organic compounds
cis,trans,cis,cis-7-tert-Butyldimethylsilyloxy-4,10-dimethyltetracyclo[5.4.1.04,12.010,12]dodecan-2-one
aDepartment of Chemistry and Biochemistry, University Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: reinhart.keese@ioc.unibe.ch
In the structure of the title compound, C20H34O2Si, a cis,trans,cis,cis-[4.5.5.5]fenestrane derivative, the geometry of the central C(C)4 shows considerable distortion from an ideal tetrahedral arrangement towards planarity, with two opposite bridgehead bond angles of 128.87 (18) and 122.83 (17)°. The other bridgehead angle of the trans-bicyclo[3.3.0]octane subunit is also large [126.57 (19)°].
Related literature
For the synthesis and structures of related compounds, see: Thommen et al. (1996); Wang et al. (1996); Weyermann (1997); Weyermann & Keese (2010). For information on planarizing distortions in the central C(C)4 moiety, see: Keese (2006). For methods to enhance the planarizing distortions in the central C(C)4 see: Luef & Keese (1993). For an analysis of the bond angles and other details concerning trans-fused bicyclo[3.3.0]octanes, see: Hirschi et al. (1992). For information concerning the Pauson–Khand reaction, see: Khand, Knox, Pauson & Watts (1973); Khand, Knox, Pauson, Watts & Foreman (1973).
Experimental
Crystal data
|
Data collection: STADI-4 (Stoe & Cie, 1997); cell STADI-4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810000887/fk2011sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810000887/fk2011Isup2.hkl
The synthesis of the title compound, (3), is illustrated in Fig. 2. 2,8-dimethyl-5-ethinyl-5-(tert.-butyldimethylsilyloxy =OTBDMS)-1,8-nonadiene (1) was treated with 1.15 molequivalent of Co2(CO)8 in tetrahydrofuran/CH2Cl2 (1:1) and N-methylmorpholine-N oxide (NMO) at r.t. to give the enone (2), together with another diastereomer. Irradiation with UV light (254 nm) gave the title fenestranone (3) in 79% isolated yield. Colourless needle-like crystals of (3) were obtained by crystallization from hexane at 253 K (m.p. 356–348 K).
The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.97 - 0.99 Å with Uiso(H) = k × Ueq(C), where k = 1.2 for CH and CH2 H-atoms and 1.5 for methyl H-atoms.
Fenestranes are a unique class of hydrocarbons and contain a quaternary C atom in the center of the tetracyclic structure. These compounds are of interest for the planarizing distortions in the central C(C)4 moiety, apparent in two opposite bond angles larger than the bond angle of 109.47° in a regular tetrahedral arrangement (Keese, 2006). Systematic investigations of the structural features in a variety of such molecules by semiempirical methods have revealed that they can be enhanced by ring contraction, inversion at one (or more) of the four bridgehead centers, giving rise to a trans-fused bicylo[3.3.0]octane subunit, by introduction of a bridgehead double bond (Luef & Keese, 1993) and by
at the peripheral bridgehead positions. As part of our efforts to prepare with a combination of structural features for enhanced planarizing distortions we have prepared the title compound, (3), from the yne-diene (1) by a Co2(CO)8-induced cyclocarbonylation reaction (Pauson-Khand reaction - Khand et al., 1973a, 1973b) followed by a photoinduced intramolecular olefin-enone cyclo-addition of (2) [see Scheme 2] (Weyermann, 1997; Weyermann & Keese, 2010).The molecular structure of the title compound (3) is illustrated in Fig. 1, and geometrical parameters are given in the Supplementary information and the archived
In (3) the bridgehead bond angles C1—C12—C7 and C4—C12—C10 are 128.87 (18)° and 122.83 (17)°, respectively. In comparison in compound (4), the cis,trans,cis,cis [4.5.5.5]fenestrane without the methyl groups at the bridgehead positions C4 and C10 (Thommen et al., 1996), the same bridgehead bond angles are 131.1 (2)° and 120.2 (2)°, respectively. In the related cis,trans,cis,cis[4.5.5.5.]fenestrene (5), bearing only one bridgehead substituent at C4, the bridgehead bond angles are slightly different to those in (3) and (4); C1—C12—C7 and C4—C12—C10 are 134.9 (2)° and 119.2 (2)°, respectively (Wang et al., 1996).An earlier analysis of the bond angles in trans-fused bicyclo[3.3.0]octanes (Hirschi et al., 1992) revealed that the bond angles at the bridgehead centres are always larger than the normal tetrahedral angle. In line with these findings in (3) bond angle C3—C4—C5 is 126.57 (19)°, and 127.0 (2)° in (4).
Salient features in (3) are the bond distances and angles involving the methyl substituents C13 and C14. Bonds C4—C13 and C10—C14 are 1.548 (3) and 1.526 (3) Å, respectively, while bond angles C12—C4—C13 and C12—C10—C14 are 111.99 (18) and 124.53 (18)°, respectively. The torsional angles C13—C4—C12—C10 and C14—C10—C12—C4 are -173.39 (19) and 9.9 (3)°, respectively, indicating that the deviation from a strictly ecliptic orientation is rather small.
In conclusion it can be seen that the introduction of the methyl substituents in (3) hardly enhances the planoid distortions in the central C(C)4
Apparently accumulation of three quaternary C-atoms, adjacent to one another in the tetracyclic fenestrane (3), leads to a different adjustment of the steric interactions.For the synthesis and structures of related compounds, see: Thommen et al. (1996); Wang et al. (1996); Weyermann (1997); Weyermann & Keese (2010). For information on planarizing distortions in the central C(C)4 moiety, see: Keese (2006). For methods to enhance the planarizing distortions in the central C(C)4
see: Luef & Keese (1993). For an analysis of the bond angles and other details concerning trans-fused bicyclo[3.3.0]octanes, see: Hirschi et al. (1992). For information concerning the Pauson–Khand reaction, see: Khand, Knox, Pauson & Watts (1973); Khand, Knox, Pauson, Watts & Foreman (1973).Data collection: STADI-4 (Stoe & Cie, 1997); cell
STADI-4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C20H34O2Si | F(000) = 1472 |
Mr = 334.56 | Dx = 1.136 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 20 reflections |
a = 13.7374 (13) Å | θ = 14–17.7° |
b = 14.7647 (11) Å | µ = 0.13 mm−1 |
c = 19.2829 (12) Å | T = 223 K |
V = 3911.1 (5) Å3 | Block, colourless |
Z = 8 | 0.53 × 0.42 × 0.34 mm |
Stoe AED2 four-circle diffractometer | Rint = 0.042 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 2.1° |
Graphite monochromator | h = −16→16 |
2θ/ω scans | k = 0→17 |
7284 measured reflections | l = 0→23 |
3642 independent reflections | 3 standard reflections every 60 min |
2718 reflections with I > 2σ(I) | intensity decay: <1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0378P)2 + 2.3403P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3642 reflections | Δρmax = 0.28 e Å−3 |
216 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0018 (5) |
C20H34O2Si | V = 3911.1 (5) Å3 |
Mr = 334.56 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.7374 (13) Å | µ = 0.13 mm−1 |
b = 14.7647 (11) Å | T = 223 K |
c = 19.2829 (12) Å | 0.53 × 0.42 × 0.34 mm |
Stoe AED2 four-circle diffractometer | Rint = 0.042 |
7284 measured reflections | 3 standard reflections every 60 min |
3642 independent reflections | intensity decay: <1% |
2718 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.28 e Å−3 |
3642 reflections | Δρmin = −0.29 e Å−3 |
216 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.18635 (4) | 0.81357 (4) | 0.04887 (3) | 0.0263 (2) | |
O2 | 0.27615 (14) | 0.95616 (16) | 0.38174 (11) | 0.0711 (8) | |
O7 | 0.17598 (10) | 0.86338 (10) | 0.12503 (7) | 0.0312 (5) | |
C1 | 0.21973 (17) | 0.97101 (17) | 0.26241 (13) | 0.0408 (8) | |
C2 | 0.21585 (18) | 0.93807 (18) | 0.33818 (13) | 0.0454 (9) | |
C3 | 0.12597 (18) | 0.87879 (17) | 0.35050 (12) | 0.0401 (8) | |
C4 | 0.09843 (16) | 0.84971 (14) | 0.27688 (11) | 0.0301 (7) | |
C5 | −0.00409 (17) | 0.83122 (15) | 0.24976 (12) | 0.0350 (7) | |
C6 | 0.00658 (16) | 0.84850 (16) | 0.17076 (12) | 0.0355 (7) | |
C7 | 0.09821 (15) | 0.90983 (14) | 0.15884 (11) | 0.0274 (6) | |
C8 | 0.0748 (2) | 0.99911 (16) | 0.12245 (12) | 0.0427 (8) | |
C9 | 0.0247 (2) | 1.05514 (15) | 0.17828 (12) | 0.0457 (9) | |
C10 | 0.07572 (17) | 1.03098 (14) | 0.24635 (12) | 0.0346 (7) | |
C11 | 0.1814 (2) | 1.06806 (17) | 0.25435 (15) | 0.0527 (9) | |
C12 | 0.12488 (15) | 0.93286 (14) | 0.23397 (10) | 0.0264 (6) | |
C13 | 0.16461 (18) | 0.76782 (15) | 0.25992 (13) | 0.0403 (8) | |
C14 | 0.0109 (2) | 1.05498 (16) | 0.30795 (13) | 0.0445 (8) | |
C15 | 0.15738 (19) | 0.68993 (15) | 0.05640 (13) | 0.0419 (8) | |
C16 | 0.10610 (18) | 0.86511 (17) | −0.01811 (12) | 0.0418 (8) | |
C17 | 0.31834 (16) | 0.82806 (16) | 0.02537 (12) | 0.0340 (7) | |
C18 | 0.3464 (2) | 0.92884 (18) | 0.02703 (16) | 0.0554 (10) | |
C19 | 0.38166 (19) | 0.7765 (2) | 0.07777 (15) | 0.0543 (10) | |
C20 | 0.3373 (2) | 0.7910 (2) | −0.04778 (14) | 0.0584 (10) | |
H1 | 0.27950 | 0.95590 | 0.23620 | 0.0490* | |
H3A | 0.14170 | 0.82630 | 0.37960 | 0.0480* | |
H3B | 0.07340 | 0.91340 | 0.37240 | 0.0480* | |
H5A | −0.05160 | 0.87270 | 0.27060 | 0.0420* | |
H5B | −0.02390 | 0.76870 | 0.25910 | 0.0420* | |
H6A | −0.05180 | 0.87870 | 0.15290 | 0.0430* | |
H6B | 0.01440 | 0.79090 | 0.14620 | 0.0430* | |
H8A | 0.13430 | 1.02890 | 0.10630 | 0.0510* | |
H8B | 0.03140 | 0.98920 | 0.08280 | 0.0510* | |
H9A | −0.04470 | 1.04020 | 0.18070 | 0.0550* | |
H9B | 0.03140 | 1.12000 | 0.16840 | 0.0550* | |
H11A | 0.20580 | 1.09900 | 0.21290 | 0.0630* | |
H11B | 0.19070 | 1.10560 | 0.29570 | 0.0630* | |
H13A | 0.23230 | 0.78530 | 0.26520 | 0.0600* | |
H13B | 0.15310 | 0.74850 | 0.21250 | 0.0600* | |
H13C | 0.14990 | 0.71840 | 0.29140 | 0.0600* | |
H14A | 0.04770 | 1.04860 | 0.35060 | 0.0670* | |
H14B | −0.04470 | 1.01460 | 0.30900 | 0.0670* | |
H14C | −0.01140 | 1.11700 | 0.30340 | 0.0670* | |
H15A | 0.19140 | 0.66470 | 0.09600 | 0.0630* | |
H15B | 0.17790 | 0.65890 | 0.01450 | 0.0630* | |
H15C | 0.08780 | 0.68220 | 0.06260 | 0.0630* | |
H16A | 0.03900 | 0.86290 | −0.00250 | 0.0630* | |
H16B | 0.11240 | 0.83170 | −0.06120 | 0.0630* | |
H16C | 0.12510 | 0.92760 | −0.02560 | 0.0630* | |
H18A | 0.30640 | 0.96200 | −0.00570 | 0.0830* | |
H18B | 0.41440 | 0.93540 | 0.01460 | 0.0830* | |
H18C | 0.33600 | 0.95270 | 0.07330 | 0.0830* | |
H19A | 0.36730 | 0.79770 | 0.12430 | 0.0810* | |
H19B | 0.44990 | 0.78700 | 0.06750 | 0.0810* | |
H19C | 0.36780 | 0.71220 | 0.07460 | 0.0810* | |
H20A | 0.29860 | 0.82450 | −0.08110 | 0.0880* | |
H20B | 0.31960 | 0.72740 | −0.04950 | 0.0880* | |
H20C | 0.40580 | 0.79760 | −0.05900 | 0.0880* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0267 (3) | 0.0288 (3) | 0.0234 (3) | 0.0009 (3) | −0.0002 (2) | −0.0016 (2) |
O2 | 0.0468 (12) | 0.1080 (18) | 0.0584 (13) | 0.0074 (12) | −0.0202 (10) | −0.0360 (12) |
O7 | 0.0315 (8) | 0.0354 (8) | 0.0266 (8) | 0.0075 (7) | 0.0024 (6) | −0.0031 (6) |
C1 | 0.0288 (12) | 0.0511 (15) | 0.0425 (14) | −0.0097 (11) | 0.0079 (10) | −0.0142 (12) |
C2 | 0.0339 (13) | 0.0608 (17) | 0.0415 (14) | 0.0103 (12) | −0.0048 (11) | −0.0216 (13) |
C3 | 0.0426 (14) | 0.0460 (14) | 0.0318 (13) | 0.0112 (12) | −0.0006 (11) | 0.0006 (11) |
C4 | 0.0323 (12) | 0.0287 (11) | 0.0292 (11) | 0.0019 (10) | 0.0013 (9) | 0.0004 (9) |
C5 | 0.0323 (12) | 0.0314 (12) | 0.0414 (12) | −0.0064 (10) | 0.0077 (10) | −0.0011 (10) |
C6 | 0.0271 (12) | 0.0399 (13) | 0.0394 (13) | 0.0012 (10) | −0.0039 (10) | −0.0063 (11) |
C7 | 0.0284 (11) | 0.0281 (11) | 0.0256 (11) | 0.0048 (9) | 0.0022 (9) | −0.0019 (9) |
C8 | 0.0627 (17) | 0.0343 (13) | 0.0310 (12) | 0.0148 (12) | 0.0064 (12) | 0.0048 (10) |
C9 | 0.0645 (17) | 0.0298 (13) | 0.0429 (14) | 0.0164 (12) | 0.0083 (13) | 0.0055 (11) |
C10 | 0.0435 (14) | 0.0248 (11) | 0.0355 (12) | −0.0003 (10) | 0.0094 (11) | −0.0008 (10) |
C11 | 0.0632 (18) | 0.0436 (14) | 0.0512 (15) | −0.0225 (14) | 0.0151 (14) | −0.0114 (13) |
C12 | 0.0238 (10) | 0.0266 (10) | 0.0287 (11) | −0.0010 (9) | 0.0032 (9) | −0.0028 (9) |
C13 | 0.0480 (15) | 0.0355 (13) | 0.0375 (14) | 0.0132 (11) | −0.0011 (11) | 0.0034 (11) |
C14 | 0.0577 (16) | 0.0332 (13) | 0.0427 (14) | 0.0102 (12) | 0.0110 (13) | −0.0047 (11) |
C15 | 0.0503 (15) | 0.0333 (12) | 0.0421 (14) | −0.0037 (11) | 0.0075 (12) | −0.0053 (11) |
C16 | 0.0405 (14) | 0.0484 (15) | 0.0365 (13) | 0.0056 (12) | −0.0095 (11) | −0.0016 (11) |
C17 | 0.0288 (11) | 0.0417 (13) | 0.0314 (11) | 0.0007 (10) | −0.0003 (10) | −0.0056 (10) |
C18 | 0.0435 (15) | 0.0518 (17) | 0.0710 (19) | −0.0147 (13) | 0.0071 (14) | −0.0009 (15) |
C19 | 0.0355 (14) | 0.0663 (19) | 0.0610 (17) | 0.0126 (13) | −0.0082 (13) | −0.0025 (15) |
C20 | 0.0459 (16) | 0.085 (2) | 0.0443 (15) | −0.0068 (14) | 0.0161 (13) | −0.0147 (15) |
Si1—O7 | 1.6486 (15) | C5—H5B | 0.9800 |
Si1—C15 | 1.874 (2) | C6—H6A | 0.9800 |
Si1—C16 | 1.861 (2) | C6—H6B | 0.9800 |
Si1—C17 | 1.881 (2) | C8—H8A | 0.9800 |
O2—C2 | 1.210 (3) | C8—H8B | 0.9800 |
O7—C7 | 1.427 (3) | C9—H9A | 0.9800 |
C1—C2 | 1.541 (4) | C9—H9B | 0.9800 |
C1—C11 | 1.535 (4) | C11—H11A | 0.9800 |
C1—C12 | 1.522 (3) | C11—H11B | 0.9800 |
C2—C3 | 1.532 (4) | C13—H13A | 0.9700 |
C3—C4 | 1.531 (3) | C13—H13B | 0.9700 |
C4—C5 | 1.527 (3) | C13—H13C | 0.9700 |
C4—C12 | 1.524 (3) | C14—H14A | 0.9700 |
C4—C13 | 1.548 (3) | C14—H14B | 0.9700 |
C5—C6 | 1.552 (3) | C14—H14C | 0.9700 |
C6—C7 | 1.568 (3) | C15—H15A | 0.9700 |
C7—C8 | 1.528 (3) | C15—H15B | 0.9700 |
C7—C12 | 1.533 (3) | C15—H15C | 0.9700 |
C8—C9 | 1.522 (3) | C16—H16A | 0.9700 |
C9—C10 | 1.530 (3) | C16—H16B | 0.9700 |
C10—C11 | 1.559 (4) | C16—H16C | 0.9700 |
C10—C12 | 1.616 (3) | C18—H18A | 0.9700 |
C10—C14 | 1.526 (3) | C18—H18B | 0.9700 |
C17—C18 | 1.537 (4) | C18—H18C | 0.9700 |
C17—C19 | 1.535 (4) | C19—H19A | 0.9700 |
C17—C20 | 1.535 (4) | C19—H19B | 0.9700 |
C1—H1 | 0.9900 | C19—H19C | 0.9700 |
C3—H3A | 0.9800 | C20—H20A | 0.9700 |
C3—H3B | 0.9800 | C20—H20B | 0.9700 |
C5—H5A | 0.9800 | C20—H20C | 0.9700 |
O7—Si1—C15 | 110.32 (10) | C5—C6—H6A | 110.00 |
O7—Si1—C16 | 112.62 (9) | C5—C6—H6B | 110.00 |
O7—Si1—C17 | 104.31 (9) | C7—C6—H6A | 110.00 |
C15—Si1—C16 | 109.05 (11) | C7—C6—H6B | 110.00 |
C15—Si1—C17 | 109.52 (11) | H6A—C6—H6B | 108.00 |
C16—Si1—C17 | 110.94 (11) | C7—C8—H8A | 111.00 |
Si1—O7—C7 | 133.31 (13) | C7—C8—H8B | 111.00 |
C2—C1—C11 | 112.3 (2) | C9—C8—H8A | 111.00 |
C2—C1—C12 | 101.26 (18) | C9—C8—H8B | 111.00 |
C11—C1—C12 | 90.88 (18) | H8A—C8—H8B | 109.00 |
O2—C2—C1 | 124.4 (2) | C8—C9—H9A | 111.00 |
O2—C2—C3 | 124.8 (2) | C8—C9—H9B | 111.00 |
C1—C2—C3 | 110.8 (2) | C10—C9—H9A | 111.00 |
C2—C3—C4 | 102.45 (18) | C10—C9—H9B | 111.00 |
C3—C4—C5 | 126.57 (19) | H9A—C9—H9B | 109.00 |
C3—C4—C12 | 102.63 (17) | C1—C11—H11A | 114.00 |
C3—C4—C13 | 105.66 (18) | C1—C11—H11B | 114.00 |
C5—C4—C12 | 100.25 (17) | C10—C11—H11A | 114.00 |
C5—C4—C13 | 109.25 (18) | C10—C11—H11B | 114.00 |
C12—C4—C13 | 111.99 (18) | H11A—C11—H11B | 111.00 |
C4—C5—C6 | 102.69 (18) | C4—C13—H13A | 109.00 |
C5—C6—C7 | 108.35 (18) | C4—C13—H13B | 109.00 |
O7—C7—C6 | 112.99 (17) | C4—C13—H13C | 109.00 |
O7—C7—C8 | 111.25 (17) | H13A—C13—H13B | 109.00 |
O7—C7—C12 | 111.07 (16) | H13A—C13—H13C | 110.00 |
C6—C7—C8 | 113.38 (18) | H13B—C13—H13C | 110.00 |
C6—C7—C12 | 100.46 (17) | C10—C14—H14A | 109.00 |
C8—C7—C12 | 107.04 (17) | C10—C14—H14B | 109.00 |
C7—C8—C9 | 103.85 (18) | C10—C14—H14C | 109.00 |
C8—C9—C10 | 105.8 (2) | H14A—C14—H14B | 109.00 |
C9—C10—C11 | 115.4 (2) | H14A—C14—H14C | 109.00 |
C9—C10—C12 | 105.88 (17) | H14B—C14—H14C | 110.00 |
C9—C10—C14 | 110.3 (2) | Si1—C15—H15A | 109.00 |
C11—C10—C12 | 86.58 (16) | Si1—C15—H15B | 109.00 |
C11—C10—C14 | 112.6 (2) | Si1—C15—H15C | 109.00 |
C12—C10—C14 | 124.53 (18) | H15A—C15—H15B | 110.00 |
C1—C11—C10 | 90.09 (18) | H15A—C15—H15C | 109.00 |
C1—C12—C4 | 107.85 (17) | H15B—C15—H15C | 109.00 |
C1—C12—C7 | 128.87 (18) | Si1—C16—H16A | 109.00 |
C1—C12—C10 | 88.44 (16) | Si1—C16—H16B | 109.00 |
C4—C12—C7 | 106.11 (17) | Si1—C16—H16C | 109.00 |
C4—C12—C10 | 122.83 (17) | H16A—C16—H16B | 109.00 |
C7—C12—C10 | 103.81 (16) | H16A—C16—H16C | 110.00 |
Si1—C17—C18 | 110.29 (16) | H16B—C16—H16C | 109.00 |
Si1—C17—C19 | 109.34 (16) | C17—C18—H18A | 109.00 |
Si1—C17—C20 | 110.14 (16) | C17—C18—H18B | 109.00 |
C18—C17—C19 | 108.9 (2) | C17—C18—H18C | 109.00 |
C18—C17—C20 | 108.8 (2) | H18A—C18—H18B | 110.00 |
C19—C17—C20 | 109.4 (2) | H18A—C18—H18C | 109.00 |
C2—C1—H1 | 116.00 | H18B—C18—H18C | 109.00 |
C11—C1—H1 | 116.00 | C17—C19—H19A | 109.00 |
C12—C1—H1 | 116.00 | C17—C19—H19B | 109.00 |
C2—C3—H3A | 111.00 | C17—C19—H19C | 109.00 |
C2—C3—H3B | 111.00 | H19A—C19—H19B | 109.00 |
C4—C3—H3A | 111.00 | H19A—C19—H19C | 110.00 |
C4—C3—H3B | 111.00 | H19B—C19—H19C | 109.00 |
H3A—C3—H3B | 109.00 | C17—C20—H20A | 110.00 |
C4—C5—H5A | 111.00 | C17—C20—H20B | 109.00 |
C4—C5—H5B | 111.00 | C17—C20—H20C | 109.00 |
C6—C5—H5A | 111.00 | H20A—C20—H20B | 109.00 |
C6—C5—H5B | 111.00 | H20A—C20—H20C | 109.00 |
H5A—C5—H5B | 109.00 | H20B—C20—H20C | 109.00 |
C15—Si1—O7—C7 | −92.99 (19) | C5—C4—C12—C1 | 170.87 (17) |
C16—Si1—O7—C7 | 29.1 (2) | C5—C4—C12—C7 | −47.9 (2) |
C17—Si1—O7—C7 | 149.49 (18) | C5—C4—C12—C10 | 70.9 (2) |
O7—Si1—C17—C18 | −55.54 (19) | C13—C4—C12—C1 | −73.4 (2) |
O7—Si1—C17—C19 | 64.20 (18) | C13—C4—C12—C7 | 67.8 (2) |
O7—Si1—C17—C20 | −175.58 (16) | C13—C4—C12—C10 | −173.39 (19) |
C15—Si1—C17—C18 | −173.61 (17) | C4—C5—C6—C7 | −21.3 (2) |
C15—Si1—C17—C19 | −53.9 (2) | C5—C6—C7—O7 | 111.29 (19) |
C15—Si1—C17—C20 | 66.4 (2) | C5—C6—C7—C8 | −121.0 (2) |
C16—Si1—C17—C18 | 66.0 (2) | C5—C6—C7—C12 | −7.1 (2) |
C16—Si1—C17—C19 | −174.29 (17) | O7—C7—C8—C9 | −157.49 (18) |
C16—Si1—C17—C20 | −54.1 (2) | C6—C7—C8—C9 | 73.9 (2) |
Si1—O7—C7—C6 | 60.9 (2) | C12—C7—C8—C9 | −36.0 (2) |
Si1—O7—C7—C8 | −67.9 (2) | O7—C7—C12—C1 | 43.8 (3) |
Si1—O7—C7—C12 | 172.93 (14) | O7—C7—C12—C4 | −86.14 (19) |
C11—C1—C2—O2 | −81.3 (3) | O7—C7—C12—C10 | 143.17 (16) |
C11—C1—C2—C3 | 99.2 (2) | C6—C7—C12—C1 | 163.6 (2) |
C12—C1—C2—O2 | −177.0 (3) | C6—C7—C12—C4 | 33.6 (2) |
C12—C1—C2—C3 | 3.5 (3) | C6—C7—C12—C10 | −97.06 (18) |
C2—C1—C11—C10 | −86.9 (2) | C8—C7—C12—C1 | −77.8 (3) |
C12—C1—C11—C10 | 15.64 (18) | C8—C7—C12—C4 | 152.24 (18) |
C2—C1—C12—C4 | −26.3 (2) | C8—C7—C12—C10 | 21.5 (2) |
C2—C1—C12—C7 | −155.6 (2) | C7—C8—C9—C10 | 35.9 (2) |
C2—C1—C12—C10 | 97.84 (18) | C8—C9—C10—C11 | 71.4 (2) |
C11—C1—C12—C4 | −139.21 (19) | C8—C9—C10—C12 | −22.4 (2) |
C11—C1—C12—C7 | 91.5 (2) | C8—C9—C10—C14 | −159.60 (19) |
C11—C1—C12—C10 | −15.08 (18) | C9—C10—C11—C1 | −120.7 (2) |
O2—C2—C3—C4 | −159.7 (3) | C12—C10—C11—C1 | −14.73 (17) |
C1—C2—C3—C4 | 19.8 (3) | C14—C10—C11—C1 | 111.5 (2) |
C2—C3—C4—C5 | −147.8 (2) | C9—C10—C12—C1 | 130.35 (19) |
C2—C3—C4—C12 | −34.7 (2) | C9—C10—C12—C4 | −119.3 (2) |
C2—C3—C4—C13 | 82.8 (2) | C9—C10—C12—C7 | 0.6 (2) |
C3—C4—C5—C6 | 155.0 (2) | C11—C10—C12—C1 | 14.86 (18) |
C12—C4—C5—C6 | 40.8 (2) | C11—C10—C12—C4 | 125.2 (2) |
C13—C4—C5—C6 | −77.0 (2) | C11—C10—C12—C7 | −114.91 (18) |
C3—C4—C12—C1 | 39.5 (2) | C14—C10—C12—C1 | −100.4 (2) |
C3—C4—C12—C7 | −179.32 (17) | C14—C10—C12—C4 | 9.9 (3) |
C3—C4—C12—C10 | −60.5 (2) | C14—C10—C12—C7 | 129.8 (2) |
Experimental details
Crystal data | |
Chemical formula | C20H34O2Si |
Mr | 334.56 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 223 |
a, b, c (Å) | 13.7374 (13), 14.7647 (11), 19.2829 (12) |
V (Å3) | 3911.1 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.53 × 0.42 × 0.34 |
Data collection | |
Diffractometer | Stoe AED2 four-circle diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7284, 3642, 2718 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.116, 1.07 |
No. of reflections | 3642 |
No. of parameters | 216 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.29 |
Computer programs: STADI-4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
This work was supported financially by the Swiss National Science Foundation.
References
Hirschi, D., Luef, W., Gerber, P. & Keese, R. (1992). Helv. Chim. Acta, 75, 1897–1908. CSD CrossRef CAS Web of Science Google Scholar
Keese, R. (2006). Chem. Rev. 106, 4787–4808. Web of Science CrossRef PubMed CAS Google Scholar
Khand, I. U., Knox, G. R., Pauson, P. L. & Watts, W. E. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 977–977. CrossRef Web of Science Google Scholar
Khand, I. U., Knox, G. R., Pauson, P. L., Watts, W. E. & Foreman, M. I. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 977–981. CrossRef Web of Science Google Scholar
Luef, W. & Keese, R. (1993). Advances in Strain in Organic Chemistry, Vol. 3, edited by B. Halton, pp. 229–267. London: JAI Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1997). STADI-4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany. Google Scholar
Thommen, M., Keese, R. & Förtsch, M. (1996). Acta Cryst. C52, 2051–2053. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Wang, J., Thommen, M. & Keese, R. (1996). Acta Cryst. C52, 2311–2313. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Weyermann, P. (1997). Diploma thesis, University of Bern, Switzerland. Google Scholar
Weyermann, P. & Keese, R. (2010). In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Fenestranes are a unique class of hydrocarbons and contain a quaternary C atom in the center of the tetracyclic structure. These compounds are of interest for the planarizing distortions in the central C(C)4 moiety, apparent in two opposite bond angles larger than the bond angle of 109.47° in a regular tetrahedral arrangement (Keese, 2006). Systematic investigations of the structural features in a variety of such molecules by semiempirical methods have revealed that they can be enhanced by ring contraction, inversion at one (or more) of the four bridgehead centers, giving rise to a trans-fused bicylo[3.3.0]octane subunit, by introduction of a bridgehead double bond (Luef & Keese, 1993) and by alkyl groups at the peripheral bridgehead positions. As part of our efforts to prepare fenestranes with a combination of structural features for enhanced planarizing distortions we have prepared the title compound, (3), from the yne-diene (1) by a Co2(CO)8-induced cyclocarbonylation reaction (Pauson-Khand reaction - Khand et al., 1973a, 1973b) followed by a photoinduced intramolecular olefin-enone cyclo-addition of (2) [see Scheme 2] (Weyermann, 1997; Weyermann & Keese, 2010).
The molecular structure of the title compound (3) is illustrated in Fig. 1, and geometrical parameters are given in the Supplementary information and the archived CIF. In (3) the bridgehead bond angles C1—C12—C7 and C4—C12—C10 are 128.87 (18)° and 122.83 (17)°, respectively. In comparison in compound (4), the cis,trans,cis,cis [4.5.5.5]fenestrane without the methyl groups at the bridgehead positions C4 and C10 (Thommen et al., 1996), the same bridgehead bond angles are 131.1 (2)° and 120.2 (2)°, respectively. In the related cis,trans,cis,cis[4.5.5.5.]fenestrene (5), bearing only one bridgehead substituent at C4, the bridgehead bond angles are slightly different to those in (3) and (4); C1—C12—C7 and C4—C12—C10 are 134.9 (2)° and 119.2 (2)°, respectively (Wang et al., 1996).
An earlier analysis of the bond angles in trans-fused bicyclo[3.3.0]octanes (Hirschi et al., 1992) revealed that the bond angles at the bridgehead centres are always larger than the normal tetrahedral angle. In line with these findings in (3) bond angle C3—C4—C5 is 126.57 (19)°, and 127.0 (2)° in (4).
Salient features in (3) are the bond distances and angles involving the methyl substituents C13 and C14. Bonds C4—C13 and C10—C14 are 1.548 (3) and 1.526 (3) Å, respectively, while bond angles C12—C4—C13 and C12—C10—C14 are 111.99 (18) and 124.53 (18)°, respectively. The torsional angles C13—C4—C12—C10 and C14—C10—C12—C4 are -173.39 (19) and 9.9 (3)°, respectively, indicating that the deviation from a strictly ecliptic orientation is rather small.
In conclusion it can be seen that the introduction of the methyl substituents in (3) hardly enhances the planoid distortions in the central C(C)4 substructure. Apparently accumulation of three quaternary C-atoms, adjacent to one another in the tetracyclic fenestrane (3), leads to a different adjustment of the steric interactions.