organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,3aR,5aS,6S,8aR,8bR,9aS)-1-Hydr­­oxy-6-iso­propyl-1,3a,5a-tri­methyl­perhydro­cyclo­penta­[a]cyclo­propa[i]naphthalen-4-one

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and bInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 5 January 2010; accepted 10 January 2010; online 16 January 2010)

The title compound (also know as azorellanone), C20H32O2, is built up from three fused carbocycles, one five-membered ring and two six-membered rings. The five membered-ring has an envelope conformation, whereas the six-membered rings have a distorted half-chair and a twist–boat conformation. In the crystal, mol­ecules are linked by O—H⋯O inter­actions into zigzag chains with graph-set notation C(8) along [010]. The absolute configuration was assigned on the basis of earlier chemical studies.

Related literature

For related structures, see: Loyola et al. (1998[Loyola, L. A., Bórquez, J., Morales, G., San Martin, A., Manríquez, V. & Wittke, O. (1998). Tetrahedron, 54, 15533-15540.], 2000[Loyola, L. A., Bórquez, J., Morales, G. & San-Martín, A. (2000). Phytochemistry, 53, 961-963.], 2001[Loyola, L. A., Borquez, J., Morales, G., Araya, J., González, J., Neira, I., Sagua, H. & San-Martín, A. (2001). Phytochemistry, 56, 177-180.], 2004[Loyola, L. A., Borquez, J., Morales, G., San-Martin, A., Darias, J., Flores, N. & Gimenez, A. (2004). Phytochemistry, 65, 1931-1935.]); Borquez et al. (2007[Borquez, J., Loyola, L. A., Morales, G., San-Martín, A., Roldan, R., Marquez, N. & Muñoz, E. (2007). Phytother. Res. 21, 1082-1086.]). For the biological properties of diterpenoids with azorellane and mulinane skeletons, see: Chiaramello et al. (2003[Chiaramello, A. I., Ardanaz, C. E., García, E. E. & Rossomando, P. C. (2003). Phytochemistry, 63, 883-886.]); Fuentes et al. (2005[Fuentes, N. L., Sagua, H., Morales, G., Borquez, J., San-Martín, A., Soto, J. & Loyola, L. A. (2005). Phytother. Res. 19, 713-716.]); Delporte et al. (2003[Delporte, C., Backhouse, N., Salinas, P., San-Martin, A., Borquez, J. & Loyola, A. (2003). Bioorg. Med. Chem. 11, 1187-1190.]); Morales et al. (2003[Morales, P., Kong, M., Pizarro, E., Pasten, C., Morales, G., Borquez, J. & Loyola, L. A. (2003). J. Androl. 24, 364-370.]); Neira et al. (1998[Neira, I., Pobleta, L., Porcille, P., Silva, P., Araya, J., Bórquez, J., Morales, G., Loyola, L. A. & Sagua, H. (1998). Bol. Chil. Parasitol. 53, 9-13]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32O2

  • Mr = 304.46

  • Monoclinic, P 21

  • a = 6.0073 (5) Å

  • b = 13.3348 (11) Å

  • c = 11.2743 (8) Å

  • β = 99.271 (6)°

  • V = 891.34 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.37 × 0.36 × 0.36 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • 6336 measured reflections

  • 2107 independent reflections

  • 1876 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.00

  • 2107 reflections

  • 204 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.2 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.99 (3) 1.93 (3) 2.916 (2) 172 (3)
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compounds belonging to the Azorella, Laretia y Mulinum genus are recognized as important sources of novel diterpenoids with azorellane and mulinane skeletons (Loyola et al., 1998, 2000; Chiaramello et al., 2003). These metabolites display a wide variety of biological activities, including trichomonicidal, (Loyola et al., 2001), anti-inflammatory and analgesic, (Delporte et al., 2003; Borquez et al., 2007) contraceptive, (Morales et al., 2003) trypanocidal, (Neira et al., 1998) anti-plasmodial (Loyola et al., 2004) and anti-hyperglycemic (Fuentes et al., 2005).

The title compound (Fig. 1) is built up from three fused carbocycles: a six membered ring (A) with a methylene bridge between C9 and C12 with a second six membered ring (B) trans-fused to a five membered ring (C). The five- membered ring has an envelope conformation whereas the six-membered rings have a distorted half-chair (A) and atwist boat conformation (B) respectively [Q2=0.441 (2) Å, φ =112.5 (3)°; QT= 0.518 (2) Å, θ = 48.8 (2)°, φ =272.2 (3)°; QT= 0.677 (2) Å, θ = 97.1 (2)°, φ2 = 131.5 (2)°] (Cremer & Pople, 1975). The cyclopropane ring (C9, C11 and C12) features an almost regular triangle with the C9 and C12 distance being slightly longer than the others. The isopropyl, methyl groups at C3, C8, C13 and cyclopropane ring are β-oriented, whereas the hydroxyl group is α-oriented.

A search of the Cambridge Structural Database (CSD, Version 5.31; Allen, 2002) shows no significant variations of the molecular geometry of (I) and the conformations of two closely related compound, azorellanol (CSD refcode FIHYAW; Loyola, et al., 1998) and 7-deacetylazorellanol (CSD refcode NEMXUY; Loyola, et al., 2001).

In the crystal, the molecules are linked by O—H···O interactions into zigzag chains with graph-set notation C(8) along [010] (Bernstein et al., 1995). Atom O1 at (x, y, z) acts as a hydrogen-bond donor to atom O2 at (-x + 2,y + 1/2,-z + 1), (Table1, Fig. 2). The absolute configuration was assigned on the basis of early chemical studies (Loyola et al., 1998).

Related literature top

For related structures, see: Loyola et al. (1998, 2000, 2001, 2004); Borquez et al. (2007). For the biological properties of diterpenoids with azorellane and mulinane skeletons, see: Chiaramello et al. (2003); Fuentes et al. (2005); Delporte et al. (2003); Morales et al. (2003); Neira et al. (1998). For graph-set notation, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Azorella yareta Hauman plants were collected in Quebradas de las llaretas in Vallenar, Chile. The dried and finely powdered whole plant (1.5 kg) was extracted with petrol ether at room temperature to give a gum (85 g). The concentrated petrol ether extract was fractionated on a silica gel column with hexane-ethyl acetate mixtures of increasing polarity as elution solvents. The fraction (3.45 g) eluted was further separated and purified by silica gel chromatography to give 155 mg of the title compound (also know as azorellanone). Recrystallization from hexane-ethyl acetate (1:1) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement top

In the absence of anomalous scatterers the absolute configuration could not be determined and therefore Friedel pairs were merged. The hydroxyl H atom was refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distances in the range 0.98–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Compounds belonging to the Azorella, Laretia y Mulinum genus are recognized as important sources of novel diterpenoids with azorellane and mulinane skeletons (Loyola et al., 1998, 2000; Chiaramello et al., 2003). These metabolites display a wide variety of biological activities, including trichomonicidal, (Loyola et al., 2001), anti-inflammatory and analgesic, (Delporte et al., 2003; Borquez et al., 2007) contraceptive, (Morales et al., 2003) trypanocidal, (Neira et al., 1998) anti-plasmodial (Loyola et al., 2004) and anti-hyperglycemic (Fuentes et al., 2005).

The title compound (Fig. 1) is built up from three fused carbocycles: a six membered ring (A) with a methylene bridge between C9 and C12 with a second six membered ring (B) trans-fused to a five membered ring (C). The five- membered ring has an envelope conformation whereas the six-membered rings have a distorted half-chair (A) and atwist boat conformation (B) respectively [Q2=0.441 (2) Å, φ =112.5 (3)°; QT= 0.518 (2) Å, θ = 48.8 (2)°, φ =272.2 (3)°; QT= 0.677 (2) Å, θ = 97.1 (2)°, φ2 = 131.5 (2)°] (Cremer & Pople, 1975). The cyclopropane ring (C9, C11 and C12) features an almost regular triangle with the C9 and C12 distance being slightly longer than the others. The isopropyl, methyl groups at C3, C8, C13 and cyclopropane ring are β-oriented, whereas the hydroxyl group is α-oriented.

A search of the Cambridge Structural Database (CSD, Version 5.31; Allen, 2002) shows no significant variations of the molecular geometry of (I) and the conformations of two closely related compound, azorellanol (CSD refcode FIHYAW; Loyola, et al., 1998) and 7-deacetylazorellanol (CSD refcode NEMXUY; Loyola, et al., 2001).

In the crystal, the molecules are linked by O—H···O interactions into zigzag chains with graph-set notation C(8) along [010] (Bernstein et al., 1995). Atom O1 at (x, y, z) acts as a hydrogen-bond donor to atom O2 at (-x + 2,y + 1/2,-z + 1), (Table1, Fig. 2). The absolute configuration was assigned on the basis of early chemical studies (Loyola et al., 1998).

For related structures, see: Loyola et al. (1998, 2000, 2001, 2004); Borquez et al. (2007). For the biological properties of diterpenoids with azorellane and mulinane skeletons, see: Chiaramello et al. (2003); Fuentes et al. (2005); Delporte et al. (2003); Morales et al. (2003); Neira et al. (1998). For graph-set notation, see: Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level showing atom-labelling scheme.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a C(8) chain along [010]. Hydrogen bond shown as dashed lines.
(1R,3aR,5aS,6S,8aR,8bR,9aS)- 1-Hydroxy-6-isopropyl-1,3a,5a- trimethylperhydrocyclopenta[a]cyclopropa[i]naphthalen-4-one top
Crystal data top
C20H32O2F(000) = 336
Mr = 304.46Dx = 1.134 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6216 reflections
a = 6.0073 (5) Åθ = 3.5–27.8°
b = 13.3348 (11) ŵ = 0.07 mm1
c = 11.2743 (8) ÅT = 173 K
β = 99.271 (6)°Block, colourless
V = 891.34 (12) Å30.37 × 0.36 × 0.36 mm
Z = 2
Data collection top
Stoe IPDSII two-circle
diffractometer
Rint = 0.066
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
ω scansh = 77
6336 measured reflectionsk = 1717
2107 independent reflectionsl = 1314
1876 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2107 reflectionsΔρmax = 0.2 e Å3
204 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (6)
Crystal data top
C20H32O2V = 891.34 (12) Å3
Mr = 304.46Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.0073 (5) ŵ = 0.07 mm1
b = 13.3348 (11) ÅT = 173 K
c = 11.2743 (8) Å0.37 × 0.36 × 0.36 mm
β = 99.271 (6)°
Data collection top
Stoe IPDSII two-circle
diffractometer
1876 reflections with I > 2σ(I)
6336 measured reflectionsRint = 0.066
2107 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.2 e Å3
2107 reflectionsΔρmin = 0.16 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0462 (3)0.74056 (12)0.32053 (17)0.0400 (4)
H11.088 (5)0.801 (2)0.369 (3)0.053 (8)*
O20.8592 (3)0.42953 (12)0.55110 (15)0.0470 (5)
C10.8182 (4)0.44374 (16)0.0885 (2)0.0340 (4)
H1A0.95690.47970.07610.041*
H1B0.6880.47270.03440.041*
C20.8394 (3)0.33017 (15)0.06515 (19)0.0313 (4)
H2A0.99120.31440.04670.038*
H2B0.72530.30890.00360.038*
C30.8004 (3)0.27562 (15)0.18129 (18)0.0261 (4)
H30.95060.26840.23360.031*
C40.7041 (3)0.16952 (15)0.1557 (2)0.0311 (4)
H40.56640.17510.09310.037*
C50.6621 (3)0.35294 (14)0.24246 (18)0.0246 (4)
C60.6819 (4)0.34028 (15)0.38011 (19)0.0308 (4)
H6A0.53530.31640.39870.037*
H6B0.79560.28780.40680.037*
C70.7475 (3)0.43507 (15)0.45144 (19)0.0302 (4)
C80.6549 (3)0.53588 (15)0.40016 (18)0.0271 (4)
C90.6806 (3)0.54398 (14)0.26617 (18)0.0272 (4)
C100.7838 (3)0.45080 (14)0.21941 (18)0.0254 (4)
H100.9380.44510.26790.03*
C110.5111 (4)0.60649 (17)0.1836 (2)0.0364 (5)
H11A0.46390.58230.10030.044*
H11B0.39160.64090.21920.044*
C120.7496 (4)0.64378 (15)0.2178 (2)0.0340 (5)
H120.84330.63740.15250.041*
C130.8031 (4)0.73557 (15)0.2965 (2)0.0356 (5)
C140.7134 (4)0.72394 (15)0.4149 (2)0.0357 (5)
H14A0.77520.77820.47060.043*
H14B0.54710.73050.40.043*
C150.7781 (3)0.62273 (15)0.47304 (19)0.0307 (4)
H15A0.74020.62210.55530.037*
H15B0.9430.6130.47950.037*
C160.7113 (5)0.83020 (18)0.2302 (3)0.0524 (7)
H16A0.74720.88850.28270.079*
H16B0.54730.82450.20750.079*
H16C0.78030.83840.15770.079*
C170.4059 (4)0.53345 (18)0.4215 (2)0.0370 (5)
H17A0.33060.59590.39210.055*
H17B0.4020.52640.50770.055*
H17C0.32810.47650.37820.055*
C180.8759 (4)0.10463 (17)0.1047 (2)0.0425 (5)
H18A0.91960.13790.03440.064*
H18B0.80870.03920.08090.064*
H18C1.00950.09510.16610.064*
C190.6366 (5)0.11760 (17)0.2651 (2)0.0429 (5)
H19A0.52750.15940.29850.064*
H19B0.77060.10760.32610.064*
H19C0.56820.05250.24110.064*
C200.4160 (3)0.35344 (16)0.1790 (2)0.0338 (4)
H20A0.41190.3610.09220.051*
H20B0.33560.40950.20920.051*
H20C0.34350.29020.19520.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0403 (8)0.0284 (7)0.0521 (10)0.0029 (6)0.0101 (7)0.0037 (7)
O20.0642 (10)0.0364 (8)0.0347 (9)0.0084 (8)0.0096 (8)0.0001 (7)
C10.0422 (10)0.0317 (10)0.0303 (11)0.0025 (8)0.0127 (8)0.0006 (8)
C20.0327 (9)0.0345 (10)0.0287 (10)0.0030 (7)0.0109 (8)0.0038 (8)
C30.0235 (8)0.0298 (9)0.0251 (9)0.0000 (7)0.0041 (7)0.0019 (7)
C40.0317 (10)0.0282 (9)0.0325 (11)0.0004 (7)0.0028 (8)0.0044 (8)
C50.0214 (8)0.0275 (8)0.0253 (10)0.0013 (6)0.0055 (6)0.0015 (7)
C60.0375 (10)0.0303 (9)0.0261 (10)0.0009 (8)0.0099 (8)0.0006 (8)
C70.0330 (9)0.0331 (10)0.0257 (10)0.0025 (8)0.0084 (7)0.0008 (8)
C80.0255 (9)0.0299 (9)0.0261 (10)0.0024 (7)0.0048 (7)0.0035 (7)
C90.0271 (9)0.0286 (9)0.0251 (10)0.0010 (7)0.0020 (7)0.0001 (7)
C100.0230 (7)0.0274 (8)0.0261 (10)0.0010 (7)0.0054 (6)0.0006 (7)
C110.0400 (11)0.0332 (10)0.0326 (11)0.0057 (9)0.0041 (8)0.0012 (8)
C120.0414 (11)0.0271 (9)0.0328 (11)0.0005 (8)0.0041 (9)0.0021 (8)
C130.0393 (11)0.0255 (9)0.0406 (12)0.0021 (8)0.0020 (9)0.0017 (9)
C140.0347 (10)0.0319 (11)0.0397 (12)0.0048 (8)0.0034 (9)0.0086 (8)
C150.0312 (9)0.0332 (10)0.0278 (10)0.0008 (8)0.0047 (7)0.0048 (8)
C160.0708 (17)0.0302 (11)0.0520 (16)0.0069 (11)0.0024 (13)0.0029 (11)
C170.0303 (10)0.0403 (11)0.0425 (13)0.0010 (8)0.0126 (8)0.0066 (10)
C180.0462 (12)0.0343 (11)0.0475 (15)0.0059 (9)0.0095 (10)0.0106 (10)
C190.0560 (14)0.0314 (10)0.0429 (14)0.0048 (10)0.0130 (11)0.0010 (10)
C200.0227 (8)0.0373 (10)0.0413 (12)0.0006 (8)0.0046 (8)0.0054 (9)
Geometric parameters (Å, º) top
O1—C131.443 (3)C10—H101.00
O1—H10.99 (3)C11—C121.507 (3)
O2—C71.215 (3)C11—H11A0.99
C1—C101.525 (3)C11—H11B0.99
C1—C21.546 (3)C12—C131.516 (3)
C1—H1A0.99C12—H121.00
C1—H1B0.99C13—C161.524 (3)
C2—C31.548 (3)C13—C141.525 (4)
C2—H2A0.99C14—C151.523 (3)
C2—H2B0.99C14—H14A0.99
C3—C41.538 (3)C14—H14B0.99
C3—C51.553 (3)C15—H15A0.99
C3—H31.00C15—H15B0.99
C4—C191.525 (3)C16—H16A0.98
C4—C181.529 (3)C16—H16B0.98
C4—H41.00C16—H16C0.98
C5—C201.535 (2)C17—H17A0.98
C5—C101.538 (3)C17—H17B0.98
C5—C61.547 (3)C17—H17C0.98
C6—C71.516 (3)C18—H18A0.98
C6—H6A0.99C18—H18B0.98
C6—H6B0.99C18—H18C0.98
C7—C81.532 (3)C19—H19A0.98
C8—C151.539 (3)C19—H19B0.98
C8—C91.547 (3)C19—H19C0.98
C8—C171.553 (3)C20—H20A0.98
C9—C111.514 (3)C20—H20B0.98
C9—C101.520 (3)C20—H20C0.98
C9—C121.521 (3)
C13—O1—H1107.5 (18)C12—C11—H11A117.7
C10—C1—C2104.67 (16)C9—C11—H11A117.7
C10—C1—H1A110.8C12—C11—H11B117.7
C2—C1—H1A110.8C9—C11—H11B117.7
C10—C1—H1B110.8H11A—C11—H11B114.8
C2—C1—H1B110.8C11—C12—C13121.3 (2)
H1A—C1—H1B108.9C11—C12—C960.01 (14)
C1—C2—C3106.74 (17)C13—C12—C9122.7 (2)
C1—C2—H2A110.4C11—C12—H12114.1
C3—C2—H2A110.4C13—C12—H12114.1
C1—C2—H2B110.4C9—C12—H12114.1
C3—C2—H2B110.4O1—C13—C12105.05 (18)
H2A—C2—H2B108.6O1—C13—C16109.21 (19)
C4—C3—C2112.18 (16)C12—C13—C16110.81 (19)
C4—C3—C5118.79 (15)O1—C13—C14109.27 (18)
C2—C3—C5103.20 (15)C12—C13—C14111.03 (18)
C4—C3—H3107.4C16—C13—C14111.26 (19)
C2—C3—H3107.4C15—C14—C13111.42 (17)
C5—C3—H3107.4C15—C14—H14A109.3
C19—C4—C18109.33 (18)C13—C14—H14A109.3
C19—C4—C3114.03 (18)C15—C14—H14B109.3
C18—C4—C3109.55 (17)C13—C14—H14B109.3
C19—C4—H4107.9H14A—C14—H14B108
C18—C4—H4107.9C14—C15—C8111.71 (16)
C3—C4—H4107.9C14—C15—H15A109.3
C20—C5—C10111.46 (15)C8—C15—H15A109.3
C20—C5—C6112.37 (17)C14—C15—H15B109.3
C10—C5—C6107.48 (15)C8—C15—H15B109.3
C20—C5—C3109.86 (16)H15A—C15—H15B107.9
C10—C5—C3100.68 (14)C13—C16—H16A109.5
C6—C5—C3114.39 (16)C13—C16—H16B109.5
C7—C6—C5114.38 (16)H16A—C16—H16B109.5
C7—C6—H6A108.7C13—C16—H16C109.5
C5—C6—H6A108.7H16A—C16—H16C109.5
C7—C6—H6B108.7H16B—C16—H16C109.5
C5—C6—H6B108.7C8—C17—H17A109.5
H6A—C6—H6B107.6C8—C17—H17B109.5
O2—C7—C6119.85 (18)H17A—C17—H17B109.5
O2—C7—C8121.02 (18)C8—C17—H17C109.5
C6—C7—C8118.94 (17)H17A—C17—H17C109.5
C7—C8—C15110.17 (16)H17B—C17—H17C109.5
C7—C8—C9110.04 (15)C4—C18—H18A109.5
C15—C8—C9110.73 (16)C4—C18—H18B109.5
C7—C8—C17102.90 (17)H18A—C18—H18B109.5
C15—C8—C17108.97 (16)C4—C18—H18C109.5
C9—C8—C17113.75 (17)H18A—C18—H18C109.5
C11—C9—C10120.53 (17)H18B—C18—H18C109.5
C11—C9—C1259.54 (14)C4—C19—H19A109.5
C10—C9—C12116.15 (17)C4—C19—H19B109.5
C11—C9—C8118.43 (17)H19A—C19—H19B109.5
C10—C9—C8113.08 (16)C4—C19—H19C109.5
C12—C9—C8119.15 (17)H19A—C19—H19C109.5
C9—C10—C1120.82 (17)H19B—C19—H19C109.5
C9—C10—C5113.78 (16)C5—C20—H20A109.5
C1—C10—C5104.67 (15)C5—C20—H20B109.5
C9—C10—H10105.4H20A—C20—H20B109.5
C1—C10—H10105.4C5—C20—H20C109.5
C5—C10—H10105.4H20A—C20—H20C109.5
C12—C11—C960.45 (13)H20B—C20—H20C109.5
C10—C1—C2—C33.7 (2)C12—C9—C10—C138.2 (2)
C1—C2—C3—C4152.34 (17)C8—C9—C10—C1178.76 (16)
C1—C2—C3—C523.3 (2)C11—C9—C10—C595.5 (2)
C2—C3—C4—C19173.09 (18)C12—C9—C10—C5164.01 (16)
C5—C3—C4—C1952.7 (2)C8—C9—C10—C553.0 (2)
C2—C3—C4—C1864.0 (2)C2—C1—C10—C9159.73 (17)
C5—C3—C4—C18175.61 (18)C2—C1—C10—C529.8 (2)
C4—C3—C5—C2048.0 (2)C20—C5—C10—C961.6 (2)
C2—C3—C5—C2076.87 (19)C6—C5—C10—C962.0 (2)
C4—C3—C5—C10165.61 (16)C3—C5—C10—C9178.04 (16)
C2—C3—C5—C1040.77 (17)C20—C5—C10—C172.4 (2)
C4—C3—C5—C679.5 (2)C6—C5—C10—C1164.08 (15)
C2—C3—C5—C6155.67 (15)C3—C5—C10—C144.09 (17)
C20—C5—C6—C7106.20 (19)C10—C9—C11—C12104.3 (2)
C10—C5—C6—C716.8 (2)C8—C9—C11—C12108.9 (2)
C3—C5—C6—C7127.63 (17)C9—C11—C12—C13112.3 (2)
C5—C6—C7—O2148.2 (2)C10—C9—C12—C11111.6 (2)
C5—C6—C7—C836.7 (3)C8—C9—C12—C11107.7 (2)
O2—C7—C8—C1516.3 (3)C11—C9—C12—C13110.0 (2)
C6—C7—C8—C15168.73 (18)C10—C9—C12—C13138.4 (2)
O2—C7—C8—C9138.6 (2)C8—C9—C12—C132.3 (3)
C6—C7—C8—C946.4 (2)C11—C12—C13—O1173.55 (19)
O2—C7—C8—C1799.8 (2)C9—C12—C13—O1101.3 (2)
C6—C7—C8—C1775.2 (2)C11—C12—C13—C1668.6 (3)
C7—C8—C9—C11150.51 (18)C9—C12—C13—C16140.9 (2)
C15—C8—C9—C1187.4 (2)C11—C12—C13—C1455.5 (3)
C17—C8—C9—C1135.7 (3)C9—C12—C13—C1416.7 (3)
C7—C8—C9—C101.4 (2)O1—C13—C14—C1567.2 (2)
C15—C8—C9—C10123.40 (17)C12—C13—C14—C1548.2 (2)
C17—C8—C9—C10113.48 (19)C16—C13—C14—C15172.11 (18)
C7—C8—C9—C12140.47 (18)C13—C14—C15—C868.4 (2)
C15—C8—C9—C1218.4 (2)C7—C8—C15—C14172.31 (18)
C17—C8—C9—C12104.7 (2)C9—C8—C15—C1450.3 (2)
C11—C9—C10—C130.3 (3)C17—C8—C15—C1475.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.99 (3)1.93 (3)2.916 (2)172 (3)
Symmetry code: (i) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H32O2
Mr304.46
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)6.0073 (5), 13.3348 (11), 11.2743 (8)
β (°) 99.271 (6)
V3)891.34 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.37 × 0.36 × 0.36
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6336, 2107, 1876
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.00
No. of reflections2107
No. of parameters204
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.2, 0.16

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.99 (3)1.93 (3)2.916 (2)172 (3)
Symmetry code: (i) x+2, y+1/2, z+1.
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorquez, J., Loyola, L. A., Morales, G., San-Martín, A., Roldan, R., Marquez, N. & Muñoz, E. (2007). Phytother. Res. 21, 1082–1086.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChiaramello, A. I., Ardanaz, C. E., García, E. E. & Rossomando, P. C. (2003). Phytochemistry, 63, 883–886.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDelporte, C., Backhouse, N., Salinas, P., San-Martin, A., Borquez, J. & Loyola, A. (2003). Bioorg. Med. Chem. 11, 1187–1190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFuentes, N. L., Sagua, H., Morales, G., Borquez, J., San-Martín, A., Soto, J. & Loyola, L. A. (2005). Phytother. Res. 19, 713–716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoyola, L. A., Borquez, J., Morales, G., Araya, J., González, J., Neira, I., Sagua, H. & San-Martín, A. (2001). Phytochemistry, 56, 177–180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoyola, L. A., Bórquez, J., Morales, G. & San-Martín, A. (2000). Phytochemistry, 53, 961–963.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoyola, L. A., Borquez, J., Morales, G., San-Martin, A., Darias, J., Flores, N. & Gimenez, A. (2004). Phytochemistry, 65, 1931–1935.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoyola, L. A., Bórquez, J., Morales, G., San Martin, A., Manríquez, V. & Wittke, O. (1998). Tetrahedron, 54, 15533–15540.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorales, P., Kong, M., Pizarro, E., Pasten, C., Morales, G., Borquez, J. & Loyola, L. A. (2003). J. Androl. 24, 364–370.  Web of Science PubMed Google Scholar
First citationNeira, I., Pobleta, L., Porcille, P., Silva, P., Araya, J., Bórquez, J., Morales, G., Loyola, L. A. & Sagua, H. (1998). Bol. Chil. Parasitol. 53, 9–13  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds