybenzyl)amine) and two Cl- as exogenous bridges (Fig. 1). HL ligand acts as a typical four-chelating ligand and it is coordinated to the metal center through its three nitrogen atoms of the amine group and two pyridinic arms and one oxygen atom from protonated phenolic arm. The three N-donor sites of the HL ligand are arranged in meridional fashion, where pyridine rings are coordinated in trans positions with respect to each other. Consequently, the amine and phenol groups are trans to the asymmetric bis(µ-chloro) bridges.Bond lengths around metal center are in the expected range and comparable to other zinc(II) complexes with N2O donor set (Ojida et al., 2006; Trösch & Vahrenkamp, 1998; Gross & Vahrenkamp, 2005). The long distance Zn—Ophenol is typical for the coordination of protonated phenol group. The asymmetric bridge is due to the fact that two different groups with different trans effect are in trans positions to the chloro bridge. The distance Zn—Cl is shorter when amine group is trans to the bridge, whereas this distance is longer when phenol group is trans to µ-Cl. The cis angles are ranging from 77.69 (14)° to 100.55 (9)°, being the more closed angle restricted by a five-membered chelate ring formed by 2-methylpyridine arm. Although 2-ethylpyridine arm makes six-membered chelate ring, 2-methylpyridine arm also induces the greatest deviation from the ideal trans angle for N22—Zn1—N32.
The three-dimensional packing of (I) is governed by an extensive and interesting hydrogen bonding network (Fig. 2). Water molecules of crystallization and perchlorate anions form a cyclic structures by O1W—H···O interactions with a graph set of R42(8). These rings link the dinuclear cations through O10—H···O1W interactions between phenol and water groups building infinite one-dimensional chains along [010] direction with C(12) graph set. In addition, weak C—H···π(phenol) intermolecular interactions between pyridine (donor) and phenol (acceptor) groups of neighboring molecules also contribute to the stabilization of the crystalline structure aggregating the linear chains in two-dimensional polymer parallel to (110) plane. The calculated distance H35···centroidphenol is 3.136 Å and the angle C35—H35—Centroid is 147.55°. Finally, the molecules of (I) are stacked viewing along [100] in perpendicular projection of the linear chains.
For general background to zinc enzymes, see: Parkin (2004) and for general background to mimetic models of zinc enzymes, see: Boseggia et al. (2004); Mancin & Tecillia (2007); Mitić et al. (2006); Morrow & Iranzo (2004); Rajski & Williams (1998). For the biological activity of zinc complexes, see: Beraldo & Gambino (2004); Singla & Wadhwa (1995); Zhou et al. (2003). For related structures, see: Ojida et al. (2006); Trösch & Vahrenkamp (1998); Gross & Vahrenkamp (2005). For the preparation of the HL ligand, see: Yan & Que (1988).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn2Cl2(C20H21N3O)2](ClO4)2·2H2O | F(000) = 1104 |
Mr = 1075.37 | Dx = 1.553 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 12.3394 (14) Å | θ = 8.3–17.1° |
b = 13.2714 (9) Å | µ = 1.34 mm−1 |
c = 14.751 (2) Å | T = 293 K |
β = 107.779 (9)° | Irregular block, colorless |
V = 2300.2 (5) Å3 | 0.50 × 0.46 × 0.33 mm |
Z = 2 |
Enraf–Nonius CAD-4 diffractometer | 2810 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 25.1°, θmin = 1.9° |
ω–2θ scans | h = −14→14 |
Absorption correction: ψ scan [PLATON (Spek, 2009) and North et al. (1968)] | k = −15→0 |
Tmin = 0.554, Tmax = 0.666 | l = −17→0 |
4253 measured reflections | 3 standard reflections every 200 reflections |
4088 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0568P)2 + 1.725P] where P = (Fo2 + 2Fc2)/3 |
4088 reflections | (Δ/σ)max = 0.001 |
326 parameters | Δρmax = 0.47 e Å−3 |
124 restraints | Δρmin = −0.38 e Å−3 |
[Zn2Cl2(C20H21N3O)2](ClO4)2·2H2O | V = 2300.2 (5) Å3 |
Mr = 1075.37 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.3394 (14) Å | µ = 1.34 mm−1 |
b = 13.2714 (9) Å | T = 293 K |
c = 14.751 (2) Å | 0.50 × 0.46 × 0.33 mm |
β = 107.779 (9)° |
Enraf–Nonius CAD-4 diffractometer | 2810 reflections with I > 2σ(I) |
Absorption correction: ψ scan [PLATON (Spek, 2009) and North et al. (1968)] | Rint = 0.022 |
Tmin = 0.554, Tmax = 0.666 | 3 standard reflections every 200 reflections |
4253 measured reflections | intensity decay: 1% |
4088 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 124 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.47 e Å−3 |
4088 reflections | Δρmin = −0.38 e Å−3 |
326 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.62107 (4) | 0.44256 (4) | 0.58271 (3) | 0.05155 (18) | |
Cl1 | 0.47634 (10) | 0.38528 (8) | 0.44263 (7) | 0.0603 (3) | |
O10 | 0.6920 (3) | 0.2883 (2) | 0.5950 (2) | 0.0606 (7) | |
H10 | 0.6421 | 0.2376 | 0.5639 | 0.073* | |
N1 | 0.7553 (3) | 0.4677 (3) | 0.7236 (2) | 0.0572 (9) | |
C10 | 0.8077 (4) | 0.3716 (4) | 0.7702 (3) | 0.0635 (12) | |
H10A | 0.7484 | 0.3298 | 0.7810 | 0.076* | |
H10B | 0.8612 | 0.3875 | 0.8319 | 0.076* | |
C11 | 0.8689 (4) | 0.3121 (3) | 0.7133 (3) | 0.0576 (11) | |
C12 | 0.8065 (4) | 0.2698 (3) | 0.6261 (3) | 0.0531 (10) | |
C13 | 0.8592 (4) | 0.2119 (3) | 0.5741 (3) | 0.0645 (12) | |
H13 | 0.8176 | 0.1860 | 0.5152 | 0.077* | |
C14 | 0.9746 (5) | 0.1929 (4) | 0.6105 (4) | 0.0788 (15) | |
H14 | 1.0102 | 0.1532 | 0.5761 | 0.095* | |
C15 | 1.0369 (5) | 0.2315 (4) | 0.6964 (4) | 0.0830 (16) | |
H15 | 1.1143 | 0.2177 | 0.7205 | 0.100* | |
C16 | 0.9841 (4) | 0.2916 (4) | 0.7478 (4) | 0.0757 (14) | |
H16 | 1.0269 | 0.3184 | 0.8060 | 0.091* | |
C20 | 0.6837 (4) | 0.5105 (4) | 0.7793 (3) | 0.0656 (12) | |
H20A | 0.6611 | 0.5785 | 0.7579 | 0.079* | |
H20B | 0.7276 | 0.5133 | 0.8462 | 0.079* | |
C21 | 0.5802 (4) | 0.4470 (3) | 0.7672 (3) | 0.0613 (11) | |
N22 | 0.5338 (3) | 0.4064 (3) | 0.6806 (2) | 0.0550 (9) | |
C23 | 0.4413 (4) | 0.3488 (4) | 0.6644 (4) | 0.0654 (12) | |
H23 | 0.4105 | 0.3197 | 0.6046 | 0.078* | |
C24 | 0.3901 (5) | 0.3313 (4) | 0.7336 (4) | 0.0838 (16) | |
H24 | 0.3257 | 0.2908 | 0.7210 | 0.101* | |
C25 | 0.4356 (6) | 0.3747 (5) | 0.8221 (4) | 0.0969 (19) | |
H25 | 0.4010 | 0.3657 | 0.8693 | 0.116* | |
C26 | 0.5320 (5) | 0.4309 (4) | 0.8391 (4) | 0.0836 (16) | |
H26 | 0.5654 | 0.4585 | 0.8992 | 0.100* | |
C29 | 0.8489 (4) | 0.5393 (4) | 0.7227 (4) | 0.0754 (14) | |
H29A | 0.9141 | 0.5008 | 0.7187 | 0.090* | |
H29B | 0.8717 | 0.5761 | 0.7824 | 0.090* | |
C30 | 0.8161 (5) | 0.6143 (4) | 0.6411 (4) | 0.0844 (16) | |
H30A | 0.7421 | 0.6425 | 0.6365 | 0.101* | |
H30B | 0.8708 | 0.6690 | 0.6547 | 0.101* | |
C31 | 0.8117 (5) | 0.5679 (4) | 0.5478 (4) | 0.0785 (15) | |
N32 | 0.7396 (3) | 0.4907 (3) | 0.5160 (3) | 0.0622 (9) | |
C33 | 0.7388 (5) | 0.4462 (4) | 0.4339 (4) | 0.0786 (15) | |
H33 | 0.6886 | 0.3930 | 0.4117 | 0.094* | |
C34 | 0.8076 (7) | 0.4745 (6) | 0.3813 (5) | 0.110 (2) | |
H34 | 0.8059 | 0.4407 | 0.3256 | 0.132* | |
C35 | 0.8784 (7) | 0.5538 (7) | 0.4133 (7) | 0.131 (3) | |
H35 | 0.9246 | 0.5761 | 0.3779 | 0.157* | |
C36 | 0.8832 (5) | 0.6015 (5) | 0.4963 (6) | 0.105 (2) | |
H36 | 0.9328 | 0.6551 | 0.5183 | 0.126* | |
O1W | 0.5727 (3) | 0.1334 (3) | 0.5140 (3) | 0.1020 (13) | |
H1WA | 0.5020 | 0.1486 | 0.4914 | 0.122* | |
H1WB | 0.5999 | 0.1120 | 0.4716 | 0.122* | |
Cl2 | 0.30150 (12) | 0.07028 (13) | 0.58931 (11) | 0.0868 (4) | |
O1P | 0.2155 (15) | 0.0026 (14) | 0.5614 (12) | 0.141 (11) | 0.345 (18) |
O1P' | 0.2667 (19) | −0.0214 (9) | 0.5796 (12) | 0.312 (16) | 0.655 (18) |
O2P | 0.3503 (13) | 0.0570 (12) | 0.5146 (9) | 0.094 (6) | 0.345 (18) |
O2P' | 0.3620 (13) | 0.0972 (14) | 0.5372 (9) | 0.280 (13) | 0.655 (18) |
O3P | 0.3813 (14) | 0.0494 (19) | 0.6654 (11) | 0.32 (3) | 0.345 (18) |
O3P' | 0.3603 (13) | 0.0915 (9) | 0.6789 (5) | 0.193 (7) | 0.655 (18) |
O4P | 0.2611 (19) | 0.1602 (10) | 0.5814 (18) | 0.37 (4) | 0.345 (18) |
O4P' | 0.2149 (12) | 0.1330 (15) | 0.5729 (12) | 0.333 (16) | 0.655 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0624 (3) | 0.0507 (3) | 0.0425 (3) | 0.0015 (2) | 0.0173 (2) | −0.0019 (2) |
Cl1 | 0.0718 (7) | 0.0522 (6) | 0.0512 (6) | 0.0066 (5) | 0.0105 (5) | −0.0085 (5) |
O10 | 0.0609 (19) | 0.0487 (16) | 0.0676 (19) | 0.0033 (14) | 0.0125 (15) | −0.0097 (14) |
N1 | 0.065 (2) | 0.055 (2) | 0.0480 (19) | −0.0006 (17) | 0.0122 (16) | −0.0086 (16) |
C10 | 0.069 (3) | 0.074 (3) | 0.044 (2) | 0.008 (2) | 0.012 (2) | 0.005 (2) |
C11 | 0.063 (3) | 0.056 (3) | 0.054 (2) | 0.009 (2) | 0.019 (2) | 0.012 (2) |
C12 | 0.063 (3) | 0.042 (2) | 0.058 (2) | 0.005 (2) | 0.025 (2) | 0.0069 (19) |
C13 | 0.076 (3) | 0.054 (3) | 0.070 (3) | 0.005 (2) | 0.032 (3) | 0.002 (2) |
C14 | 0.088 (4) | 0.068 (3) | 0.096 (4) | 0.011 (3) | 0.052 (3) | 0.009 (3) |
C15 | 0.060 (3) | 0.090 (4) | 0.105 (4) | 0.013 (3) | 0.034 (3) | 0.023 (3) |
C16 | 0.068 (3) | 0.089 (4) | 0.066 (3) | 0.003 (3) | 0.015 (3) | 0.012 (3) |
C20 | 0.085 (3) | 0.066 (3) | 0.043 (2) | 0.005 (3) | 0.015 (2) | −0.013 (2) |
C21 | 0.080 (3) | 0.056 (3) | 0.051 (2) | 0.016 (2) | 0.024 (2) | 0.000 (2) |
N22 | 0.064 (2) | 0.055 (2) | 0.050 (2) | 0.0066 (18) | 0.0238 (17) | 0.0015 (16) |
C23 | 0.074 (3) | 0.059 (3) | 0.071 (3) | 0.007 (2) | 0.032 (3) | 0.007 (2) |
C24 | 0.086 (4) | 0.075 (4) | 0.105 (4) | 0.003 (3) | 0.051 (3) | 0.015 (3) |
C25 | 0.124 (5) | 0.102 (5) | 0.090 (4) | 0.007 (4) | 0.070 (4) | 0.012 (4) |
C26 | 0.115 (5) | 0.087 (4) | 0.061 (3) | 0.018 (4) | 0.044 (3) | 0.002 (3) |
C29 | 0.080 (3) | 0.069 (3) | 0.073 (3) | −0.014 (3) | 0.017 (3) | −0.014 (3) |
C30 | 0.072 (3) | 0.061 (3) | 0.120 (5) | −0.008 (3) | 0.027 (3) | −0.005 (3) |
C31 | 0.079 (3) | 0.060 (3) | 0.105 (4) | 0.013 (3) | 0.042 (3) | 0.015 (3) |
N32 | 0.073 (2) | 0.053 (2) | 0.068 (2) | 0.003 (2) | 0.032 (2) | 0.0069 (19) |
C33 | 0.089 (4) | 0.090 (4) | 0.068 (3) | 0.025 (3) | 0.041 (3) | 0.019 (3) |
C34 | 0.136 (6) | 0.121 (6) | 0.102 (5) | 0.042 (5) | 0.077 (5) | 0.039 (4) |
C35 | 0.133 (7) | 0.137 (7) | 0.162 (8) | 0.043 (6) | 0.103 (6) | 0.068 (6) |
C36 | 0.089 (4) | 0.089 (4) | 0.156 (6) | 0.003 (3) | 0.065 (5) | 0.036 (5) |
O1W | 0.081 (2) | 0.078 (3) | 0.142 (4) | −0.003 (2) | 0.025 (2) | −0.037 (2) |
Cl2 | 0.0735 (9) | 0.1060 (12) | 0.0876 (9) | −0.0081 (8) | 0.0345 (8) | −0.0347 (8) |
O1P | 0.147 (14) | 0.137 (18) | 0.108 (13) | −0.099 (13) | −0.005 (12) | 0.025 (13) |
O1P' | 0.50 (4) | 0.166 (13) | 0.37 (3) | −0.155 (18) | 0.28 (3) | −0.142 (17) |
O2P | 0.122 (11) | 0.103 (10) | 0.066 (7) | −0.021 (9) | 0.041 (7) | −0.039 (7) |
O2P' | 0.315 (19) | 0.41 (3) | 0.185 (13) | −0.25 (2) | 0.177 (14) | −0.159 (15) |
O3P | 0.107 (16) | 0.50 (7) | 0.27 (4) | 0.09 (3) | −0.074 (19) | 0.14 (4) |
O3P' | 0.36 (2) | 0.140 (9) | 0.064 (5) | −0.051 (10) | 0.037 (8) | −0.027 (5) |
O4P | 0.105 (18) | 0.127 (18) | 0.84 (10) | 0.018 (13) | 0.07 (3) | −0.24 (4) |
O4P' | 0.092 (9) | 0.48 (4) | 0.37 (2) | 0.118 (15) | −0.027 (10) | −0.17 (2) |
Zn1—N32 | 2.096 (4) | C23—H23 | 0.9300 |
Zn1—N22 | 2.103 (3) | C24—C25 | 1.380 (8) |
Zn1—O10 | 2.212 (3) | C24—H24 | 0.9300 |
Zn1—N1 | 2.252 (3) | C25—C26 | 1.360 (8) |
Zn1—Cl1 | 2.4048 (12) | C25—H25 | 0.9300 |
Zn1—Cl1i | 2.5555 (12) | C26—H26 | 0.9300 |
Cl1—Zn1i | 2.5555 (12) | C29—C30 | 1.519 (7) |
O10—C12 | 1.368 (5) | C29—H29A | 0.9700 |
O10—H10 | 0.9333 | C29—H29B | 0.9700 |
N1—C20 | 1.491 (5) | C30—C31 | 1.494 (8) |
N1—C10 | 1.498 (6) | C30—H30A | 0.9700 |
N1—C29 | 1.499 (6) | C30—H30B | 0.9700 |
C10—C11 | 1.512 (6) | C31—N32 | 1.345 (6) |
C10—H10A | 0.9700 | C31—C36 | 1.400 (8) |
C10—H10B | 0.9700 | N32—C33 | 1.344 (6) |
C11—C16 | 1.383 (6) | C33—C34 | 1.366 (8) |
C11—C12 | 1.400 (6) | C33—H33 | 0.9300 |
C12—C13 | 1.380 (6) | C34—C35 | 1.358 (11) |
C13—C14 | 1.383 (7) | C34—H34 | 0.9300 |
C13—H13 | 0.9300 | C35—C36 | 1.364 (10) |
C14—C15 | 1.365 (8) | C35—H35 | 0.9300 |
C14—H14 | 0.9300 | C36—H36 | 0.9300 |
C15—C16 | 1.391 (7) | O1W—H1WA | 0.8581 |
C15—H15 | 0.9300 | O1W—H1WB | 0.8444 |
C16—H16 | 0.9300 | Cl2—O2P' | 1.274 (9) |
C20—C21 | 1.494 (7) | Cl2—O3P | 1.277 (11) |
C20—H20A | 0.9700 | Cl2—O1P' | 1.283 (10) |
C20—H20B | 0.9700 | Cl2—O4P | 1.284 (11) |
C21—N22 | 1.344 (5) | Cl2—O4P' | 1.318 (10) |
C21—C26 | 1.382 (6) | Cl2—O3P' | 1.329 (8) |
N22—C23 | 1.334 (6) | Cl2—O1P | 1.354 (10) |
C23—C24 | 1.374 (6) | Cl2—O2P | 1.418 (10) |
N32—Zn1—N22 | 165.61 (15) | C23—N22—C21 | 119.6 (4) |
N32—Zn1—O10 | 90.28 (13) | C23—N22—Zn1 | 126.7 (3) |
N22—Zn1—O10 | 90.33 (12) | C21—N22—Zn1 | 113.7 (3) |
N32—Zn1—N1 | 88.07 (14) | N22—C23—C24 | 121.7 (5) |
N22—Zn1—N1 | 77.69 (14) | N22—C23—H23 | 119.1 |
O10—Zn1—N1 | 84.28 (12) | C24—C23—H23 | 119.1 |
N32—Zn1—Cl1 | 97.72 (11) | C23—C24—C25 | 119.0 (5) |
N22—Zn1—Cl1 | 96.67 (11) | C23—C24—H24 | 120.5 |
O10—Zn1—Cl1 | 87.09 (8) | C25—C24—H24 | 120.5 |
N1—Zn1—Cl1 | 169.64 (10) | C26—C25—C24 | 119.0 (5) |
N32—Zn1—Cl1i | 91.34 (10) | C26—C25—H25 | 120.5 |
N22—Zn1—Cl1i | 89.29 (10) | C24—C25—H25 | 120.5 |
O10—Zn1—Cl1i | 174.95 (8) | C25—C26—C21 | 120.0 (5) |
N1—Zn1—Cl1i | 100.55 (9) | C25—C26—H26 | 120.0 |
Cl1—Zn1—Cl1i | 87.95 (4) | C21—C26—H26 | 120.0 |
Zn1—Cl1—Zn1i | 92.05 (4) | N1—C29—C30 | 113.7 (4) |
C12—O10—Zn1 | 122.4 (2) | N1—C29—H29A | 108.8 |
C12—O10—H10 | 119.6 | C30—C29—H29A | 108.8 |
Zn1—O10—H10 | 116.2 | N1—C29—H29B | 108.8 |
C20—N1—C10 | 108.4 (3) | C30—C29—H29B | 108.8 |
C20—N1—C29 | 110.6 (4) | H29A—C29—H29B | 107.7 |
C10—N1—C29 | 108.5 (4) | C31—C30—C29 | 112.7 (4) |
C20—N1—Zn1 | 100.0 (2) | C31—C30—H30A | 109.0 |
C10—N1—Zn1 | 113.0 (3) | C29—C30—H30A | 109.0 |
C29—N1—Zn1 | 116.0 (3) | C31—C30—H30B | 109.0 |
N1—C10—C11 | 114.1 (3) | C29—C30—H30B | 109.0 |
N1—C10—H10A | 108.7 | H30A—C30—H30B | 107.8 |
C11—C10—H10A | 108.7 | N32—C31—C36 | 120.9 (6) |
N1—C10—H10B | 108.7 | N32—C31—C30 | 118.0 (4) |
C11—C10—H10B | 108.7 | C36—C31—C30 | 121.2 (6) |
H10A—C10—H10B | 107.6 | C33—N32—C31 | 118.1 (4) |
C16—C11—C12 | 118.3 (4) | C33—N32—Zn1 | 118.4 (3) |
C16—C11—C10 | 122.0 (4) | C31—N32—Zn1 | 123.4 (3) |
C12—C11—C10 | 119.5 (4) | N32—C33—C34 | 123.8 (6) |
O10—C12—C13 | 121.8 (4) | N32—C33—H33 | 118.1 |
O10—C12—C11 | 117.3 (4) | C34—C33—H33 | 118.1 |
C13—C12—C11 | 120.9 (4) | C35—C34—C33 | 117.5 (7) |
C12—C13—C14 | 119.3 (5) | C35—C34—H34 | 121.3 |
C12—C13—H13 | 120.3 | C33—C34—H34 | 121.3 |
C14—C13—H13 | 120.3 | C34—C35—C36 | 121.2 (7) |
C15—C14—C13 | 120.8 (5) | C34—C35—H35 | 119.4 |
C15—C14—H14 | 119.6 | C36—C35—H35 | 119.4 |
C13—C14—H14 | 119.6 | C35—C36—C31 | 118.5 (7) |
C14—C15—C16 | 119.8 (5) | C35—C36—H36 | 120.7 |
C14—C15—H15 | 120.1 | C31—C36—H36 | 120.7 |
C16—C15—H15 | 120.1 | H1WA—O1W—H1WB | 112.3 |
C11—C16—C15 | 120.8 (5) | O2P'—Cl2—O1P' | 115.8 (9) |
C11—C16—H16 | 119.6 | O3P—Cl2—O4P | 117.1 (10) |
C15—C16—H16 | 119.6 | O2P'—Cl2—O4P' | 107.6 (9) |
N1—C20—C21 | 110.4 (3) | O1P'—Cl2—O4P' | 110.7 (7) |
N1—C20—H20A | 109.6 | O2P'—Cl2—O3P' | 107.3 (7) |
C21—C20—H20A | 109.6 | O1P'—Cl2—O3P' | 111.9 (8) |
N1—C20—H20B | 109.6 | O4P'—Cl2—O3P' | 102.4 (7) |
C21—C20—H20B | 109.6 | O3P—Cl2—O1P | 116.5 (11) |
H20A—C20—H20B | 108.1 | O4P—Cl2—O1P | 110.0 (8) |
N22—C21—C26 | 120.6 (5) | O3P—Cl2—O2P | 105.0 (9) |
N22—C21—C20 | 116.1 (4) | O4P—Cl2—O2P | 106.8 (11) |
C26—C21—C20 | 123.2 (4) | O1P—Cl2—O2P | 99.2 (8) |
N32—Zn1—Cl1—Zn1i | −91.08 (11) | C20—C21—N22—C23 | 179.9 (4) |
N22—Zn1—Cl1—Zn1i | 89.05 (10) | C26—C21—N22—Zn1 | 179.4 (4) |
O10—Zn1—Cl1—Zn1i | 179.03 (8) | C20—C21—N22—Zn1 | 0.4 (5) |
N1—Zn1—Cl1—Zn1i | 145.4 (5) | N32—Zn1—N22—C23 | −166.2 (5) |
N32—Zn1—O10—C12 | 45.9 (3) | O10—Zn1—N22—C23 | −73.8 (4) |
N22—Zn1—O10—C12 | −119.7 (3) | N1—Zn1—N22—C23 | −157.9 (4) |
N1—Zn1—O10—C12 | −42.1 (3) | Cl1—Zn1—N22—C23 | 13.3 (4) |
Cl1—Zn1—O10—C12 | 143.6 (3) | Cl1i—Zn1—N22—C23 | 101.2 (4) |
N32—Zn1—N1—C20 | 141.0 (3) | N32—Zn1—N22—C21 | 13.3 (7) |
N22—Zn1—N1—C20 | −37.0 (3) | O10—Zn1—N22—C21 | 105.7 (3) |
O10—Zn1—N1—C20 | −128.6 (3) | N1—Zn1—N22—C21 | 21.6 (3) |
Cl1—Zn1—N1—C20 | −94.8 (6) | Cl1—Zn1—N22—C21 | −167.2 (3) |
Cl1i—Zn1—N1—C20 | 50.0 (3) | Cl1i—Zn1—N22—C21 | −79.3 (3) |
N32—Zn1—N1—C10 | −104.0 (3) | C21—N22—C23—C24 | 1.5 (7) |
N22—Zn1—N1—C10 | 78.0 (3) | Zn1—N22—C23—C24 | −179.1 (4) |
O10—Zn1—N1—C10 | −13.5 (3) | N22—C23—C24—C25 | 0.1 (8) |
Cl1—Zn1—N1—C10 | 20.2 (7) | C23—C24—C25—C26 | −2.1 (9) |
Cl1i—Zn1—N1—C10 | 165.0 (3) | C24—C25—C26—C21 | 2.5 (9) |
N32—Zn1—N1—C29 | 22.2 (3) | N22—C21—C26—C25 | −1.0 (8) |
N22—Zn1—N1—C29 | −155.8 (3) | C20—C21—C26—C25 | 178.0 (5) |
O10—Zn1—N1—C29 | 112.6 (3) | C20—N1—C29—C30 | −89.1 (5) |
Cl1—Zn1—N1—C29 | 146.4 (5) | C10—N1—C29—C30 | 152.1 (4) |
Cl1i—Zn1—N1—C29 | −68.8 (3) | Zn1—N1—C29—C30 | 23.7 (5) |
C20—N1—C10—C11 | 171.6 (4) | N1—C29—C30—C31 | −74.9 (6) |
C29—N1—C10—C11 | −68.3 (5) | C29—C30—C31—N32 | 59.3 (6) |
Zn1—N1—C10—C11 | 61.8 (4) | C29—C30—C31—C36 | −118.6 (6) |
N1—C10—C11—C16 | 118.6 (5) | C36—C31—N32—C33 | 0.6 (7) |
N1—C10—C11—C12 | −66.2 (5) | C30—C31—N32—C33 | −177.3 (4) |
Zn1—O10—C12—C13 | −126.7 (4) | C36—C31—N32—Zn1 | −175.2 (4) |
Zn1—O10—C12—C11 | 53.2 (4) | C30—C31—N32—Zn1 | 6.9 (6) |
C16—C11—C12—O10 | 177.9 (4) | N22—Zn1—N32—C33 | 152.3 (5) |
C10—C11—C12—O10 | 2.5 (6) | O10—Zn1—N32—C33 | 59.9 (3) |
C16—C11—C12—C13 | −2.2 (6) | N1—Zn1—N32—C33 | 144.1 (3) |
C10—C11—C12—C13 | −177.6 (4) | Cl1—Zn1—N32—C33 | −27.2 (3) |
O10—C12—C13—C14 | −177.9 (4) | Cl1i—Zn1—N32—C33 | −115.3 (3) |
C11—C12—C13—C14 | 2.2 (6) | N22—Zn1—N32—C31 | −32.0 (8) |
C12—C13—C14—C15 | −0.8 (7) | O10—Zn1—N32—C31 | −124.4 (4) |
C13—C14—C15—C16 | −0.6 (8) | N1—Zn1—N32—C31 | −40.1 (4) |
C12—C11—C16—C15 | 0.8 (7) | Cl1—Zn1—N32—C31 | 148.5 (4) |
C10—C11—C16—C15 | 176.1 (5) | Cl1i—Zn1—N32—C31 | 60.4 (4) |
C14—C15—C16—C11 | 0.6 (8) | C31—N32—C33—C34 | 0.4 (7) |
C10—N1—C20—C21 | −70.2 (4) | Zn1—N32—C33—C34 | 176.4 (4) |
C29—N1—C20—C21 | 171.0 (4) | N32—C33—C34—C35 | −1.6 (9) |
Zn1—N1—C20—C21 | 48.2 (4) | C33—C34—C35—C36 | 1.9 (11) |
N1—C20—C21—N22 | −36.3 (5) | C34—C35—C36—C31 | −1.0 (11) |
N1—C20—C21—C26 | 144.7 (4) | N32—C31—C36—C35 | −0.3 (9) |
C26—C21—N22—C23 | −1.0 (6) | C30—C31—C36—C35 | 177.6 (6) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10···O1W | 0.93 | 1.67 | 2.598 (4) | 170 |
O1W—H1WA···O2P | 0.86 | 2.34 | 2.928 (15) | 126 |
O1W—H1WA···O2P′ | 0.86 | 2.15 | 2.766 (13) | 128 |
O1W—H1WB···O1P′ii | 0.84 | 2.34 | 3.117 (19) | 153 |
O1W—H1WB···O2Pii | 0.84 | 2.32 | 2.777 (15) | 114 |
C35—H35···Cgiii | 0.93 | 3.14 | 3.944 | 148 |
Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn2Cl2(C20H21N3O)2](ClO4)2·2H2O |
Mr | 1075.37 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 12.3394 (14), 13.2714 (9), 14.751 (2) |
β (°) | 107.779 (9) |
V (Å3) | 2300.2 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.34 |
Crystal size (mm) | 0.50 × 0.46 × 0.33 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan [PLATON (Spek, 2009) and North et al. (1968)] |
Tmin, Tmax | 0.554, 0.666 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4253, 4088, 2810 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.121, 1.05 |
No. of reflections | 4088 |
No. of parameters | 326 |
No. of restraints | 124 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.38 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).
Cg is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H10···O1W | 0.93 | 1.67 | 2.598 (4) | 170 |
O1W—H1WA···O2P | 0.86 | 2.34 | 2.928 (15) | 126 |
O1W—H1WB···O2Pi | 0.84 | 2.32 | 2.777 (15) | 114 |
C35—H35···Cgii | 0.93 | 3.14 | 3.944 | 148 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1. |
Acknowledgements
The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálise for financial assistance.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39. Web of Science CrossRef PubMed CAS Google Scholar
Boseggia, E., Gatos, M., Lucatello, L., Mancin, F., Moro, S., Palumbo, M., Sissi, C., Tecilla, P., Tonellato, U. & Zagotto, G. (2004). J. Am. Chem. Soc. 126, 4543–4549. Web of Science CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gross, F. & Vahrenkamp, H. (2005). Inorg. Chem. 44, 3321–3329. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mancin, F. & Tecillia, P. (2007). New J. Chem. 31, 800–817. Web of Science CrossRef CAS Google Scholar
Mitić, N., Smith, S. J., Neves, A., Guddat, L. W., Gahan, L. R. & Schenk, G. (2006). Chem. Rev. 106, 3338–3363. Web of Science CrossRef PubMed CAS Google Scholar
Morrow, J. R. & Iranzo, O. (2004). Curr. Opin. Chem. Biol. 8, 192–200. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Ojida, A., Nonaka, H., Miyahara, Y., Tamaru, S., Sada, K. & Hamachi, I. (2006). Angew. Chem. Int. Ed. 45, 5518–5521. Web of Science CSD CrossRef CAS Google Scholar
Parkin, G. (2004). Chem. Rev. 104, 699–767. Web of Science CrossRef PubMed CAS Google Scholar
Rajski, S. R. & Williams, R. M. (1998). Chem. Rev. 98, 2723–2795. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singla, A. K. & Wadhwa, H. (1995). Int. J. Pharm. 120, 145–155. CrossRef CAS Web of Science Google Scholar
Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trösch, A. & Vahrenkamp, H. (1998). Eur. J. Inorg. Chem. pp. 827–832. Google Scholar
Yan, S. & Que, L. (1988). J. Am. Chem. Soc. 110, 5222–25224. CSD CrossRef CAS Web of Science Google Scholar
Zhou, Q., Hambley, T. W., Kennedy, B. J. & Lay, P. A. (2003). Inorg. Chem. 42, 8557–8566. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Zinc is found in an all known forms of life as a trace element. It plays important roles in biological systems and its divalent ion is present in the active sites of several classes of metalloenzymes (Parkin, 2004). The design of artificial nucleases has recently received considerable interest due to their potential applications in catalysis, molecular biology and drug development (Mitić et al., 2006; Morrow & Iranzo, 2004; Rajski & Williams, 1998). Intense efforts have been devoted to the improvement of mimetic models for nucleases and peptidases through mono and polynuclear complexes (Boseggia et al., 2004; Mancin & Tecillia, 2007; Mitić et al., 2006). Recent studies have demonstrated that zinc complexes show anti-inflammatory and anti-tumoral activity (Beraldo & Gambino, 2004; Singla & Wadhwa, 1995; Zhou et al., 2003).
The cation of (I) is a dinuclear ZnII complex showing centrosymmentric molecular structure with local symmetry Ci. Zinc(II) ions are in distorted octahedral environment surrounded by N3O donor set of the HL ligand (HL is (2-pyridylethyl)(2-pyridylmethyl)(2-hydroxybenzyl)amine) and two Cl- as exogenous bridges (Fig. 1). HL ligand acts as a typical four-chelating ligand and it is coordinated to the metal center through its three nitrogen atoms of the amine group and two pyridinic arms and one oxygen atom from protonated phenolic arm. The three N-donor sites of the HL ligand are arranged in meridional fashion, where pyridine rings are coordinated in trans positions with respect to each other. Consequently, the amine and phenol groups are trans to the asymmetric bis(µ-chloro) bridges.
Bond lengths around metal center are in the expected range and comparable to other zinc(II) complexes with N2O donor set (Ojida et al., 2006; Trösch & Vahrenkamp, 1998; Gross & Vahrenkamp, 2005). The long distance Zn—Ophenol is typical for the coordination of protonated phenol group. The asymmetric bridge is due to the fact that two different groups with different trans effect are in trans positions to the chloro bridge. The distance Zn—Cl is shorter when amine group is trans to the bridge, whereas this distance is longer when phenol group is trans to µ-Cl. The cis angles are ranging from 77.69 (14)° to 100.55 (9)°, being the more closed angle restricted by a five-membered chelate ring formed by 2-methylpyridine arm. Although 2-ethylpyridine arm makes six-membered chelate ring, 2-methylpyridine arm also induces the greatest deviation from the ideal trans angle for N22—Zn1—N32.
The three-dimensional packing of (I) is governed by an extensive and interesting hydrogen bonding network (Fig. 2). Water molecules of crystallization and perchlorate anions form a cyclic structures by O1W—H···O interactions with a graph set of R42(8). These rings link the dinuclear cations through O10—H···O1W interactions between phenol and water groups building infinite one-dimensional chains along [010] direction with C(12) graph set. In addition, weak C—H···π(phenol) intermolecular interactions between pyridine (donor) and phenol (acceptor) groups of neighboring molecules also contribute to the stabilization of the crystalline structure aggregating the linear chains in two-dimensional polymer parallel to (110) plane. The calculated distance H35···centroidphenol is 3.136 Å and the angle C35—H35—Centroid is 147.55°. Finally, the molecules of (I) are stacked viewing along [100] in perpendicular projection of the linear chains.