organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Carb­­oxy-1-(3-nitro­phen­yl)ethanaminium perchlorate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: lwx927lh@163.com

(Received 28 November 2009; accepted 4 December 2009; online 16 January 2010)

In the title compound, C9H11N2O4+·ClO4, the organic cations form centrosymmetric dimers via a pair of O—H⋯O hydrogen bonds between the carboxyl groups. In the crystal, N—H⋯O inter­actions between the protonated amine group and the perchlorate anions and the nitro group connect the components into a two-dimensional network parallel to (001).

Related literature

For methods of preparation of β-amino acids, see: Cohen et al. (2002[Cohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977-1981.]); Qu et al. (2004[Qu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. F., Liu, Z.-G. & Xue, Z.-L. (2004). Chem. Eur. J. 10, 54-60.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N2O4+·ClO4

  • Mr = 310.65

  • Triclinic, [P \overline 1]

  • a = 7.4737 (10) Å

  • b = 7.7676 (8) Å

  • c = 11.8234 (11) Å

  • α = 94.973 (5)°

  • β = 99.093 (4)°

  • γ = 115.574 (9)°

  • V = 602.04 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 93 K

  • 0.45 × 0.30 × 0.15 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.882, Tmax = 0.950

  • 6395 measured reflections

  • 2737 independent reflections

  • 1732 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.08

  • 2737 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 1.82 2.6381 (14) 172
N2—H2D⋯O5ii 0.89 2.30 3.0542 (17) 142
N2—H2D⋯O1iii 0.89 2.26 2.9200 (17) 130
N2—H2C⋯O8iv 0.89 2.06 2.9159 (17) 162
N2—H2C⋯O4 0.89 2.45 2.9317 (16) 114
N2—H2B⋯O7 0.89 2.57 3.1795 (18) 126
N2—H2B⋯O6 0.89 2.09 2.9720 (17) 172
Symmetry codes: (i) -x+2, -y, -z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

β-Amino acids are important molecules due to their pharmacological properties. Recently, there have been an increased interest in the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds (Cohen et al., 2002). In addition, β-amino acids are attractive ligands for use in the generation of polar coordination polymers, especially when one considers the ferroelectric compounds (Qu et al., 2004).

The molecular structure of the title compound C9H11N2O4+.ClO4- is shown in Fig. 1. The crystal is stabilized by intermolecucar hydrogen bonds of N—H···O, C—H···O, O—H···O type (Table 1) that connect neighbouring cations and anions, resulting in a two-dimensional network shown in Fig. 2).

Related literature top

For methods of preparation of β-amino acids, see: Cohen et al. (2002); Qu et al. (2004).

Experimental top

Under nitrogen protection, 3-nitrobenzaldehyde (4.53 g, 30 mmol), malonic acid (5.0 g, 48 mmol) and ammonium acetate (6.0 g, 78 mmol) were added to a flask and refluxed for 12 h yielding a white precipitate. After being cooled to room temperature, the solution was filtered and the 3-amino-3-(3-nitrophenyl)propanoic acid was obtained, it was dissolved in ethanol and perchloric acid. After slowly evaporating over a period of 3 d, colorless prism crystals of the title compound suitable for diffraction studies were isolated.

Refinement top

Positional parameters of all H atoms were calculated geometrically and H atoms were allowed to ride on their parent atoms, with C—H = 0.93 to 0.97 Å, N—H = 0.89 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueqo(C) or 1.5 Ueq(N,O).

Structure description top

β-Amino acids are important molecules due to their pharmacological properties. Recently, there have been an increased interest in the enantiomeric preparation of β-amino acids as precursors for the synthesis of novel biologically active compounds (Cohen et al., 2002). In addition, β-amino acids are attractive ligands for use in the generation of polar coordination polymers, especially when one considers the ferroelectric compounds (Qu et al., 2004).

The molecular structure of the title compound C9H11N2O4+.ClO4- is shown in Fig. 1. The crystal is stabilized by intermolecucar hydrogen bonds of N—H···O, C—H···O, O—H···O type (Table 1) that connect neighbouring cations and anions, resulting in a two-dimensional network shown in Fig. 2).

For methods of preparation of β-amino acids, see: Cohen et al. (2002); Qu et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear (Rigaku 2005); data reduction: CrystalClear (Rigaku 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. Cation and anion in the title compound with the displacement ellipsoids drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of the title compound showing hydrogen bonding interactions. Hydrogen bonds are shown as dashed lines.
2-Carboxy-1-(3-nitrophenyl)ethanaminium perchlorate top
Crystal data top
C9H11N2O4+·ClO4Z = 2
Mr = 310.65F(000) = 320
Triclinic, P1Dx = 1.713 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4737 (10) ÅCell parameters from 1721 reflections
b = 7.7676 (8) Åθ = 3.1–27.5°
c = 11.8234 (11) ŵ = 0.36 mm1
α = 94.973 (5)°T = 93 K
β = 99.093 (4)°Prism, colorless
γ = 115.574 (9)°0.45 × 0.30 × 0.15 mm
V = 602.04 (12) Å3
Data collection top
Rigaku SCXmini
diffractometer
2737 independent reflections
Radiation source: fine-focus sealed tube1732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω and φ scanh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.882, Tmax = 0.950l = 1515
6395 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.395P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2737 reflectionsΔρmax = 0.41 e Å3
183 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (2)
Crystal data top
C9H11N2O4+·ClO4γ = 115.574 (9)°
Mr = 310.65V = 602.04 (12) Å3
Triclinic, P1Z = 2
a = 7.4737 (10) ÅMo Kα radiation
b = 7.7676 (8) ŵ = 0.36 mm1
c = 11.8234 (11) ÅT = 93 K
α = 94.973 (5)°0.45 × 0.30 × 0.15 mm
β = 99.093 (4)°
Data collection top
Rigaku SCXmini
diffractometer
2737 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1732 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.950Rint = 0.049
6395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
2737 reflectionsΔρmin = 0.38 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.03107 (18)0.28766 (17)0.32513 (10)0.0261 (3)
O20.04653 (17)0.16514 (17)0.49951 (10)0.0222 (2)
O30.98215 (17)0.04224 (17)0.14192 (9)0.0188 (2)
H31.03290.05300.08680.028*
O40.82886 (16)0.08503 (15)0.02079 (9)0.0166 (2)
N10.11075 (18)0.15634 (18)0.40993 (11)0.0163 (3)
N20.74545 (19)0.36296 (18)0.15908 (10)0.0155 (2)
H2D0.87120.42420.20250.023*
H2B0.67910.43200.17120.023*
H2C0.75040.34870.08430.023*
C10.2944 (2)0.0167 (2)0.40370 (12)0.0136 (3)
C20.3868 (2)0.1673 (2)0.49778 (12)0.0142 (3)
H2A0.33090.16300.56300.017*
C30.5666 (2)0.3255 (2)0.49154 (12)0.0150 (3)
H3A0.63280.42840.55360.018*
C40.6474 (2)0.3303 (2)0.39298 (12)0.0146 (3)
H40.76810.43600.38990.018*
C50.5485 (2)0.1772 (2)0.29839 (12)0.0137 (3)
C60.3711 (2)0.0183 (2)0.30398 (12)0.0139 (3)
H60.30460.08530.24230.017*
C70.6363 (2)0.1664 (2)0.19179 (12)0.0142 (3)
H70.52420.08280.12640.017*
C80.7776 (2)0.0740 (2)0.21606 (12)0.0146 (3)
H8A0.88870.15650.28080.018*
H8B0.70350.04920.23990.018*
C90.8654 (2)0.0398 (2)0.11572 (12)0.0136 (3)
Cl10.33694 (5)0.50865 (5)0.14980 (3)0.01593 (11)
O50.18796 (17)0.43639 (18)0.21983 (10)0.0261 (3)
O70.31799 (18)0.35386 (17)0.06549 (11)0.0270 (3)
O80.3095 (2)0.6550 (2)0.09212 (10)0.0302 (3)
O60.53816 (16)0.59598 (16)0.22457 (10)0.0209 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0238 (6)0.0184 (6)0.0237 (6)0.0008 (5)0.0036 (5)0.0009 (5)
O20.0208 (5)0.0255 (6)0.0254 (6)0.0112 (5)0.0135 (5)0.0098 (5)
O30.0227 (5)0.0280 (6)0.0151 (5)0.0186 (5)0.0074 (4)0.0048 (4)
O40.0196 (5)0.0206 (5)0.0144 (5)0.0130 (4)0.0051 (4)0.0031 (4)
N10.0138 (6)0.0171 (6)0.0197 (6)0.0082 (5)0.0035 (5)0.0062 (5)
N20.0186 (6)0.0164 (6)0.0148 (5)0.0099 (5)0.0060 (5)0.0034 (5)
C10.0119 (6)0.0146 (7)0.0169 (6)0.0079 (5)0.0031 (5)0.0049 (5)
C20.0155 (6)0.0176 (7)0.0140 (6)0.0105 (6)0.0056 (5)0.0047 (5)
C30.0162 (6)0.0136 (7)0.0156 (6)0.0083 (5)0.0016 (5)0.0001 (5)
C40.0121 (6)0.0124 (6)0.0193 (7)0.0050 (5)0.0045 (5)0.0032 (5)
C50.0153 (6)0.0153 (7)0.0145 (6)0.0098 (5)0.0054 (5)0.0032 (5)
C60.0148 (6)0.0140 (6)0.0145 (6)0.0086 (5)0.0017 (5)0.0012 (5)
C70.0144 (6)0.0135 (6)0.0146 (6)0.0061 (5)0.0047 (5)0.0007 (5)
C80.0167 (6)0.0153 (6)0.0148 (6)0.0084 (5)0.0073 (5)0.0039 (5)
C90.0122 (6)0.0119 (6)0.0157 (6)0.0045 (5)0.0041 (5)0.0010 (5)
Cl10.01637 (17)0.01607 (18)0.01561 (17)0.00828 (13)0.00303 (13)0.00028 (13)
O50.0183 (5)0.0306 (6)0.0253 (6)0.0070 (5)0.0087 (5)0.0011 (5)
O70.0272 (6)0.0203 (6)0.0294 (6)0.0086 (5)0.0082 (5)0.0080 (5)
O80.0498 (8)0.0372 (7)0.0175 (5)0.0332 (6)0.0043 (5)0.0059 (5)
O60.0167 (5)0.0202 (5)0.0231 (5)0.0072 (4)0.0013 (4)0.0023 (4)
Geometric parameters (Å, º) top
O1—N11.2288 (17)C3—H3A0.9300
O2—N11.2255 (17)C4—C51.400 (2)
O3—C91.3011 (18)C4—H40.9300
O3—H30.8200C5—C61.384 (2)
O4—C91.2296 (18)C5—C71.5217 (18)
N1—C11.4670 (18)C6—H60.9300
N2—C71.5075 (18)C7—C81.519 (2)
N2—H2D0.8900C7—H70.9800
N2—H2B0.8900C8—C91.5000 (18)
N2—H2C0.8900C8—H8A0.9700
C1—C21.384 (2)C8—H8B0.9700
C1—C61.3889 (19)Cl1—O71.4354 (11)
C2—C31.394 (2)Cl1—O51.4396 (12)
C2—H2A0.9300Cl1—O81.4455 (12)
C3—C41.391 (2)Cl1—O61.4486 (11)
C9—O3—H3109.5C5—C6—C1118.60 (13)
O2—N1—O1123.17 (13)C5—C6—H6120.7
O2—N1—C1118.90 (12)C1—C6—H6120.7
O1—N1—C1117.91 (12)N2—C7—C8111.06 (11)
C7—N2—H2D109.5N2—C7—C5111.99 (11)
C7—N2—H2B109.5C8—C7—C5108.58 (11)
H2D—N2—H2B109.5N2—C7—H7108.4
C7—N2—H2C109.5C8—C7—H7108.4
H2D—N2—H2C109.5C5—C7—H7108.4
H2B—N2—H2C109.5C9—C8—C7115.16 (12)
C2—C1—C6123.03 (13)C9—C8—H8A108.5
C2—C1—N1119.16 (12)C7—C8—H8A108.5
C6—C1—N1117.78 (13)C9—C8—H8B108.5
C1—C2—C3117.80 (13)C7—C8—H8B108.5
C1—C2—H2A121.1H8A—C8—H8B107.5
C3—C2—H2A121.1O4—C9—O3125.13 (13)
C4—C3—C2120.38 (13)O4—C9—C8122.98 (13)
C4—C3—H3A119.8O3—C9—C8111.90 (12)
C2—C3—H3A119.8O7—Cl1—O5110.51 (7)
C3—C4—C5120.49 (13)O7—Cl1—O8110.15 (7)
C3—C4—H4119.8O5—Cl1—O8109.25 (8)
C5—C4—H4119.8O7—Cl1—O6109.10 (7)
C6—C5—C4119.70 (13)O5—Cl1—O6109.02 (7)
C6—C5—C7116.93 (12)O8—Cl1—O6108.78 (8)
C4—C5—C7123.14 (12)
O2—N1—C1—C21.71 (19)C7—C5—C6—C1175.40 (12)
O1—N1—C1—C2179.73 (13)C2—C1—C6—C50.3 (2)
O2—N1—C1—C6176.20 (12)N1—C1—C6—C5177.56 (12)
O1—N1—C1—C62.37 (19)C6—C5—C7—N2148.40 (12)
C6—C1—C2—C30.9 (2)C4—C5—C7—N237.23 (18)
N1—C1—C2—C3176.88 (12)C6—C5—C7—C888.61 (15)
C1—C2—C3—C40.5 (2)C4—C5—C7—C885.76 (16)
C2—C3—C4—C50.6 (2)N2—C7—C8—C960.66 (16)
C3—C4—C5—C61.2 (2)C5—C7—C8—C9175.79 (12)
C3—C4—C5—C7175.45 (13)C7—C8—C9—O40.9 (2)
C4—C5—C6—C10.8 (2)C7—C8—C9—O3179.00 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O6i0.972.463.3742 (19)157
C8—H8A···O2ii0.972.563.3053 (19)134
C6—H6···O8i0.932.593.4263 (19)151
C4—H4···O1iii0.932.483.3858 (19)163
O3—H3···O4iv0.821.822.6381 (14)172
N2—H2D···O5v0.892.303.0542 (17)142
N2—H2D···O1iii0.892.262.9200 (17)130
N2—H2C···O8vi0.892.062.9159 (17)162
N2—H2C···O40.892.452.9317 (16)114
N2—H2B···O70.892.573.1795 (18)126
N2—H2B···O60.892.092.9720 (17)172
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z; (iv) x+2, y, z; (v) x+1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H11N2O4+·ClO4
Mr310.65
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)7.4737 (10), 7.7676 (8), 11.8234 (11)
α, β, γ (°)94.973 (5), 99.093 (4), 115.574 (9)
V3)602.04 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.45 × 0.30 × 0.15
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.882, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
6395, 2737, 1732
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.08
No. of reflections2737
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.38

Computer programs: CrystalClear (Rigaku 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.822.6381 (14)171.5
N2—H2D···O5ii0.892.303.0542 (17)142.0
N2—H2D···O1iii0.892.262.9200 (17)130.4
N2—H2C···O8iv0.892.062.9159 (17)161.5
N2—H2C···O40.892.452.9317 (16)114.2
N2—H2B···O70.892.573.1795 (18)126.4
N2—H2B···O60.892.092.9720 (17)171.9
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Technical Fund Financing Projects (No. 9207042464 and 9207041482) from Southeast University to Zhi-Rong Qu.

References

First citationCohen, J. H., Abdel-Magid, A. F., Almond, H. R. Jr & Maryanoff, C. A. (2002). Tetrahedron Lett. 43, 1977–1981.  Web of Science CrossRef CAS Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationQu, Z.-R., Zhao, H., Wang, Y.-P., Wang, X.-S., Ye, Q., Li, Y.-H., Xiong, R.-G., Abrahams, B. F., Liu, Z.-G. & Xue, Z.-L. (2004). Chem. Eur. J. 10, 54–60.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds