metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N′-Bis(4-chloro­phen­yl)pentane-2,4-diiminato]di­carbonyl­rhodium(I)

aDepartment of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
*Correspondence e-mail: tania.hill@gmail.com

(Received 30 October 2009; accepted 5 January 2010; online 27 January 2010)

The title compound, [Rh(C17H15Cl2N2)(CO)2], is a rhodium(I) derivative of a β-diketiminato moiety. It is an example of a new type of β-diketiminate derivative that has not yet been characterized via solid-state methods. The complex crystallizes with a distorted square-planar geometry about the RhI atom (m symmetry). A weak inter­molecular C—H⋯O contact is observed.

Related literature

For related diketiminato complexes, see: Smith et al. (2002[Smith, J. M., Lachicotte, R. J. & Holland, P. L. (2002). Organometallics, 21, 4808-4814.], 2006[Smith, J. M., Sadique, A. R., Cundari, T. R., Rodgers, K. R., Lukat-Rodgers, G., Lachicotte, R. J., Flaschenriem, C. J., Vela, J. & Holland, P. L. (2006). J. Am. Chem. Soc. 128, 756-769.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C17H15Cl2N2)(CO)2]

  • Mr = 477.14

  • Monoclinic, P 21 /m

  • a = 9.6726 (3) Å

  • b = 7.5911 (2) Å

  • c = 13.6484 (4) Å

  • β = 107.247 (1)°

  • V = 957.08 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 K

  • 0.36 × 0.31 × 0.30 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.675, Tmax = 0.717

  • 27556 measured reflections

  • 2555 independent reflections

  • 2491 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.050

  • S = 0.93

  • 2555 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected geometric parameters (Å, °)

Rh1—C02 1.854 (2)
Rh1—C01 1.8741 (19)
Rh1—N1 2.0453 (14)
Rh1—N2 2.0523 (14)
O01—C01 1.134 (2)
O02—C02 1.137 (3)
C02—Rh1—C01 85.48 (8)
C02—Rh1—N1 91.89 (7)
C01—Rh1—N2 92.76 (7)
N1—Rh1—N2 89.87 (6)
O01—C01—Rh1 176.21 (17)
O02—C02—Rh1 177.45 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O02i 0.95 2.54 3.1723 (18) 124
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In literature similar iron complexes have been reported containing tertiary butyl, isopropyl and methyl derivatives (Smith et al., 2002; Smith et al., 2006). Using a comparable ligand system, with electron withdrawing substituents on the phenyl ring, a series of rhodium(I) dicarbonyl complexes were prepared. The title compound (I) is a novel example of a 4-Chlorophenyl derivative. (Figure 1)

Due to the highly symmetrical nature of the complex both the Rh—C and Rh—N bond distances are similar. The carbonyl oxygen bond distances are the same, with the carbonyl's themselves being close to linearity. The mirror plane bisects the complex passing through the metal centre, the ketimine backbone and carbonyl moeities. (Table 1)

A staggared head-to-tail stacking is observed with no Rh—Rh interaction. The closest contact is a weak hydrogen bond between the phenyl ring (C22) of the diketiminato ligand and the adjacent carbonyl oxygen O02 (Table 2).

Related literature top

For related diketiminato complexes, see: Smith et al. (2002, 2006)

Experimental top

The title complex was synthesized by the addition of N,N'-bis-(4-chlorophenyl)pentane-2,4-di-imine (167 mg, 0.514 mmol) to an acetone solution of the [Rh(µ-Cl)(CO)2]2 (100 mg, 0.257 mmol). On slow evaporation of the solvent; crystals suitable for X-Ray crystallography were obtained. Yield: 147 mg (60%).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) of the parent atom with a C—H distance of 0.99 (methyl) and 0.95 (aromatic).

Structure description top

In literature similar iron complexes have been reported containing tertiary butyl, isopropyl and methyl derivatives (Smith et al., 2002; Smith et al., 2006). Using a comparable ligand system, with electron withdrawing substituents on the phenyl ring, a series of rhodium(I) dicarbonyl complexes were prepared. The title compound (I) is a novel example of a 4-Chlorophenyl derivative. (Figure 1)

Due to the highly symmetrical nature of the complex both the Rh—C and Rh—N bond distances are similar. The carbonyl oxygen bond distances are the same, with the carbonyl's themselves being close to linearity. The mirror plane bisects the complex passing through the metal centre, the ketimine backbone and carbonyl moeities. (Table 1)

A staggared head-to-tail stacking is observed with no Rh—Rh interaction. The closest contact is a weak hydrogen bond between the phenyl ring (C22) of the diketiminato ligand and the adjacent carbonyl oxygen O02 (Table 2).

For related diketiminato complexes, see: Smith et al. (2002, 2006)

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
[N,N'-Bis(4-chlorophenyl)pentane-2,4- diiminato]dicarbonylrhodium(I) top
Crystal data top
[Rh(C17H15Cl2N2)(CO)2]F(000) = 476
Mr = 477.14Dx = 1.656 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 7852 reflections
a = 9.6726 (3) Åθ = 2.7–28.3°
b = 7.5911 (2) ŵ = 1.19 mm1
c = 13.6484 (4) ÅT = 100 K
β = 107.247 (1)°Cuboid, colourless
V = 957.08 (5) Å30.36 × 0.31 × 0.3 mm
Z = 2
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
2555 independent reflections
Radiation source: sealed tube2491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1010
Tmin = 0.675, Tmax = 0.717l = 1815
27556 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.5478P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.001
S = 0.93Δρmax = 0.36 e Å3
2555 reflectionsΔρmin = 0.85 e Å3
149 parameters
Crystal data top
[Rh(C17H15Cl2N2)(CO)2]V = 957.08 (5) Å3
Mr = 477.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 9.6726 (3) ŵ = 1.19 mm1
b = 7.5911 (2) ÅT = 100 K
c = 13.6484 (4) Å0.36 × 0.31 × 0.3 mm
β = 107.247 (1)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
2555 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2491 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.717Rint = 0.026
27556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.36 e Å3
2555 reflectionsΔρmin = 0.85 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.637102 (13)0.250.465229 (9)0.01730 (6)
N10.70723 (16)0.250.33783 (11)0.0184 (3)
N20.84799 (16)0.250.55685 (11)0.0174 (3)
O010.51242 (16)0.250.64255 (11)0.0306 (3)
O020.32539 (17)0.250.34080 (13)0.0470 (5)
Cl110.25234 (6)0.250.06636 (4)0.04074 (14)
Cl210.87899 (6)0.250.99767 (3)0.03319 (12)
C010.5641 (2)0.250.57800 (15)0.0233 (4)
C10.84413 (19)0.250.33584 (13)0.0183 (3)
C020.4448 (2)0.250.38608 (15)0.0298 (4)
C20.96380 (18)0.250.42351 (13)0.0185 (3)
H21.05570.250.41160.022*
C30.96652 (19)0.250.52655 (13)0.0178 (3)
C40.8736 (2)0.250.23319 (13)0.0231 (4)
H4A0.820 (4)0.152 (3)0.1908 (14)0.035*0.5
H4B0.9787 (16)0.235 (5)0.2437 (2)0.035*0.5
H4C0.841 (4)0.363 (3)0.1977 (13)0.035*0.5
C51.11412 (19)0.250.60505 (14)0.0221 (3)
H5A1.1388 (9)0.364 (2)0.6276 (10)0.033*0.5
H5B1.1816 (12)0.206 (2)0.5756 (6)0.033*0.5
H5C1.1122 (5)0.180 (2)0.6599 (12)0.033*0.5
C110.59706 (19)0.250.23963 (13)0.0206 (3)
C120.54311 (14)0.09167 (18)0.19293 (10)0.0243 (3)
H120.57920.01650.22550.029*
C130.43608 (14)0.0908 (2)0.09835 (10)0.0278 (3)
H130.39880.01720.0660.033*
C140.3853 (2)0.250.05267 (15)0.0281 (4)
C210.86559 (18)0.250.66523 (12)0.0185 (3)
C220.86893 (17)0.40678 (19)0.71687 (10)0.0303 (3)
H220.86830.51510.68190.036*
C230.87317 (17)0.4078 (2)0.81978 (10)0.0322 (3)
H230.87490.5160.85520.039*
C240.8748 (2)0.250.86918 (13)0.0232 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01599 (8)0.02468 (8)0.01164 (8)00.00473 (5)0
N10.0194 (7)0.0248 (7)0.0112 (6)00.0046 (5)0
N20.0191 (7)0.0228 (7)0.0102 (6)00.0044 (5)0
O010.0300 (7)0.0437 (8)0.0230 (7)00.0154 (6)0
O020.0194 (7)0.0851 (14)0.0326 (9)00.0018 (6)0
Cl110.0270 (2)0.0652 (4)0.0215 (2)00.00592 (18)0
Cl210.0342 (2)0.0550 (3)0.01086 (19)00.00754 (17)0
C010.0192 (8)0.0295 (9)0.0207 (8)00.0052 (7)0
C10.0230 (8)0.0206 (7)0.0123 (7)00.0068 (6)0
C020.0240 (9)0.0461 (12)0.0206 (9)00.0087 (7)0
C20.0175 (7)0.0238 (8)0.0151 (7)00.0063 (6)0
C30.0194 (8)0.0187 (7)0.0150 (7)00.0047 (6)0
C40.0241 (9)0.0332 (9)0.0138 (8)00.0081 (7)0
C50.0184 (8)0.0298 (9)0.0170 (8)00.0038 (6)0
C110.0201 (8)0.0305 (9)0.0116 (7)00.0055 (6)0
C120.0253 (6)0.0302 (6)0.0170 (5)0.0013 (5)0.0056 (5)0.0004 (5)
C130.0255 (6)0.0376 (7)0.0196 (6)0.0056 (6)0.0055 (5)0.0053 (5)
C140.0186 (8)0.0500 (13)0.0136 (7)00.0013 (6)0
C210.0171 (7)0.0268 (8)0.0116 (7)00.0044 (6)0
C220.0500 (8)0.0255 (6)0.0179 (6)0.0132 (6)0.0140 (6)0.0030 (5)
C230.0489 (8)0.0319 (7)0.0182 (6)0.0150 (6)0.0135 (6)0.0094 (5)
C240.0203 (8)0.0391 (10)0.0098 (7)00.0041 (6)0
Geometric parameters (Å, º) top
Rh1—C021.854 (2)C4—H4C0.9902
Rh1—C011.8741 (19)C5—H5A0.9234
Rh1—N12.0453 (14)C5—H5B0.9234
Rh1—N22.0523 (14)C5—H5C0.9234
N1—C11.332 (2)C11—C121.3877 (16)
N1—C111.444 (2)C11—C12i1.3877 (16)
N2—C31.329 (2)C12—C131.3949 (17)
N2—C211.438 (2)C12—H120.95
O01—C011.134 (2)C13—C141.3816 (18)
O02—C021.137 (3)C13—H130.95
Cl11—C141.748 (2)C14—C13i1.3816 (18)
Cl21—C241.7420 (18)C21—C221.3787 (16)
C1—C21.397 (2)C21—C22i1.3787 (16)
C1—C41.510 (2)C22—C231.3929 (17)
C2—C31.399 (2)C22—H220.95
C2—H20.95C23—C241.3727 (17)
C3—C51.510 (2)C23—H230.95
C4—H4A0.9902C24—C23i1.3727 (17)
C4—H4B0.9902
C02—Rh1—C0185.48 (8)C3—C5—H5B109.5
C02—Rh1—N191.89 (7)H5A—C5—H5B109.5
C01—Rh1—N1177.37 (6)C3—C5—H5C109.5
C02—Rh1—N2178.24 (7)H5A—C5—H5C109.5
C01—Rh1—N292.76 (7)H5B—C5—H5C109.5
N1—Rh1—N289.87 (6)C12—C11—C12i120.01 (16)
C1—N1—C11116.46 (14)C12—C11—N1119.99 (8)
C1—N1—Rh1126.83 (12)C12i—C11—N1119.99 (8)
C11—N1—Rh1116.72 (11)C11—C12—C13120.27 (13)
C3—N2—C21118.04 (14)C11—C12—H12119.9
C3—N2—Rh1127.13 (12)C13—C12—H12119.9
C21—N2—Rh1114.83 (11)C14—C13—C12118.70 (14)
O01—C01—Rh1176.21 (17)C14—C13—H13120.7
N1—C1—C2123.98 (15)C12—C13—H13120.7
N1—C1—C4118.73 (15)C13i—C14—C13122.04 (18)
C2—C1—C4117.29 (16)C13i—C14—Cl11118.98 (9)
O02—C02—Rh1177.45 (18)C13—C14—Cl11118.98 (9)
C1—C2—C3128.69 (16)C22—C21—C22i119.37 (16)
C1—C2—H2115.7C22—C21—N2120.24 (8)
C3—C2—H2115.7C22i—C21—N2120.24 (8)
N2—C3—C2123.51 (15)C21—C22—C23120.65 (13)
N2—C3—C5120.04 (15)C21—C22—H22119.7
C2—C3—C5116.45 (15)C23—C22—H22119.7
C1—C4—H4A109.5C24—C23—C22118.87 (14)
C1—C4—H4B109.5C24—C23—H23120.6
H4A—C4—H4B109.5C22—C23—H23120.6
C1—C4—H4C109.5C23i—C24—C23121.59 (17)
H4A—C4—H4C109.5C23i—C24—Cl21119.20 (8)
H4B—C4—H4C109.5C23—C24—Cl21119.20 (8)
C3—C5—H5A109.5
C02—Rh1—N1—C1180C1—C2—C3—C5180
N2—Rh1—N1—C10C1—N1—C11—C1290.64 (14)
C02—Rh1—N1—C110Rh1—N1—C11—C1289.36 (14)
N2—Rh1—N1—C11180C1—N1—C11—C12i90.64 (14)
C01—Rh1—N2—C3180Rh1—N1—C11—C12i89.36 (14)
N1—Rh1—N2—C30C12i—C11—C12—C130.9 (3)
C01—Rh1—N2—C210N1—C11—C12—C13179.63 (13)
N1—Rh1—N2—C21180C11—C12—C13—C140.1 (2)
C11—N1—C1—C2180C12—C13—C14—C13i0.8 (3)
Rh1—N1—C1—C20C12—C13—C14—Cl11179.46 (11)
C11—N1—C1—C40C3—N2—C21—C2292.31 (15)
Rh1—N1—C1—C4180Rh1—N2—C21—C2287.69 (15)
N1—C1—C2—C30C3—N2—C21—C22i92.31 (15)
C4—C1—C2—C3180Rh1—N2—C21—C22i87.69 (15)
C21—N2—C3—C2180C22i—C21—C22—C231.1 (3)
Rh1—N2—C3—C20N2—C21—C22—C23174.34 (15)
C21—N2—C3—C50C21—C22—C23—C240.4 (3)
Rh1—N2—C3—C5180C22—C23—C24—C23i0.4 (3)
C1—C2—C3—N20C22—C23—C24—Cl21179.62 (13)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O02ii0.952.543.1723 (18)124
Symmetry code: (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Rh(C17H15Cl2N2)(CO)2]
Mr477.14
Crystal system, space groupMonoclinic, P21/m
Temperature (K)100
a, b, c (Å)9.6726 (3), 7.5911 (2), 13.6484 (4)
β (°) 107.247 (1)
V3)957.08 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.36 × 0.31 × 0.3
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.675, 0.717
No. of measured, independent and
observed [I > 2σ(I)] reflections
27556, 2555, 2491
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.050, 0.93
No. of reflections2555
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.85

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Rh1—C021.854 (2)Rh1—N22.0523 (14)
Rh1—C011.8741 (19)O01—C011.134 (2)
Rh1—N12.0453 (14)O02—C021.137 (3)
C02—Rh1—C0185.48 (8)N1—Rh1—N289.87 (6)
C02—Rh1—N191.89 (7)O01—C01—Rh1176.21 (17)
C01—Rh1—N292.76 (7)O02—C02—Rh1177.45 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O02i0.952.543.1723 (18)124.3
Symmetry code: (i) x+1, y+1/2, z+1.
 

Acknowledgements

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr. L. Kirsten is acknowledged for the data collection. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, J. M., Lachicotte, R. J. & Holland, P. L. (2002). Organometallics, 21, 4808–4814.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, J. M., Sadique, A. R., Cundari, T. R., Rodgers, K. R., Lukat-Rodgers, G., Lachicotte, R. J., Flaschenriem, C. J., Vela, J. & Holland, P. L. (2006). J. Am. Chem. Soc. 128, 756–769.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds