organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-1-Phenyl­pyrrolidine-2,5-dicarbo­nitrile

aLudwig-Maximilians-Universität, Department, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: pemay@cup.uni-muenchen.de

(Received 22 December 2009; accepted 12 January 2010; online 16 January 2010)

In the title compound, C12H11N3, the plane of the phenyl ring and the least-squares plane of the pyrrolidine ring enclose an angle of 14.30 (6)°. The intra­cyclic N atom features a nearly trigonal-planar coordination geometry due to π-inter­actions with the aromatic system. The pyrrolidine ring is present in a twist conformation for which the closest pucker descriptor is C9TC8. Weak inter­molecular C—H⋯N and C—H⋯π contacts occur

Related literature

For background to the synthesis, see: Han & Ofial (2009[Han, W. & Ofial, A. R. (2009). Chem. Commun. pp. 5024-5026.]); Takahashi et al. (1986[Takahashi, K., Saitoh, H., Ogura, K. & Iida, H. (1986). Heterocycles, 24, 2905-2910.]). For a related structure, see: Menezes et al. (2007[Menezes, F. G., Ricardo, J., Dias, R., Bortoluzzi, A. J. & Zucco, C. (2007). Quim. Nova, 30, 356-359.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3

  • Mr = 197.24

  • Orthorhombic, P b c a

  • a = 9.1807 (1) Å

  • b = 14.5693 (2) Å

  • c = 15.7576 (2) Å

  • V = 2107.68 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.33 × 0.18 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 16161 measured reflections

  • 2413 independent reflections

  • 2109 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.107

  • S = 1.06

  • 2413 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N2i 0.95 2.70 3.5952 (17) 158
C8—H8B⋯N2ii 0.99 2.67 3.3777 (17) 129
C10—H10⋯N3iii 1.00 2.69 3.3748 (15) 126
C8—H8ACgi 0.99 2.74 3.6937 (13) 162
C9—H9BCgiv 0.99 2.88 3.5111 (13) 122
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) -x+2, -y, -z+1.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Under oxidative conditions, iron salts activate C(sp3)-H bonds adjacent to the nitrogen atom of tertiary amines. Hence the cross-coupling reactions of a variety of tertiary amines with cyanide were enabled in the presence of tert-butylhydroperoxide. Performing the reaction in the presence of 4 equivalents of trimethylsilyl cyanide allowed the twofold cyanation of N-phenylpyrrolidine [Han et al. (2009)].

The asymmetric unit of (I) contains one complete molecule which is shown in Figure 1. The plane of the phenyl ring and the least-square plane of the pyrrolidine ring enclose an angle of 14.30 (6)°, which is quite similar to the angle found in a related structure of 1,2-Dichloro-4-(pyrrolidino)-5-nitrobenzene (18.69 (14)°, Menezes et al. (2007)).

The intracyclic nitrogen atom is nearly in the plane defined by the three carbon atoms bonded to it. The displacement of the nitrogen atom from the plane is only 0.073 (1) Å. The planarization of the nitrogen atom may be rationalized by possible π-interaction of the lone pair with the aromatic system.

The pyrrolidine ring is present in a twist-conformation for which the closest pucker descriptor is C9TC8 [Cremer et al. (1975)]. This conformation is slightly distorted towards an envelope-conformation EC8. In a related structure [Menezes et al. (2007)], the ring is twisted along the same bond, however, in the other direction (C8TC9).

Both carbonitrile nitrogen atoms act as acceptors in very weak contacts of the type C–H···N. Furthermore the packing features very weak C–H···π contacts with the phenyl π-system as acceptor. The packing of the title compound is shown in Figure 2.

Related literature top

For background to the synthesis, see: Han et al. (2009); Takahashi et al. (1986). For a related structure, see: Menezes et al. (2007). For puckering analysis, see: Cremer et al. (1975).

Experimental top

Under an atmosphere of dry nitrogen, a 25 ml Schlenk flask was charged with FeCl2 (10 mol-/%, 13 mg). Then N-phenylpyrrolidine (1.0 mmol), trimethylsilyl cyanide (4.0 mmol, 0.54 ml), and MeOH (2.0 ml) were added successively by syringe. To the mixture was added dropwise tert-butylhydroperoxide (2.5 mmol, 0.470 ml, 5.5 M solution in decane) over a period of 5 minutes. The mixture was stirred at room temperature for 24 h. Subsequently, the reaction mixture was poured into a saturated aqueous NaCl solution (20 ml) and extracted with dichloromethane (three times 20 ml). The organic phases were combined, and the volatile components were evaporated in a rotary evaporator. After column chromatography on silica gel (n-pentane/diethyl ether = 3:1, v/v), 1-phenylpyrrolidine-2,5-dicarbonitrile was isolated as a colorless solid (54%) [Han et al. (2009)].

The title compound (50 mg) was dissolved in 2 ml of a mixture of dichloromethane/n-pentane/ethyl ether mixture (2/1/1, v/v/v). The solvent was allowed to evaporate slowly at room temperature. The thus formed crystals were suitable for X-ray analysis. mp 149–151 °C ([Takahashi et al. (1986)], mp 161.5–163 °C (from ethanol)).

Refinement top

All H atoms were found in difference maps. The H atoms were positioned geometrically (bond distances for phenyl-CH: 0.95 Å, for aliphatic CH: 1.00 Å, for aliphatic CH2: 0.99 Å) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Structure description top

Under oxidative conditions, iron salts activate C(sp3)-H bonds adjacent to the nitrogen atom of tertiary amines. Hence the cross-coupling reactions of a variety of tertiary amines with cyanide were enabled in the presence of tert-butylhydroperoxide. Performing the reaction in the presence of 4 equivalents of trimethylsilyl cyanide allowed the twofold cyanation of N-phenylpyrrolidine [Han et al. (2009)].

The asymmetric unit of (I) contains one complete molecule which is shown in Figure 1. The plane of the phenyl ring and the least-square plane of the pyrrolidine ring enclose an angle of 14.30 (6)°, which is quite similar to the angle found in a related structure of 1,2-Dichloro-4-(pyrrolidino)-5-nitrobenzene (18.69 (14)°, Menezes et al. (2007)).

The intracyclic nitrogen atom is nearly in the plane defined by the three carbon atoms bonded to it. The displacement of the nitrogen atom from the plane is only 0.073 (1) Å. The planarization of the nitrogen atom may be rationalized by possible π-interaction of the lone pair with the aromatic system.

The pyrrolidine ring is present in a twist-conformation for which the closest pucker descriptor is C9TC8 [Cremer et al. (1975)]. This conformation is slightly distorted towards an envelope-conformation EC8. In a related structure [Menezes et al. (2007)], the ring is twisted along the same bond, however, in the other direction (C8TC9).

Both carbonitrile nitrogen atoms act as acceptors in very weak contacts of the type C–H···N. Furthermore the packing features very weak C–H···π contacts with the phenyl π-system as acceptor. The packing of the title compound is shown in Figure 2.

For background to the synthesis, see: Han et al. (2009); Takahashi et al. (1986). For a related structure, see: Menezes et al. (2007). For puckering analysis, see: Cremer et al. (1975).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound viewed along [-100].
trans-1-Phenylpyrrolidine-2,5-dicarbonitrile top
Crystal data top
C12H11N3F(000) = 832
Mr = 197.24Dx = 1.243 (1) Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9019 reflections
a = 9.1807 (1) Åθ = 3.1–27.5°
b = 14.5693 (2) ŵ = 0.08 mm1
c = 15.7576 (2) ÅT = 200 K
V = 2107.68 (5) Å3Block, colourless
Z = 80.33 × 0.18 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2109 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.022
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.4°
Detector resolution: 9 pixels mm-1h = 1111
CCD; rotation images; thick slices, phi/ω–scank = 1818
16161 measured reflectionsl = 2020
2413 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.049P)2 + 0.5393P]
where P = (Fo2 + 2Fc2)/3
2413 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C12H11N3V = 2107.68 (5) Å3
Mr = 197.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.1807 (1) ŵ = 0.08 mm1
b = 14.5693 (2) ÅT = 200 K
c = 15.7576 (2) Å0.33 × 0.18 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2109 reflections with I > 2σ(I)
16161 measured reflectionsRint = 0.022
2413 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
2413 reflectionsΔρmin = 0.18 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.91889 (10)0.12762 (7)0.48710 (6)0.0339 (2)
N20.63244 (13)0.15665 (9)0.34906 (8)0.0515 (3)
N31.27530 (11)0.14135 (8)0.55151 (7)0.0460 (3)
C10.84192 (11)0.11277 (7)0.56211 (6)0.0289 (2)
C20.71584 (12)0.05831 (8)0.56245 (7)0.0331 (3)
H20.68060.03290.51090.040*
C30.64254 (13)0.04149 (8)0.63784 (8)0.0395 (3)
H30.55690.00490.63730.047*
C40.69229 (13)0.07717 (9)0.71358 (8)0.0414 (3)
H40.64230.06470.76510.050*
C50.81566 (13)0.13119 (9)0.71352 (7)0.0393 (3)
H50.85010.15610.76550.047*
C60.89031 (12)0.14984 (8)0.63898 (7)0.0338 (3)
H60.97440.18780.64010.041*
C70.87833 (12)0.08771 (7)0.40605 (6)0.0313 (2)
H70.87070.01950.41120.038*
C81.00567 (13)0.11327 (8)0.34813 (7)0.0385 (3)
H8A1.08570.06800.35270.046*
H8B0.97420.11760.28820.046*
C91.05183 (14)0.20663 (8)0.38243 (8)0.0405 (3)
H9A0.98880.25610.35980.049*
H9B1.15440.22020.36760.049*
C101.03301 (11)0.19671 (7)0.47859 (7)0.0326 (3)
H101.00030.25620.50380.039*
C110.73934 (13)0.12635 (8)0.37363 (7)0.0349 (3)
C121.16995 (12)0.16549 (7)0.51982 (7)0.0342 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0323 (5)0.0433 (5)0.0262 (5)0.0116 (4)0.0000 (4)0.0001 (4)
N20.0473 (7)0.0588 (7)0.0483 (6)0.0060 (5)0.0134 (5)0.0106 (5)
N30.0382 (6)0.0456 (6)0.0542 (7)0.0001 (5)0.0083 (5)0.0055 (5)
C10.0275 (5)0.0320 (5)0.0270 (5)0.0013 (4)0.0005 (4)0.0025 (4)
C20.0315 (6)0.0356 (6)0.0321 (5)0.0039 (4)0.0000 (4)0.0001 (4)
C30.0342 (6)0.0412 (6)0.0432 (6)0.0030 (5)0.0068 (5)0.0056 (5)
C40.0421 (7)0.0493 (7)0.0327 (6)0.0067 (5)0.0094 (5)0.0067 (5)
C50.0426 (7)0.0476 (6)0.0277 (5)0.0067 (5)0.0022 (5)0.0020 (5)
C60.0311 (6)0.0391 (6)0.0311 (6)0.0004 (4)0.0027 (4)0.0014 (4)
C70.0351 (6)0.0322 (5)0.0267 (5)0.0007 (4)0.0003 (4)0.0000 (4)
C80.0388 (6)0.0453 (7)0.0315 (6)0.0038 (5)0.0070 (5)0.0045 (5)
C90.0384 (6)0.0427 (6)0.0405 (6)0.0041 (5)0.0031 (5)0.0128 (5)
C100.0290 (5)0.0310 (5)0.0379 (6)0.0032 (4)0.0005 (4)0.0036 (4)
C110.0387 (6)0.0369 (6)0.0289 (5)0.0030 (5)0.0031 (5)0.0057 (4)
C120.0328 (6)0.0312 (5)0.0388 (6)0.0052 (4)0.0003 (5)0.0022 (4)
Geometric parameters (Å, º) top
N1—C11.3939 (13)C5—H50.9500
N1—C71.4519 (14)C6—H60.9500
N1—C101.4591 (13)C7—C111.4853 (16)
N2—C111.1437 (16)C7—C81.5291 (15)
N3—C121.1438 (16)C7—H71.0000
C1—C61.3987 (15)C8—C91.5238 (17)
C1—C21.4034 (15)C8—H8A0.9900
C2—C31.3873 (15)C8—H8B0.9900
C2—H20.9500C9—C101.5320 (16)
C3—C41.3796 (18)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.3791 (18)C10—C121.4864 (15)
C4—H40.9500C10—H101.0000
C5—C61.3868 (16)
C1—N1—C7123.63 (9)N1—C7—H7110.2
C1—N1—C10123.29 (9)C11—C7—H7110.2
C7—N1—C10112.31 (8)C8—C7—H7110.2
N1—C1—C6120.89 (10)C9—C8—C7102.62 (9)
N1—C1—C2120.60 (9)C9—C8—H8A111.2
C6—C1—C2118.49 (10)C7—C8—H8A111.2
C3—C2—C1120.22 (10)C9—C8—H8B111.2
C3—C2—H2119.9C7—C8—H8B111.2
C1—C2—H2119.9H8A—C8—H8B109.2
C4—C3—C2120.91 (11)C8—C9—C10103.60 (9)
C4—C3—H3119.5C8—C9—H9A111.0
C2—C3—H3119.5C10—C9—H9A111.0
C5—C4—C3119.10 (11)C8—C9—H9B111.0
C5—C4—H4120.5C10—C9—H9B111.0
C3—C4—H4120.5H9A—C9—H9B109.0
C4—C5—C6121.22 (11)N1—C10—C12110.86 (9)
C4—C5—H5119.4N1—C10—C9103.71 (9)
C6—C5—H5119.4C12—C10—C9111.46 (9)
C5—C6—C1120.06 (11)N1—C10—H10110.2
C5—C6—H6120.0C12—C10—H10110.2
C1—C6—H6120.0C9—C10—H10110.2
N1—C7—C11111.78 (9)N2—C11—C7179.49 (13)
N1—C7—C8103.38 (9)N3—C12—C10179.91 (15)
C11—C7—C8111.05 (9)
C7—N1—C1—C6177.08 (10)C10—N1—C7—C11102.29 (11)
C10—N1—C1—C613.76 (16)C1—N1—C7—C8172.55 (10)
C7—N1—C1—C21.36 (16)C10—N1—C7—C817.22 (12)
C10—N1—C1—C2167.81 (10)N1—C7—C8—C933.54 (11)
N1—C1—C2—C3177.94 (10)C11—C7—C8—C986.48 (11)
C6—C1—C2—C30.53 (16)C7—C8—C9—C1037.66 (11)
C1—C2—C3—C40.45 (18)C1—N1—C10—C1276.32 (13)
C2—C3—C4—C50.83 (18)C7—N1—C10—C12113.42 (10)
C3—C4—C5—C60.22 (18)C1—N1—C10—C9163.96 (10)
C4—C5—C6—C10.78 (18)C7—N1—C10—C96.30 (12)
N1—C1—C6—C5177.33 (10)C8—C9—C10—N127.35 (12)
C2—C1—C6—C51.14 (16)C8—C9—C10—C1291.97 (11)
C1—N1—C7—C1167.93 (13)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.952.703.5952 (17)158
C8—H8B···N2ii0.992.673.3777 (17)129
C10—H10···N3iii1.002.693.3748 (15)126
C8—H8A···Cgi0.992.743.6937 (13)162
C9—H9B···Cgiv0.992.883.5111 (13)122
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y, z+1/2; (iii) x1/2, y+1/2, z+1; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H11N3
Mr197.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)9.1807 (1), 14.5693 (2), 15.7576 (2)
V3)2107.68 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.18 × 0.15
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16161, 2413, 2109
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.06
No. of reflections2413
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: COLLECT (Hooft, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···N2i0.952.703.5952 (17)158
C8—H8B···N2ii0.992.673.3777 (17)129
C10—H10···N3iii1.002.693.3748 (15)126
C8—H8A···Cgi0.992.743.6937 (13)162
C9—H9B···Cgiv0.992.883.5111 (13)122
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y, z+1/2; (iii) x1/2, y+1/2, z+1; (iv) x+2, y, z+1.
 

Acknowledgements

We thank the Chinese Scholarship Council for a fellowship (to WH) and Professor Herbert Mayr for continuous support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHan, W. & Ofial, A. R. (2009). Chem. Commun. pp. 5024–5026.  Web of Science CrossRef Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMenezes, F. G., Ricardo, J., Dias, R., Bortoluzzi, A. J. & Zucco, C. (2007). Quim. Nova, 30, 356–359.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, K., Saitoh, H., Ogura, K. & Iida, H. (1986). Heterocycles, 24, 2905–2910.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds