organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propyl 4-hy­droxy­benzoate

aKey Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: mdchengjing@126.com

(Received 4 December 2009; accepted 4 January 2010; online 30 January 2010)

There are two mol­ecules in the asymmetric unit of the title compound, C10H12O3. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds into chains running along [010]. Adjacent chains are joined together by weak ππ inter­actions between benzene rings [centroid–centroid distance = 4.040 (2) Å].

Related literature

For the structure of another p-hydroxybenzoate, see: Mandal & Kadirvelraj (1996[Mandal, S. S. & Kadirvelraj, R. (1996). Chem. Commun. pp. 2725-2726.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O3

  • Mr = 180.20

  • Monoclinic, P 21 /c

  • a = 12.0634 (12) Å

  • b = 13.8419 (14) Å

  • c = 11.7982 (11) Å

  • β = 108.625 (2)°

  • V = 1866.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 10603 measured reflections

  • 3271 independent reflections

  • 2960 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.189

  • S = 1.27

  • 3271 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 1.93 2.730 (3) 167
O1—H1⋯O2ii 0.82 1.91 2.720 (3) 171
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The propyl 4-hydroxybenzoate is a kind of p-hydroxybenzoates, which are also known as Nipagin esters. Nipagin ester is a preservative of large consumption in the world. Due to the high antibacterial activity and low toxicity of Nipagin ester, it becomes an inevitable trend that Nipagin ester replaces the traditional preservative. Here, we report the crystal structure of propyl 4-hydroxybenzoate.

There are two molecules in the asymmetric unit (Fig. 1). All bond lengths and bond angles lie in expected ranges.

As shown in Fig.2, molecules are linked by O—H···O hydrogen bonds into one-dimensional chains running along the [010] direction. Adjacent chains are further linked together by weak ππ interactions between two phenyl rings (centroid-to-centroid distance is 4.040 Å).

Related literature top

For related literature [on what subject?], see: Mandal & Kadirvelraj (1996).

Experimental top

1H-NMR (C3D6O,600MHZ):δ7.916(d,2H,aromatic),δ6.933(d,2H,aromatic), δ4.208(t,2H,-COOCH2-),δ2.096(s,1H,-OH),δ1.752(q,2H,-CH2-), δ1.004(t,3H,-CH3);

Crystals appropriate for data collection were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

All the H atoms attached to carbon atoms were located from geometrical considerations with C—H= 0.93Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl), and Ueq(H)=1.2Ueq(aromatic, methylene C) and 1.5Ueq(methyl C). Hydrogen atoms H1 and H4 were found from difference maps and then placed at their ideal positions with O—H=0.82Å and Uiso(H)=1.5Ueq(O).

Structure description top

The propyl 4-hydroxybenzoate is a kind of p-hydroxybenzoates, which are also known as Nipagin esters. Nipagin ester is a preservative of large consumption in the world. Due to the high antibacterial activity and low toxicity of Nipagin ester, it becomes an inevitable trend that Nipagin ester replaces the traditional preservative. Here, we report the crystal structure of propyl 4-hydroxybenzoate.

There are two molecules in the asymmetric unit (Fig. 1). All bond lengths and bond angles lie in expected ranges.

As shown in Fig.2, molecules are linked by O—H···O hydrogen bonds into one-dimensional chains running along the [010] direction. Adjacent chains are further linked together by weak ππ interactions between two phenyl rings (centroid-to-centroid distance is 4.040 Å).

For related literature [on what subject?], see: Mandal & Kadirvelraj (1996).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I), with O-H···O hydrogen bonds shown as dashed lines.
Propyl 4-hydroxybenzoate top
Crystal data top
C10H12O3F(000) = 768
Mr = 180.20Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4791 reflections
a = 12.0634 (12) Åθ = 2.3–28.3°
b = 13.8419 (14) ŵ = 0.09 mm1
c = 11.7982 (11) ÅT = 298 K
β = 108.625 (2)°Block, colourless
V = 1866.9 (3) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2960 reflections with I > 2σ(I)
Radiation source: fine focus sealed Siemens Mo tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
0.3° wide ω exposures scansh = 1412
10603 measured reflectionsk = 1616
3271 independent reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: geom and difmap
wR(F2) = 0.189H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0626P)2 + 1.2781P]
where P = (Fo2 + 2Fc2)/3
3271 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C10H12O3V = 1866.9 (3) Å3
Mr = 180.20Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.0634 (12) ŵ = 0.09 mm1
b = 13.8419 (14) ÅT = 298 K
c = 11.7982 (11) Å0.30 × 0.20 × 0.20 mm
β = 108.625 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2960 reflections with I > 2σ(I)
10603 measured reflectionsRint = 0.027
3271 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.27Δρmax = 0.24 e Å3
3271 reflectionsΔρmin = 0.30 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9740 (2)0.97287 (14)0.3245 (2)0.0657 (7)
H11.00930.97970.27600.098*
O20.9063 (2)0.51536 (14)0.3293 (2)0.0608 (6)
O30.82019 (18)0.56944 (13)0.45749 (18)0.0488 (5)
C10.9519 (3)0.87795 (19)0.3346 (3)0.0447 (7)
C20.8980 (3)0.8521 (2)0.4176 (3)0.0545 (8)
H20.87770.89960.46310.065*
C30.8744 (3)0.75689 (19)0.4330 (3)0.0461 (7)
H30.83810.74030.48900.055*
C40.9044 (2)0.68486 (19)0.3652 (2)0.0370 (6)
C50.9577 (3)0.7118 (2)0.2820 (3)0.0460 (7)
H50.97810.66460.23620.055*
C60.9810 (3)0.8072 (2)0.2660 (3)0.0467 (7)
H61.01620.82420.20930.056*
C70.8785 (2)0.5822 (2)0.3806 (3)0.0403 (7)
C80.7870 (3)0.4715 (2)0.4759 (3)0.0527 (8)
H8A0.85600.43350.51560.063*
H8B0.74630.44140.39970.063*
C90.7087 (4)0.4766 (2)0.5519 (3)0.0672 (10)
H9A0.75090.50670.62770.081*
H9B0.64180.51700.51240.081*
C100.6668 (4)0.3798 (3)0.5749 (4)0.0862 (13)
H10A0.62030.35160.50060.129*
H10B0.62020.38640.62700.129*
H10C0.73270.33890.61200.129*
O40.5717 (2)0.61479 (15)0.7201 (2)0.0742 (8)
H40.52980.60820.76220.111*
O50.5895 (2)1.07375 (15)0.6687 (2)0.0594 (6)
O60.68661 (18)1.01843 (13)0.55031 (18)0.0492 (5)
C110.5838 (3)0.7104 (2)0.7005 (3)0.0482 (7)
C120.6369 (3)0.7352 (2)0.6165 (3)0.0610 (9)
H120.66330.68710.57660.073*
C130.6507 (3)0.8303 (2)0.5919 (3)0.0497 (8)
H130.68600.84620.53490.060*
C140.6125 (2)0.9033 (2)0.6512 (2)0.0385 (6)
C150.5595 (3)0.8775 (2)0.7353 (3)0.0441 (7)
H150.53350.92560.77570.053*
C160.5447 (3)0.7818 (2)0.7602 (3)0.0470 (7)
H160.50880.76560.81660.056*
C170.6265 (2)1.0062 (2)0.6259 (2)0.0403 (7)
C180.7092 (3)1.11661 (19)0.5211 (3)0.0476 (7)
H18A0.75971.14910.59160.057*
H18B0.63651.15240.49180.057*
C190.7673 (3)1.1111 (2)0.4270 (3)0.0526 (8)
H19A0.71621.07760.35770.063*
H19B0.83901.07410.45710.063*
C200.7954 (3)1.2110 (2)0.3895 (3)0.0672 (10)
H20A0.72431.24700.35710.101*
H20B0.83371.20470.33000.101*
H20C0.84611.24430.45790.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1019 (19)0.0285 (11)0.0922 (17)0.0029 (11)0.0670 (15)0.0030 (11)
O20.0824 (16)0.0342 (11)0.0856 (16)0.0030 (10)0.0544 (14)0.0113 (11)
O30.0671 (14)0.0298 (10)0.0629 (13)0.0052 (9)0.0393 (11)0.0006 (9)
C10.0551 (18)0.0306 (14)0.0554 (18)0.0010 (12)0.0275 (15)0.0017 (12)
C20.078 (2)0.0349 (15)0.069 (2)0.0015 (15)0.0485 (18)0.0054 (14)
C30.0614 (19)0.0340 (15)0.0558 (18)0.0001 (13)0.0370 (16)0.0031 (12)
C40.0394 (15)0.0325 (14)0.0419 (15)0.0006 (11)0.0168 (12)0.0009 (11)
C50.0575 (18)0.0392 (15)0.0520 (17)0.0024 (13)0.0325 (15)0.0083 (13)
C60.0606 (19)0.0425 (16)0.0486 (17)0.0022 (14)0.0337 (15)0.0032 (13)
C70.0398 (15)0.0372 (15)0.0479 (16)0.0008 (12)0.0198 (13)0.0033 (12)
C80.068 (2)0.0302 (15)0.066 (2)0.0044 (14)0.0305 (17)0.0049 (13)
C90.101 (3)0.0448 (18)0.072 (2)0.0123 (18)0.051 (2)0.0045 (16)
C100.121 (4)0.063 (2)0.099 (3)0.018 (2)0.070 (3)0.000 (2)
O40.107 (2)0.0348 (12)0.111 (2)0.0041 (12)0.0776 (17)0.0060 (12)
O50.0821 (16)0.0367 (12)0.0756 (15)0.0051 (10)0.0478 (13)0.0039 (10)
O60.0660 (13)0.0292 (10)0.0655 (13)0.0020 (9)0.0395 (11)0.0008 (9)
C110.0502 (17)0.0375 (15)0.0637 (19)0.0021 (13)0.0279 (15)0.0039 (14)
C120.079 (2)0.0347 (16)0.093 (3)0.0007 (15)0.061 (2)0.0071 (16)
C130.0618 (19)0.0394 (16)0.065 (2)0.0035 (14)0.0435 (17)0.0034 (14)
C140.0347 (14)0.0397 (15)0.0427 (15)0.0020 (11)0.0145 (12)0.0007 (12)
C150.0544 (18)0.0368 (15)0.0475 (16)0.0010 (13)0.0254 (14)0.0052 (12)
C160.0520 (17)0.0494 (17)0.0483 (17)0.0005 (14)0.0281 (15)0.0023 (14)
C170.0412 (15)0.0390 (15)0.0422 (15)0.0020 (12)0.0154 (13)0.0028 (12)
C180.0585 (19)0.0271 (14)0.0614 (19)0.0043 (12)0.0250 (15)0.0014 (13)
C190.063 (2)0.0368 (16)0.067 (2)0.0039 (14)0.0330 (17)0.0001 (14)
C200.081 (3)0.0498 (19)0.084 (3)0.0122 (18)0.045 (2)0.0050 (18)
Geometric parameters (Å, º) top
O1—C11.353 (3)O4—C111.360 (3)
O1—H10.8206O4—H40.8191
O2—C71.210 (3)O5—C171.213 (3)
O3—C71.326 (3)O6—C171.328 (3)
O3—C81.449 (3)O6—C181.449 (3)
C1—C21.384 (4)C11—C161.381 (4)
C1—C61.385 (4)C11—C121.383 (4)
C2—C31.374 (4)C12—C131.369 (4)
C2—H20.9300C12—H120.9300
C3—C41.397 (4)C13—C141.389 (4)
C3—H30.9300C13—H130.9300
C4—C51.386 (4)C14—C151.387 (4)
C4—C71.478 (4)C14—C171.476 (4)
C5—C61.375 (4)C15—C161.381 (4)
C5—H50.9300C15—H150.9300
C6—H60.9300C16—H160.9300
C8—C91.497 (4)C18—C191.492 (4)
C8—H8A0.9700C18—H18A0.9700
C8—H8B0.9700C18—H18B0.9700
C9—C101.488 (5)C19—C201.523 (4)
C9—H9A0.9700C19—H19A0.9700
C9—H9B0.9700C19—H19B0.9700
C10—H10A0.9600C20—H20A0.9600
C10—H10B0.9600C20—H20B0.9600
C10—H10C0.9600C20—H20C0.9600
C1—O1—H1109.5C11—O4—H4109.5
C7—O3—C8117.4 (2)C17—O6—C18117.6 (2)
O1—C1—C2117.5 (3)O4—C11—C16122.4 (3)
O1—C1—C6122.8 (3)O4—C11—C12117.6 (3)
C2—C1—C6119.7 (3)C16—C11—C12120.0 (3)
C3—C2—C1120.4 (3)C13—C12—C11120.4 (3)
C3—C2—H2119.8C13—C12—H12119.8
C1—C2—H2119.8C11—C12—H12119.8
C2—C3—C4120.4 (3)C12—C13—C14120.7 (3)
C2—C3—H3119.8C12—C13—H13119.7
C4—C3—H3119.8C14—C13—H13119.7
C5—C4—C3118.5 (2)C15—C14—C13118.4 (3)
C5—C4—C7120.6 (2)C15—C14—C17120.1 (2)
C3—C4—C7120.8 (2)C13—C14—C17121.5 (2)
C6—C5—C4121.2 (3)C16—C15—C14121.3 (3)
C6—C5—H5119.4C16—C15—H15119.3
C4—C5—H5119.4C14—C15—H15119.3
C5—C6—C1119.8 (3)C15—C16—C11119.3 (3)
C5—C6—H6120.1C15—C16—H16120.4
C1—C6—H6120.1C11—C16—H16120.4
O2—C7—O3122.2 (3)O5—C17—O6122.3 (3)
O2—C7—C4124.8 (3)O5—C17—C14125.3 (3)
O3—C7—C4113.0 (2)O6—C17—C14112.4 (2)
O3—C8—C9107.6 (2)O6—C18—C19107.3 (2)
O3—C8—H8A110.2O6—C18—H18A110.3
C9—C8—H8A110.2C19—C18—H18A110.3
O3—C8—H8B110.2O6—C18—H18B110.3
C9—C8—H8B110.2C19—C18—H18B110.3
H8A—C8—H8B108.5H18A—C18—H18B108.5
C10—C9—C8112.5 (3)C18—C19—C20111.8 (3)
C10—C9—H9A109.1C18—C19—H19A109.3
C8—C9—H9A109.1C20—C19—H19A109.3
C10—C9—H9B109.1C18—C19—H19B109.3
C8—C9—H9B109.1C20—C19—H19B109.3
H9A—C9—H9B107.8H19A—C19—H19B107.9
C9—C10—H10A109.5C19—C20—H20A109.5
C9—C10—H10B109.5C19—C20—H20B109.5
H10A—C10—H10B109.5H20A—C20—H20B109.5
C9—C10—H10C109.5C19—C20—H20C109.5
H10A—C10—H10C109.5H20A—C20—H20C109.5
H10B—C10—H10C109.5H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.932.730 (3)167
O1—H1···O2ii0.821.912.720 (3)171
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12O3
Mr180.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.0634 (12), 13.8419 (14), 11.7982 (11)
β (°) 108.625 (2)
V3)1866.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10603, 3271, 2960
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.189, 1.27
No. of reflections3271
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.932.730 (3)166.7
O1—H1···O2ii0.821.912.720 (3)171.4
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

We would like to thank the National Nature Science Foundation of China (30971948) and Wuhan's program in science and technology (200760423155) for financial support for this work. We also wish to express our thanks to Meng Xianggao for his warmest help and patience.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMandal, S. S. & Kadirvelraj, R. (1996). Chem. Commun. pp. 2725–2726.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds