metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­(4-ethyl­benzoic acid-κO)lanthanum(III)]-tri-μ-4-ethyl­benzoato]

aDepartment of Physical Chemistry, Henan Polytechnic University, Jiaozuo, 454003, People's Republic of China
*Correspondence e-mail: yangjuan0302@yahoo.cn

(Received 1 January 2010; accepted 15 January 2010; online 20 January 2010)

The reaction of lanthanum nitrate and 4-ethyl­benzoic acid (EBAH) in aqueous solution yielded the title polymer, [La(C9H9O2)3(C9H10O2)(H2O)]n. The asymmetric unit contains one LaIII atom, three 4-ethyl­benzoate (EBA) ligands, one neutral EBAH ligand and one coordinated water mol­ecule. Each LaIII ion is eight-coordinated by six O atoms from six bridging-bidentate EBA ligands, one O atom from a monodentate EBAH ligand and one water O atom in a distorted bicapped trigonal-prismatic geometry. The adjacent LaIII ions are linked by the carboxyl­ate groups of EBA ligands in a bridging-bidetate coordination mode, resulting in an infinite chain structure along the c axis. O—H⋯O hydrogen-bonding inter­actions involving the water mol­ecules, carboxyl­ate groups and carboxyl H atoms are formed within the one-dimensional polymer. One of the ethyl groups is disordered over two positions with occupancies of 0.717 (7) and 0.283 (7).

Related literature

For information on lanthanum complexes, see: Ishii et al. (2002[Ishii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568-2583.]); Kim et al. (2001[Kim, J., Chen, B., Reneke, T. M., Li, H., Eddaoudi, M., Moler, D. B., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 8239-8247.]); Luneau & Rey (2005[Luneau, D. & Rey, P. (2005). Coord. Chem. Rev. 249, 2591-2611.]); Wang et al. (2006[Wang, X. L., Qin, C. & Wang, E. B. (2006). Cryst. Growth Des. 6, 439-443.]); Yu et al. (2003[Yu, S. C., Kwok, C. C., Chan, W. K. & Che, C. M. (2003). Adv. Mater. 15, 1643-1647.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C9H9O2)3(C9H10O2)(H2O)]

  • Mr = 754.58

  • Triclinic, [P \overline 1]

  • a = 9.5319 (3) Å

  • b = 14.0378 (5) Å

  • c = 14.9847 (5) Å

  • α = 65.024 (2)°

  • β = 74.942 (2)°

  • γ = 74.734 (2)°

  • V = 1727.91 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 296 K

  • 0.35 × 0.32 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.643, Tmax = 0.744

  • 22559 measured reflections

  • 7733 independent reflections

  • 6206 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.077

  • S = 1.01

  • 7733 reflections

  • 427 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected bond lengths (Å)

La1—O7i 2.446 (2)
La1—O1 2.451 (2)
La1—O2ii 2.457 (2)
La1—O6i 2.466 (2)
La1—O8 2.479 (2)
La1—O5 2.581 (2)
La1—O9 2.624 (2)
La1—O3 2.672 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O5 0.82 1.84 2.652 (3) 171
O9—H9B⋯O2 0.82 2.04 2.829 (3) 161

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the use of lanthanide salts for the synthesis of coordination polymer has attracted more and more attentions due to their high coordination numbers along with distinguished magnetic and luminescent properties (Ishii et al., 2002; Luneau & Rey, 2005; Yu et al., 2003). As an important family of multidentate O-donor ligands, aromatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes because of their potential properties and intriguing structural topologies (Kim et al., 2001; Wang et al., 2006). Herein, we report the structure of the title LaIII coordibation polymer.

The asymmetric unit of the title compound, [La(C9H9O2)3(C9H10O2)(H2O)]n contains one LaIII cation, three anionic EBA ligands, one neutral ligand EBAH and one water molecule, as illustrated in Fig. 1. The LaIII atom is coordinated by eight O atoms from six bridging-bidentate EBA ligands, one monodentate EBAH ligand and one water molecule. The LaIII center adopts a distorted bicapped trigonal prism geometry. The carboxylate groups of EBA ligands link the adjacent LaIII ions in bridging-bidetate coordination modeto form an infinite chain structure running along the c axis. The shortest intermetallic distance La···La is 4.2601 (4) Å, indicating a weak metal-metal interaction. The coordinating water, carboxylate O atoms of EBA ligands and carboxylic H atom of EBAH ligand are involved in O—H···O hydrogen-bonding interactions. These hydrogen bonds are all intramolecular, i.e. stabilize the one-dimensional chain structure of the title polymer (Table 2).

Related literature top

For information on lanthanum complexes, see: Ishii et al. (2002); Kim et al. (2001); Luneau & Rey (2005); Wang et al. (2006); Yu et al. (2003).

Experimental top

A mixture of La(NO3)3.6H2O (0.225 g, 0.52 mmol), EBAH (0.126 g, 0.84 mmol), melamine (0.026 g, 0.20 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave. The mixture was heated at 423 K for 7 days to give the colorless prism crystals suitable for X-ray diffraction analysis.

Refinement top

All H atoms bounded to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C (phenyl)—H = 0.93 Å, C (methyl)—H = 0.96 Å, and C (methylene)—H = 0.97 Å, respectively with Uiso (H) = 1.2 Ueq(C). The ethyl group C8—C9 was treated as disordered over two sites, with refined ccupancies 0.717 (7) and 0.283 (7). Positions of the water H atoms and the carboxylic H atom were found from a difference Fourier map and O—H distances constrained to 0.82 Å. Among 14 restraints used in the refinement are those used to restrain geometry of the disordered ethyl group and SHELXL-97 ISOR restraint imposed on the displacement ellipsoids of C27 and C9A.

Structure description top

Recently, the use of lanthanide salts for the synthesis of coordination polymer has attracted more and more attentions due to their high coordination numbers along with distinguished magnetic and luminescent properties (Ishii et al., 2002; Luneau & Rey, 2005; Yu et al., 2003). As an important family of multidentate O-donor ligands, aromatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes because of their potential properties and intriguing structural topologies (Kim et al., 2001; Wang et al., 2006). Herein, we report the structure of the title LaIII coordibation polymer.

The asymmetric unit of the title compound, [La(C9H9O2)3(C9H10O2)(H2O)]n contains one LaIII cation, three anionic EBA ligands, one neutral ligand EBAH and one water molecule, as illustrated in Fig. 1. The LaIII atom is coordinated by eight O atoms from six bridging-bidentate EBA ligands, one monodentate EBAH ligand and one water molecule. The LaIII center adopts a distorted bicapped trigonal prism geometry. The carboxylate groups of EBA ligands link the adjacent LaIII ions in bridging-bidetate coordination modeto form an infinite chain structure running along the c axis. The shortest intermetallic distance La···La is 4.2601 (4) Å, indicating a weak metal-metal interaction. The coordinating water, carboxylate O atoms of EBA ligands and carboxylic H atom of EBAH ligand are involved in O—H···O hydrogen-bonding interactions. These hydrogen bonds are all intramolecular, i.e. stabilize the one-dimensional chain structure of the title polymer (Table 2).

For information on lanthanum complexes, see: Ishii et al. (2002); Kim et al. (2001); Luneau & Rey (2005); Wang et al. (2006); Yu et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of LaIII in the title complex with the atom-labeling scheme[symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y, -z + 1] Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The one-dimensional chain structure of the title compound.
catena-Poly[[aqua(4-ethylbenzoic acid-κO)lanthanum(III)]-tri-µ-4-ethylbenzoato] top
Crystal data top
[La(C9H9O2)3(C9H10O2)(H2O)]Z = 2
Mr = 754.58F(000) = 768
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5319 (3) ÅCell parameters from 4271 reflections
b = 14.0378 (5) Åθ = 1.6–27.4°
c = 14.9847 (5) ŵ = 1.29 mm1
α = 65.024 (2)°T = 296 K
β = 74.942 (2)°Prism, colorless
γ = 74.734 (2)°0.35 × 0.32 × 0.23 mm
V = 1727.91 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7733 independent reflections
Radiation source: fine-focus sealed tube6206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 27.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.643, Tmax = 0.744k = 1718
22559 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.028P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7733 reflectionsΔρmax = 0.63 e Å3
427 parametersΔρmin = 0.73 e Å3
14 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: none
Crystal data top
[La(C9H9O2)3(C9H10O2)(H2O)]γ = 74.734 (2)°
Mr = 754.58V = 1727.91 (10) Å3
Triclinic, P1Z = 2
a = 9.5319 (3) ÅMo Kα radiation
b = 14.0378 (5) ŵ = 1.29 mm1
c = 14.9847 (5) ÅT = 296 K
α = 65.024 (2)°0.35 × 0.32 × 0.23 mm
β = 74.942 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7733 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6206 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.744Rint = 0.050
22559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03814 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.01Δρmax = 0.63 e Å3
7733 reflectionsΔρmin = 0.73 e Å3
427 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.70393 (2)0.005772 (14)0.529430 (14)0.03202 (7)
O10.8939 (2)0.14429 (17)0.60351 (17)0.0452 (6)
O21.1201 (2)0.12633 (17)0.51839 (17)0.0425 (6)
O30.7662 (3)0.01235 (19)0.69039 (17)0.0476 (6)
O40.5733 (3)0.1064 (2)0.7549 (2)0.0716 (9)
H4A0.55460.13000.69820.086*
O50.5373 (2)0.16617 (17)0.56793 (17)0.0438 (6)
O60.3932 (3)0.11669 (17)0.50875 (17)0.0451 (6)
O70.4662 (3)0.08426 (18)0.32269 (17)0.0480 (6)
O80.6584 (3)0.11814 (19)0.35678 (17)0.0483 (6)
O90.9081 (3)0.0388 (2)0.39017 (18)0.0582 (7)
H9A0.91850.00720.33370.087*
H9B0.98180.06840.41640.087*
C11.0302 (4)0.1780 (2)0.5892 (2)0.0369 (8)
C21.0876 (4)0.2861 (2)0.6599 (2)0.0382 (8)
C31.2323 (4)0.3347 (3)0.6403 (3)0.0510 (10)
H31.29480.29940.58320.061*
C41.2843 (5)0.4349 (3)0.7050 (3)0.0686 (12)
H41.38090.46750.69000.082*
C51.1953 (6)0.4879 (3)0.7917 (3)0.0717 (13)
C61.0516 (5)0.4374 (3)0.8123 (3)0.0695 (13)
H60.99060.47120.87110.083*
C70.9980 (4)0.3380 (3)0.7470 (3)0.0545 (10)
H70.90110.30580.76150.065*
C8A1.243 (2)0.6017 (18)0.8639 (16)0.110 (7)0.717 (7)
H8A1.29310.59790.91080.131*0.717 (7)
H8B1.15530.63180.90190.131*0.717 (7)
C9A1.3372 (10)0.6726 (6)0.8198 (6)0.119 (3)0.717 (7)
H9C1.35140.74320.87010.178*0.717 (7)
H9D1.43070.64960.79020.178*0.717 (7)
H9E1.29300.67290.76930.178*0.717 (7)
C8B1.271 (7)0.592 (5)0.863 (4)0.110 (7)0.283 (7)
H8C1.28410.64730.83820.131*0.283 (7)
H8D1.36900.58250.86270.131*0.283 (7)
C9B1.199 (3)0.6280 (15)0.9635 (18)0.119 (3)0.283 (7)
H9F1.22680.70400.99430.178*0.283 (7)
H9G1.09380.61010.96520.178*0.283 (7)
H9H1.22560.59450.99930.178*0.283 (7)
C100.6986 (4)0.0379 (3)0.7597 (3)0.0446 (8)
C110.7491 (4)0.0046 (3)0.8568 (3)0.0461 (9)
C120.8705 (5)0.0842 (3)0.8747 (3)0.0613 (11)
H120.91910.11160.82590.074*
C130.9214 (5)0.1240 (3)0.9641 (3)0.0703 (13)
H131.00380.17790.97430.084*
C140.8540 (5)0.0862 (3)1.0379 (3)0.0637 (11)
C150.7330 (5)0.0069 (4)1.0200 (3)0.0802 (15)
H150.68440.01991.06910.096*
C160.6812 (5)0.0343 (4)0.9305 (3)0.0711 (13)
H160.59950.08880.92020.085*
C170.9168 (6)0.1315 (4)1.1346 (3)0.0830 (15)
H17A0.95300.20721.15090.100*
H17B1.00090.09831.12230.100*
C180.8160 (7)0.1179 (5)1.2215 (4)0.124 (2)
H18A0.78520.04311.20890.186*
H18B0.86510.15201.27850.186*
H18C0.73120.14941.23440.186*
C190.4269 (3)0.1873 (2)0.5257 (2)0.0353 (7)
C200.3432 (3)0.2980 (2)0.4932 (2)0.0368 (8)
C210.2418 (4)0.3307 (3)0.4299 (3)0.0502 (9)
H210.22180.28150.41050.060*
C220.1699 (5)0.4353 (3)0.3953 (3)0.0617 (11)
H220.10250.45530.35270.074*
C230.1952 (5)0.5096 (3)0.4220 (3)0.0616 (11)
C240.2970 (5)0.4781 (3)0.4853 (4)0.0733 (14)
H240.31580.52780.50450.088*
C250.3715 (5)0.3726 (3)0.5205 (3)0.0603 (11)
H250.43990.35280.56230.072*
C260.1122 (6)0.6239 (3)0.3830 (4)0.0977 (18)
H26A0.06940.63330.32710.117*
H26B0.03120.63290.43510.117*
C270.1952 (8)0.7071 (4)0.3512 (5)0.133 (2)
H27A0.13890.77390.31460.199*
H27B0.28590.69230.30900.199*
H27C0.21680.71110.40850.199*
C280.5754 (4)0.1295 (2)0.2983 (2)0.0381 (8)
C290.6127 (3)0.2007 (2)0.1914 (2)0.0367 (8)
C300.7214 (4)0.2619 (3)0.1596 (3)0.0476 (9)
H300.77410.25840.20550.057*
C310.7529 (4)0.3279 (3)0.0608 (3)0.0527 (10)
H310.82530.36940.04150.063*
C320.6798 (4)0.3339 (3)0.0099 (3)0.0513 (10)
C330.5723 (5)0.2719 (3)0.0215 (3)0.0579 (11)
H330.52220.27390.02510.069*
C340.5373 (4)0.2069 (3)0.1209 (3)0.0520 (10)
H340.46280.16700.14050.062*
C350.7126 (5)0.4099 (3)0.1179 (3)0.0732 (13)
H35A0.81790.41010.13680.088*
H35B0.68460.38440.16060.088*
C360.6326 (7)0.5210 (4)0.1346 (4)0.117 (2)
H36A0.52860.52090.11350.176*
H36B0.65190.56500.20430.176*
H36C0.66590.54880.09670.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02659 (10)0.03400 (11)0.03639 (11)0.00694 (7)0.01086 (7)0.01010 (8)
O10.0330 (13)0.0440 (13)0.0504 (15)0.0023 (11)0.0126 (11)0.0096 (11)
O20.0350 (13)0.0397 (12)0.0501 (14)0.0112 (10)0.0132 (11)0.0082 (11)
O30.0458 (14)0.0621 (16)0.0420 (14)0.0068 (12)0.0105 (12)0.0263 (12)
O40.0567 (18)0.100 (2)0.0626 (18)0.0178 (16)0.0241 (15)0.0452 (17)
O50.0373 (13)0.0446 (13)0.0541 (15)0.0007 (11)0.0208 (11)0.0193 (12)
O60.0475 (14)0.0380 (13)0.0555 (15)0.0107 (11)0.0110 (12)0.0201 (11)
O70.0421 (14)0.0552 (15)0.0432 (14)0.0194 (12)0.0068 (11)0.0092 (12)
O80.0434 (14)0.0552 (15)0.0399 (14)0.0118 (12)0.0186 (11)0.0033 (12)
O90.0387 (14)0.0818 (19)0.0522 (16)0.0015 (13)0.0134 (12)0.0255 (14)
C10.0369 (19)0.0352 (17)0.044 (2)0.0107 (15)0.0145 (16)0.0136 (15)
C20.0368 (19)0.0337 (17)0.046 (2)0.0073 (14)0.0195 (16)0.0090 (15)
C30.048 (2)0.044 (2)0.056 (2)0.0015 (17)0.0182 (19)0.0126 (18)
C40.063 (3)0.052 (2)0.079 (3)0.010 (2)0.026 (2)0.018 (2)
C50.084 (3)0.045 (2)0.073 (3)0.002 (2)0.037 (3)0.002 (2)
C60.072 (3)0.055 (2)0.062 (3)0.023 (2)0.019 (2)0.008 (2)
C70.046 (2)0.052 (2)0.060 (3)0.0148 (18)0.0183 (19)0.0066 (19)
C8A0.118 (10)0.072 (6)0.097 (5)0.014 (8)0.043 (7)0.003 (4)
C9A0.141 (6)0.069 (4)0.135 (6)0.008 (4)0.062 (5)0.022 (4)
C8B0.118 (10)0.072 (6)0.097 (5)0.014 (8)0.043 (7)0.003 (4)
C9B0.141 (6)0.069 (4)0.135 (6)0.008 (4)0.062 (5)0.022 (4)
C100.039 (2)0.052 (2)0.049 (2)0.0111 (17)0.0124 (17)0.0205 (18)
C110.041 (2)0.058 (2)0.043 (2)0.0056 (17)0.0096 (17)0.0236 (18)
C120.066 (3)0.067 (3)0.047 (2)0.003 (2)0.012 (2)0.026 (2)
C130.071 (3)0.074 (3)0.057 (3)0.011 (2)0.021 (2)0.024 (2)
C140.063 (3)0.077 (3)0.049 (2)0.005 (2)0.016 (2)0.022 (2)
C150.081 (3)0.109 (4)0.052 (3)0.017 (3)0.019 (2)0.048 (3)
C160.064 (3)0.088 (3)0.058 (3)0.020 (2)0.021 (2)0.038 (2)
C170.089 (4)0.104 (4)0.052 (3)0.010 (3)0.031 (3)0.019 (3)
C180.109 (5)0.202 (7)0.064 (4)0.002 (5)0.031 (3)0.058 (4)
C190.0304 (17)0.0358 (17)0.0388 (19)0.0061 (14)0.0045 (14)0.0139 (15)
C200.0323 (17)0.0371 (17)0.0411 (19)0.0046 (14)0.0063 (15)0.0159 (15)
C210.051 (2)0.044 (2)0.055 (2)0.0051 (17)0.0187 (19)0.0139 (18)
C220.058 (3)0.050 (2)0.066 (3)0.002 (2)0.024 (2)0.008 (2)
C230.054 (3)0.044 (2)0.069 (3)0.0001 (19)0.004 (2)0.014 (2)
C240.087 (3)0.049 (3)0.100 (4)0.007 (2)0.020 (3)0.043 (3)
C250.066 (3)0.049 (2)0.081 (3)0.001 (2)0.028 (2)0.037 (2)
C260.083 (4)0.046 (3)0.128 (5)0.002 (2)0.004 (3)0.015 (3)
C270.157 (5)0.058 (3)0.184 (6)0.007 (3)0.073 (5)0.028 (4)
C280.0319 (18)0.0368 (17)0.0400 (19)0.0034 (15)0.0093 (15)0.0091 (15)
C290.0316 (17)0.0368 (17)0.0379 (18)0.0031 (14)0.0080 (14)0.0111 (15)
C300.045 (2)0.056 (2)0.042 (2)0.0144 (18)0.0121 (17)0.0128 (17)
C310.045 (2)0.058 (2)0.050 (2)0.0221 (18)0.0001 (18)0.0124 (19)
C320.058 (2)0.047 (2)0.041 (2)0.0027 (19)0.0059 (19)0.0143 (17)
C330.077 (3)0.059 (2)0.041 (2)0.011 (2)0.027 (2)0.0126 (19)
C340.058 (2)0.051 (2)0.051 (2)0.0212 (19)0.0182 (19)0.0104 (18)
C350.083 (3)0.076 (3)0.037 (2)0.011 (3)0.004 (2)0.009 (2)
C360.133 (5)0.071 (3)0.064 (3)0.011 (3)0.019 (3)0.015 (3)
Geometric parameters (Å, º) top
La1—O7i2.446 (2)C12—C131.380 (5)
La1—O12.451 (2)C12—H120.9300
La1—O2ii2.457 (2)C13—C141.365 (5)
La1—O6i2.466 (2)C13—H130.9300
La1—O82.479 (2)C14—C151.369 (5)
La1—O52.581 (2)C14—C171.528 (6)
La1—O92.624 (2)C15—C161.383 (5)
La1—O32.672 (2)C15—H150.9300
La1—O62.989 (2)C16—H160.9300
O1—C11.255 (4)C17—C181.455 (6)
O2—C11.262 (4)C17—H17A0.9700
O2—La1ii2.457 (2)C17—H17B0.9700
O3—C101.212 (4)C18—H18A0.9600
O4—C101.318 (4)C18—H18B0.9600
O4—H4A0.8200C18—H18C0.9600
O5—C191.272 (4)C19—C201.482 (4)
O6—C191.255 (4)C20—C251.381 (5)
O6—La1i2.466 (2)C20—C211.385 (5)
O7—C281.255 (4)C21—C221.381 (5)
O7—La1i2.446 (2)C21—H210.9300
O8—C281.263 (4)C22—C231.358 (6)
O9—H9A0.8199C22—H220.9300
O9—H9B0.8200C23—C241.390 (6)
C1—C21.494 (4)C23—C261.524 (5)
C2—C71.382 (5)C24—C251.399 (5)
C2—C31.385 (5)C24—H240.9300
C3—C41.377 (5)C25—H250.9300
C3—H30.9300C26—C271.428 (7)
C4—C51.380 (6)C26—H26A0.9700
C4—H40.9300C26—H26B0.9700
C5—C61.389 (6)C27—H27A0.9600
C5—C8B1.527 (12)C27—H27B0.9600
C5—C8A1.530 (9)C27—H27C0.9600
C6—C71.377 (5)C28—C291.494 (4)
C6—H60.9300C29—C301.380 (5)
C7—H70.9300C29—C341.388 (5)
C8A—C9A1.42 (3)C30—C311.378 (5)
C8A—H8A0.9700C30—H300.9300
C8A—H8B0.9700C31—C321.376 (5)
C9A—H9C0.9600C31—H310.9300
C9A—H9D0.9600C32—C331.379 (5)
C9A—H9E0.9600C32—C351.520 (5)
C8B—C9B1.41 (3)C33—C341.385 (5)
C8B—H8C0.9700C33—H330.9300
C8B—H8D0.9700C34—H340.9300
C9B—H9F0.9600C35—C361.491 (6)
C9B—H9G0.9600C35—H35A0.9700
C9B—H9H0.9600C35—H35B0.9700
C10—C111.478 (5)C36—H36A0.9600
C11—C161.374 (5)C36—H36B0.9600
C11—C121.374 (5)C36—H36C0.9600
O7i—La1—O185.28 (8)C12—C11—C10119.7 (3)
O7i—La1—O2ii138.39 (8)C11—C12—C13120.8 (4)
O1—La1—O2ii88.76 (7)C11—C12—H12119.6
O7i—La1—O6i72.11 (8)C13—C12—H12119.6
O1—La1—O6i88.38 (8)C14—C13—C12121.7 (4)
O2ii—La1—O6i148.91 (8)C14—C13—H13119.1
O7i—La1—O8129.46 (8)C12—C13—H13119.1
O1—La1—O8134.90 (8)C13—C14—C15117.3 (4)
O2ii—La1—O881.26 (8)C13—C14—C17119.6 (4)
O6i—La1—O879.01 (8)C15—C14—C17123.1 (4)
O7i—La1—O578.89 (8)C14—C15—C16121.6 (4)
O1—La1—O5137.55 (8)C14—C15—H15119.2
O2ii—La1—O578.19 (7)C16—C15—H15119.2
O6i—La1—O5122.55 (7)C11—C16—C15120.7 (4)
O8—La1—O583.19 (8)C11—C16—H16119.7
O7i—La1—O9138.96 (8)C15—C16—H16119.7
O1—La1—O969.14 (8)C18—C17—C14116.4 (4)
O2ii—La1—O974.56 (8)C18—C17—H17A108.2
O6i—La1—O975.51 (8)C14—C17—H17A108.2
O8—La1—O965.79 (8)C18—C17—H17B108.2
O5—La1—O9141.12 (8)C14—C17—H17B108.2
O7i—La1—O370.76 (8)H17A—C17—H17B107.3
O1—La1—O367.79 (7)C17—C18—H18A109.5
O2ii—La1—O368.89 (8)C17—C18—H18B109.5
O6i—La1—O3137.01 (8)H18A—C18—H18B109.5
O8—La1—O3142.87 (8)C17—C18—H18C109.5
O5—La1—O369.82 (7)H18A—C18—H18C109.5
O9—La1—O3122.91 (7)H18B—C18—H18C109.5
O7i—La1—O669.86 (7)O6—C19—O5120.5 (3)
O1—La1—O6154.19 (7)O6—C19—C20120.8 (3)
O2ii—La1—O6114.27 (7)O5—C19—C20118.7 (3)
O6i—La1—O677.73 (7)C25—C20—C21118.4 (3)
O8—La1—O663.95 (7)C25—C20—C19120.4 (3)
O5—La1—O645.66 (7)C21—C20—C19121.0 (3)
O9—La1—O6126.33 (7)C22—C21—C20120.9 (4)
O3—La1—O6108.39 (7)C22—C21—H21119.5
C1—O1—La1141.5 (2)C20—C21—H21119.5
C1—O2—La1ii144.6 (2)C23—C22—C21121.5 (4)
C10—O3—La1136.8 (2)C23—C22—H22119.2
C10—O4—H4A109.2C21—C22—H22119.2
C19—O5—La1104.12 (19)C22—C23—C24118.3 (4)
C19—O6—La1i172.4 (2)C22—C23—C26119.8 (5)
C19—O6—La185.22 (18)C24—C23—C26122.0 (4)
La1i—O6—La1102.27 (7)C23—C24—C25120.9 (4)
C28—O7—La1i140.7 (2)C23—C24—H24119.5
C28—O8—La1139.7 (2)C25—C24—H24119.5
La1—O9—H9A119.0C20—C25—C24119.9 (4)
La1—O9—H9B105.1C20—C25—H25120.0
H9A—O9—H9B117.6C24—C25—H25120.0
O1—C1—O2123.7 (3)C27—C26—C23116.9 (5)
O1—C1—C2117.6 (3)C27—C26—H26A108.1
O2—C1—C2118.7 (3)C23—C26—H26A108.1
C7—C2—C3119.0 (3)C27—C26—H26B108.1
C7—C2—C1120.4 (3)C23—C26—H26B108.1
C3—C2—C1120.5 (3)H26A—C26—H26B107.3
C4—C3—C2120.3 (4)C26—C27—H27A109.5
C4—C3—H3119.8C26—C27—H27B109.5
C2—C3—H3119.8H27A—C27—H27B109.5
C3—C4—C5121.1 (4)C26—C27—H27C109.5
C3—C4—H4119.5H27A—C27—H27C109.5
C5—C4—H4119.5H27B—C27—H27C109.5
C4—C5—C6118.2 (4)O7—C28—O8125.1 (3)
C4—C5—C8B115.9 (19)O7—C28—C29117.8 (3)
C6—C5—C8B125.3 (17)O8—C28—C29117.1 (3)
C4—C5—C8A123.8 (8)C30—C29—C34118.1 (3)
C6—C5—C8A117.9 (8)C30—C29—C28121.8 (3)
C7—C6—C5121.0 (4)C34—C29—C28120.1 (3)
C7—C6—H6119.5C31—C30—C29120.8 (3)
C5—C6—H6119.5C31—C30—H30119.6
C6—C7—C2120.3 (4)C29—C30—H30119.6
C6—C7—H7119.9C32—C31—C30121.6 (4)
C2—C7—H7119.9C32—C31—H31119.2
C9A—C8A—C5116.0 (15)C30—C31—H31119.2
C9A—C8A—H8A108.3C31—C32—C33117.7 (3)
C5—C8A—H8A108.3C31—C32—C35120.8 (4)
C9A—C8A—H8B108.3C33—C32—C35121.5 (4)
C5—C8A—H8B108.3C32—C33—C34121.4 (4)
H8A—C8A—H8B107.4C32—C33—H33119.3
C9B—C8B—C5116 (3)C34—C33—H33119.3
C9B—C8B—H8C108.2C33—C34—C29120.4 (4)
C5—C8B—H8C108.2C33—C34—H34119.8
C5—C8B—H8D108.2C29—C34—H34119.8
H8C—C8B—H8D107.4C36—C35—C32112.5 (3)
C8B—C9B—H9F109.5C36—C35—H35A109.1
C8B—C9B—H9G109.5C32—C35—H35A109.1
H9F—C9B—H9G109.5C36—C35—H35B109.1
C8B—C9B—H9H109.5C32—C35—H35B109.1
H9F—C9B—H9H109.5H35A—C35—H35B107.8
H9G—C9B—H9H109.5C35—C36—H36A109.5
O3—C10—O4122.7 (3)C35—C36—H36B109.5
O3—C10—C11123.2 (3)H36A—C36—H36B109.5
O4—C10—C11114.1 (3)C35—C36—H36C109.5
C16—C11—C12117.8 (4)H36A—C36—H36C109.5
C16—C11—C10122.5 (3)H36B—C36—H36C109.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O50.821.842.652 (3)171
O9—H9B···O20.822.042.829 (3)161

Experimental details

Crystal data
Chemical formula[La(C9H9O2)3(C9H10O2)(H2O)]
Mr754.58
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.5319 (3), 14.0378 (5), 14.9847 (5)
α, β, γ (°)65.024 (2), 74.942 (2), 74.734 (2)
V3)1727.91 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.35 × 0.32 × 0.23
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.643, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
22559, 7733, 6206
Rint0.050
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.077, 1.01
No. of reflections7733
No. of parameters427
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.73

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
La1—O7i2.446 (2)La1—O82.479 (2)
La1—O12.451 (2)La1—O52.581 (2)
La1—O2ii2.457 (2)La1—O92.624 (2)
La1—O6i2.466 (2)La1—O32.672 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O50.821.842.652 (3)171
O9—H9B···O20.822.042.829 (3)161
 

Acknowledgements

The authors acknowledge support from the Doctoral Foundation of Henan Polytechnic University (B2008–58 648265).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIshii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568–2583.  Web of Science PubMed Google Scholar
First citationKim, J., Chen, B., Reneke, T. M., Li, H., Eddaoudi, M., Moler, D. B., O'Keeffe, M. & Yaghi, O. M. (2001). J. Am. Chem. Soc. 123, 8239–8247.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLuneau, D. & Rey, P. (2005). Coord. Chem. Rev. 249, 2591–2611.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. L., Qin, C. & Wang, E. B. (2006). Cryst. Growth Des. 6, 439–443.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, S. C., Kwok, C. C., Chan, W. K. & Che, C. M. (2003). Adv. Mater. 15, 1643–1647.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds