organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Carbeth­oxy-N′-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea

aDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore, and bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
*Correspondence e-mail: phada@nus.edu.sg

(Received 4 January 2010; accepted 19 January 2010; online 23 January 2010)

The title compound {systematic name: ethyl N-[N-(3-phenyl-1H-1,2,4-triazol-5-yl)carbamothio­yl]carbamate}, C12H13N5O2S, exists in the 3-phenyl-5-thio­ureido-1H-1,2,4-triazole tautomeric form stabilized by intra­molecular hydrogen bonding between the endocyclic NH H atom and the thio­ureido S atom. The mol­ecular structure is also stabilized by intra­molecular N—H⋯O=C hydrogen bonds arranged in an S(6) graph-set motif within the carbethoxy­thio­urea moiety. The mean planes of the phenyl and 1,2,4-triazole rings make a dihedral angle of 7.61 (11)°. In the crystal, the mol­ecules form two types of inversion dimers. Inter­molecular hydrogen bonds are arranged in R22(6) and R22(8) graph-set motifs, together forming a network parallel to (111).

Related literature

For the synthesis, tautomerism and crystal structure studies of related 1,2,4-triazoles, see: Dolzhenko et al. (2007[Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007). Heterocycles, 71, 429-436.], 2009a[Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009a). Tetrahedron Lett. 50, 2124-2128.],b[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009b). Acta Cryst. E65, o126.],c[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009c). Acta Cryst. E65, o125.]). For the structures of related carbethoxy­thio­ureas, see: Huang et al. (2009[Huang, B., Kung, P.-P., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009). Acta Cryst. E65, o1249.]); Lin et al. (2004[Lin, Q., Zhang, Y.-M., Wei, T.-B. & Wang, H. (2004). Acta Cryst. E60, o580-o582.], 2007[Lin, Q., Wei, T. B. & Zhang, Y. M. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 863-871.]); Su et al. (2006[Su, B. Q., Liu, G. L., Sheng, L., Wang, X. Q. & Xian, L. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 745-750.]); Zhang et al. (2003[Zhang, Y.-M., Wei, T.-B., Xian, L., Lin, Q. & Yu, K.-B. (2003). Acta Cryst. E59, o905-o906.], 2007[Zhang, B., Xian, L. & Xiang, X. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 447-448.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N5O2S

  • Mr = 291.33

  • Triclinic, [P \overline 1]

  • a = 5.9929 (3) Å

  • b = 9.4200 (5) Å

  • c = 12.2000 (7) Å

  • α = 91.818 (1)°

  • β = 92.585 (1)°

  • γ = 101.083 (1)°

  • V = 674.62 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.56 × 0.24 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.873, Tmax = 0.971

  • 8943 measured reflections

  • 3092 independent reflections

  • 2828 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.06

  • 3092 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯S1i 0.81 (2) 2.58 (2) 3.3739 (13) 166.0 (17)
N4—H4N⋯O2 0.84 (2) 1.97 (2) 2.6448 (16) 137.3 (18)
N3—H3N⋯S1 0.84 (2) 2.67 (2) 3.0926 (13) 113.0 (16)
N3—H3N⋯N2ii 0.84 (2) 2.32 (2) 2.9838 (18) 136.5 (18)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Annular tautomerism of 1,2,4-triazoles in solutions (Dolzhenko et al., 2009a) and crystalline state (Dolzhenko et al., 2009b,c) is a subject of our continuous investigations. Recently, we reported the crystal structure of 3(5)-amino-5(3)-phenyl-1H-1,2,4-triazole (Dolzhenko et al., 2009b). Both 3-amino-5-phenyl- and 5-amino-3-phenyl-1H-1,2,4-triazole tautomeric forms were found to coexist in the crystal. Herein we study the related structure with carbethoxythiourea moiety presented instead of the amino group. Due to annular tautomerism, there is theoretical possibility for existence of three tautomeric forms viz. N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea (A), N-carbethoxy-N'-(5-phenyl-1H-1,2,4-triazol-3-yl)thiourea (B) and N-carbethoxy-N'-(3-phenyl-4H-1,2,4-triazol-5-yl)thiourea (C) (Figure 2). Unlike 3(5)-amino-5(3)-phenyl-1H-1,2,4-triazole, only one tautomeric form A was identified in the crystal (Figure 3). The N3—H···S1 hydrogen bonds between the endocyclic N(3)H proton of the triazole ring and the thioureido sulfur S1 atom (Figure 3 and 4, Table 1) are arranged in a S(6) graph-set motif (Bernstein et al., 1995) stabilizing this tautomer. Interestingly, structurally similar carbethoxythioureido substituted pyrazole (Huang et al., 2009) does not possess this motif and crystallizes as a tautomer with the carbethoxythiourea moiety at position 5 of the ring.

The triazole ring is essentially planar with an r.m.s. deviation of 0.0058 Å. Its mean plane makes a dihedral angle of 7.61 (11)° with the phenyl ring.

The C—N bonds of the thiourea group have unequal lengths: the C9—N4 bond is significantly shorter (1.3440 (18) Å) compare to the C9—N5 bond (1.3811 (18) Å). The configuration of the carbethoxythiourea group of the title compound is similar to those reported for the similar structures (Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003). The triazole ring and the thiocarbonyl lie in (Z)-configuration across the thiourea C9—N4 bond; while the carbethoxy and thiocarbonyl groups adopt (E)-configuration across the C9—N5 bond. This configuration is stabilized by an intramolecular N4—H···O2C10 hydrogen bond (Figure 3 and 4, Table 1) making a S(6)graph-set motif, which is common for carbethoxythioureas (Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003).

In the crystal, the molecules form two types of cyclic dimmers (Figure 4, Table 1). The N2—N3H sides of two molecules are connected by intermolecular hydrogen bonds making the R22(6) graph-set motif. Atom N5 is also involved in intermolecular N—H···S interactions with the thiocarbonyl atom S1 of adjacent molecule making another pair with the R22(8) graph-set motif similar to those observed in other carbethoxythioureas (Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003). Together, these hydrogen bonds connect molecules in a network parallel to the (111) plane.

Related literature top

For the synthesis, tautomerism and crystal structure studies of related 1,2,4-triazoles, see: Dolzhenko et al. (2007, 2009a,b,c). For the structures of related carbethoxythioureas, see: Huang et al. (2009); Lin et al. (2004, 2007); Su et al. (2006); Zhang et al. (2003, 2007). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by nucleophilic addition of 3(5)-amino-5(3)-phenyl-1H-1,2,4-triazole (Dolzhenko et al., 2007) to ethoxycarbonyl isothiocyanate in DMF solution at room temperature (Figure 1). Single crystals suitable for crystallographic analysis were grown by recrystallization from toluene.

Refinement top

All the H atoms attached to the carbon atoms were constrained in a riding motion approximation [0.95 Å for Caryl—H, 0.99 Å for methylenic protons and 0.98 Å for methyl group; Uiso(H) = 1.2Ueq(Caryl), Uiso(H) = 1.2Ueq(Cmethylenic) and Uiso(H) = 1.5Ueq(Cmethyl)] while the N-bound H atoms were located in a difference map and refined freely.

Structure description top

Annular tautomerism of 1,2,4-triazoles in solutions (Dolzhenko et al., 2009a) and crystalline state (Dolzhenko et al., 2009b,c) is a subject of our continuous investigations. Recently, we reported the crystal structure of 3(5)-amino-5(3)-phenyl-1H-1,2,4-triazole (Dolzhenko et al., 2009b). Both 3-amino-5-phenyl- and 5-amino-3-phenyl-1H-1,2,4-triazole tautomeric forms were found to coexist in the crystal. Herein we study the related structure with carbethoxythiourea moiety presented instead of the amino group. Due to annular tautomerism, there is theoretical possibility for existence of three tautomeric forms viz. N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea (A), N-carbethoxy-N'-(5-phenyl-1H-1,2,4-triazol-3-yl)thiourea (B) and N-carbethoxy-N'-(3-phenyl-4H-1,2,4-triazol-5-yl)thiourea (C) (Figure 2). Unlike 3(5)-amino-5(3)-phenyl-1H-1,2,4-triazole, only one tautomeric form A was identified in the crystal (Figure 3). The N3—H···S1 hydrogen bonds between the endocyclic N(3)H proton of the triazole ring and the thioureido sulfur S1 atom (Figure 3 and 4, Table 1) are arranged in a S(6) graph-set motif (Bernstein et al., 1995) stabilizing this tautomer. Interestingly, structurally similar carbethoxythioureido substituted pyrazole (Huang et al., 2009) does not possess this motif and crystallizes as a tautomer with the carbethoxythiourea moiety at position 5 of the ring.

The triazole ring is essentially planar with an r.m.s. deviation of 0.0058 Å. Its mean plane makes a dihedral angle of 7.61 (11)° with the phenyl ring.

The C—N bonds of the thiourea group have unequal lengths: the C9—N4 bond is significantly shorter (1.3440 (18) Å) compare to the C9—N5 bond (1.3811 (18) Å). The configuration of the carbethoxythiourea group of the title compound is similar to those reported for the similar structures (Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003). The triazole ring and the thiocarbonyl lie in (Z)-configuration across the thiourea C9—N4 bond; while the carbethoxy and thiocarbonyl groups adopt (E)-configuration across the C9—N5 bond. This configuration is stabilized by an intramolecular N4—H···O2C10 hydrogen bond (Figure 3 and 4, Table 1) making a S(6)graph-set motif, which is common for carbethoxythioureas (Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003).

In the crystal, the molecules form two types of cyclic dimmers (Figure 4, Table 1). The N2—N3H sides of two molecules are connected by intermolecular hydrogen bonds making the R22(6) graph-set motif. Atom N5 is also involved in intermolecular N—H···S interactions with the thiocarbonyl atom S1 of adjacent molecule making another pair with the R22(8) graph-set motif similar to those observed in other carbethoxythioureas (Huang et al., 2009; Lin et al., 2007; Lin et al., 2004; Su et al., 2006; Zhang et al., 2007; Zhang et al., 2003). Together, these hydrogen bonds connect molecules in a network parallel to the (111) plane.

For the synthesis, tautomerism and crystal structure studies of related 1,2,4-triazoles, see: Dolzhenko et al. (2007, 2009a,b,c). For the structures of related carbethoxythioureas, see: Huang et al. (2009); Lin et al. (2004, 2007); Su et al. (2006); Zhang et al. (2003, 2007). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea.
[Figure 2] Fig. 2. Annular tautomerism in N-carbethoxy-N'-(3(5)-phenyl-1(4)H-1,2,4-triazol-5(3)-yl)thiourea.
[Figure 3] Fig. 3. The molecular structure of N-carbethoxy-N'-(3-phenyl-1H-1,2,4-triazol-5-yl)thiourea, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. Crystal packing in the cell (view along axis a).
ethyl N-[N-(3-phenyl-1H-1,2,4-triazol-5- yl)carbamothioyl]carbamate top
Crystal data top
C12H13N5O2SZ = 2
Mr = 291.33F(000) = 304
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Melting point: 454 K
a = 5.9929 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4200 (5) ÅCell parameters from 4121 reflections
c = 12.2000 (7) Åθ = 2.7–27.5°
α = 91.818 (1)°µ = 0.25 mm1
β = 92.585 (1)°T = 100 K
γ = 101.083 (1)°Rod, colourless
V = 674.62 (6) Å30.56 × 0.24 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3092 independent reflections
Radiation source: fine-focus sealed tube2828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 77
Tmin = 0.873, Tmax = 0.971k = 1212
8943 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.2404P]
where P = (Fo2 + 2Fc2)/3
3092 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H13N5O2Sγ = 101.083 (1)°
Mr = 291.33V = 674.62 (6) Å3
Triclinic, P1Z = 2
a = 5.9929 (3) ÅMo Kα radiation
b = 9.4200 (5) ŵ = 0.25 mm1
c = 12.2000 (7) ÅT = 100 K
α = 91.818 (1)°0.56 × 0.24 × 0.12 mm
β = 92.585 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3092 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2828 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.971Rint = 0.028
8943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.59 e Å3
3092 reflectionsΔρmin = 0.20 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26167 (6)0.64734 (4)0.02591 (3)0.02072 (12)
O10.58945 (18)0.44334 (11)0.28112 (8)0.0204 (2)
O20.31338 (18)0.55681 (11)0.33852 (8)0.0217 (2)
N10.1894 (2)0.78466 (13)0.22558 (10)0.0180 (3)
N20.1881 (2)0.93860 (13)0.08657 (10)0.0196 (3)
N30.0355 (2)0.84999 (13)0.07092 (10)0.0190 (3)
H3N0.052 (3)0.866 (2)0.0191 (17)0.033 (5)*
N40.1037 (2)0.66518 (13)0.17503 (10)0.0179 (3)
H4N0.111 (3)0.643 (2)0.2411 (17)0.028 (5)*
N50.3803 (2)0.52952 (13)0.15529 (10)0.0187 (3)
H5N0.458 (3)0.494 (2)0.1140 (15)0.020 (4)*
C10.5206 (3)0.91936 (16)0.33573 (12)0.0208 (3)
H10.45080.85190.37420.025*
C20.6883 (3)0.97955 (17)0.38396 (13)0.0246 (3)
H20.73340.95280.45530.030*
C30.7902 (3)1.07873 (17)0.32819 (14)0.0254 (3)
H30.90471.11990.36140.030*
C40.7245 (3)1.11747 (16)0.22403 (13)0.0237 (3)
H40.79361.18570.18610.028*
C50.5586 (3)1.05716 (16)0.17507 (12)0.0204 (3)
H50.51541.08330.10340.024*
C60.4547 (2)0.95789 (15)0.23090 (12)0.0175 (3)
C70.2773 (2)0.89424 (15)0.17999 (12)0.0172 (3)
C80.0381 (2)0.76241 (15)0.15491 (11)0.0173 (3)
C90.2436 (2)0.61501 (15)0.10695 (11)0.0170 (3)
C100.4197 (2)0.51397 (15)0.26620 (12)0.0181 (3)
C110.6496 (3)0.42025 (17)0.39532 (12)0.0246 (3)
H11A0.51230.37630.43340.030*
H11B0.71870.51340.43390.030*
C120.8169 (3)0.32036 (17)0.39450 (14)0.0250 (3)
H12A0.74550.22810.35720.037*
H12B0.86360.30330.47020.037*
H12C0.95080.36450.35560.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0269 (2)0.0220 (2)0.01582 (19)0.01013 (15)0.00368 (14)0.00310 (13)
O10.0255 (5)0.0203 (5)0.0183 (5)0.0113 (4)0.0017 (4)0.0021 (4)
O20.0270 (6)0.0238 (5)0.0175 (5)0.0120 (4)0.0040 (4)0.0029 (4)
N10.0203 (6)0.0153 (6)0.0188 (6)0.0047 (5)0.0010 (5)0.0011 (5)
N20.0205 (6)0.0206 (6)0.0194 (6)0.0083 (5)0.0000 (5)0.0019 (5)
N30.0212 (6)0.0206 (6)0.0174 (6)0.0088 (5)0.0035 (5)0.0041 (5)
N40.0225 (6)0.0187 (6)0.0141 (6)0.0078 (5)0.0020 (5)0.0025 (5)
N50.0220 (6)0.0190 (6)0.0174 (6)0.0093 (5)0.0039 (5)0.0006 (5)
C10.0230 (7)0.0193 (7)0.0214 (7)0.0074 (6)0.0003 (6)0.0013 (5)
C20.0262 (8)0.0251 (8)0.0235 (8)0.0068 (6)0.0054 (6)0.0001 (6)
C30.0224 (7)0.0236 (8)0.0317 (8)0.0089 (6)0.0014 (6)0.0037 (6)
C40.0220 (7)0.0191 (7)0.0313 (8)0.0081 (6)0.0035 (6)0.0004 (6)
C50.0214 (7)0.0183 (7)0.0211 (7)0.0032 (5)0.0020 (5)0.0024 (5)
C60.0168 (6)0.0155 (7)0.0201 (7)0.0034 (5)0.0012 (5)0.0016 (5)
C70.0172 (7)0.0159 (6)0.0185 (7)0.0039 (5)0.0032 (5)0.0002 (5)
C80.0194 (7)0.0153 (6)0.0171 (7)0.0036 (5)0.0000 (5)0.0004 (5)
C90.0186 (7)0.0136 (6)0.0184 (7)0.0026 (5)0.0005 (5)0.0005 (5)
C100.0213 (7)0.0135 (6)0.0199 (7)0.0042 (5)0.0015 (5)0.0023 (5)
C110.0318 (8)0.0256 (8)0.0194 (7)0.0135 (6)0.0016 (6)0.0021 (6)
C120.0249 (8)0.0235 (8)0.0285 (8)0.0094 (6)0.0008 (6)0.0042 (6)
Geometric parameters (Å, º) top
S1—C91.6632 (14)C1—C61.394 (2)
O1—C101.3274 (17)C1—H10.9500
O1—C111.4568 (17)C2—C31.390 (2)
O2—C101.2142 (18)C2—H20.9500
N1—C81.3194 (18)C3—C41.386 (2)
N1—C71.3680 (18)C3—H30.9500
N2—C71.3260 (19)C4—C51.385 (2)
N2—N31.3674 (17)C4—H40.9500
N3—C81.3345 (18)C5—C61.397 (2)
N3—H3N0.84 (2)C5—H50.9500
N4—C91.3440 (18)C6—C71.4685 (19)
N4—C81.3845 (18)C11—C121.501 (2)
N4—H4N0.84 (2)C11—H11A0.9900
N5—C101.3803 (18)C11—H11B0.9900
N5—C91.3811 (18)C12—H12A0.9800
N5—H5N0.81 (2)C12—H12B0.9800
C1—C21.389 (2)C12—H12C0.9800
C10—O1—C11115.00 (11)C1—C6—C5119.48 (13)
C8—N1—C7102.43 (12)C1—C6—C7120.00 (13)
C7—N2—N3102.54 (11)C5—C6—C7120.52 (13)
C8—N3—N2109.22 (12)N2—C7—N1114.46 (13)
C8—N3—H3N131.7 (14)N2—C7—C6122.90 (13)
N2—N3—H3N118.4 (14)N1—C7—C6122.64 (13)
C9—N4—C8128.91 (13)N1—C8—N3111.32 (12)
C9—N4—H4N117.6 (13)N1—C8—N4121.13 (13)
C8—N4—H4N113.1 (13)N3—C8—N4127.42 (13)
C10—N5—C9127.10 (13)N4—C9—N5114.77 (12)
C10—N5—H5N116.8 (13)N4—C9—S1125.65 (11)
C9—N5—H5N115.5 (13)N5—C9—S1119.58 (11)
C2—C1—C6120.04 (14)O2—C10—O1125.48 (13)
C2—C1—H1120.0O2—C10—N5125.13 (13)
C6—C1—H1120.0O1—C10—N5109.38 (12)
C1—C2—C3120.18 (14)O1—C11—C12106.95 (12)
C1—C2—H2119.9O1—C11—H11A110.3
C3—C2—H2119.9C12—C11—H11A110.3
C4—C3—C2119.88 (14)O1—C11—H11B110.3
C4—C3—H3120.1C12—C11—H11B110.3
C2—C3—H3120.1H11A—C11—H11B108.6
C5—C4—C3120.28 (14)C11—C12—H12A109.5
C5—C4—H4119.9C11—C12—H12B109.5
C3—C4—H4119.9H12A—C12—H12B109.5
C4—C5—C6120.13 (14)C11—C12—H12C109.5
C4—C5—H5119.9H12A—C12—H12C109.5
C6—C5—H5119.9H12B—C12—H12C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···S1i0.81 (2)2.58 (2)3.3739 (13)166.0 (17)
N4—H4N···O20.84 (2)1.97 (2)2.6448 (16)137.3 (18)
N3—H3N···S10.84 (2)2.67 (2)3.0926 (13)113.0 (16)
N3—H3N···N2ii0.84 (2)2.32 (2)2.9838 (18)136.5 (18)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC12H13N5O2S
Mr291.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.9929 (3), 9.4200 (5), 12.2000 (7)
α, β, γ (°)91.818 (1), 92.585 (1), 101.083 (1)
V3)674.62 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.56 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.873, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
8943, 3092, 2828
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.06
No. of reflections3092
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···S1i0.81 (2)2.58 (2)3.3739 (13)166.0 (17)
N4—H4N···O20.84 (2)1.97 (2)2.6448 (16)137.3 (18)
N3—H3N···S10.84 (2)2.67 (2)3.0926 (13)113.0 (16)
N3—H3N···N2ii0.84 (2)2.32 (2)2.9838 (18)136.5 (18)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z.
 

Acknowledgements

This work was supported by the National Medical Research Council, Singapore (NMRC/NIG/0019/2008).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007). Heterocycles, 71, 429–436.  CAS Google Scholar
First citationDolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2009a). Tetrahedron Lett. 50, 2124–2128.  Web of Science CrossRef CAS Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009b). Acta Cryst. E65, o126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2009c). Acta Cryst. E65, o125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, B., Kung, P.-P., Rheingold, A. L., DiPasquale, A. & Yanovsky, A. (2009). Acta Cryst. E65, o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, Q., Wei, T. B. & Zhang, Y. M. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 863–871.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, Q., Zhang, Y.-M., Wei, T.-B. & Wang, H. (2004). Acta Cryst. E60, o580–o582.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, B. Q., Liu, G. L., Sheng, L., Wang, X. Q. & Xian, L. (2006). Phosphorus Sulfur Silicon Relat. Elem. 181, 745–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y.-M., Wei, T.-B., Xian, L., Lin, Q. & Yu, K.-B. (2003). Acta Cryst. E59, o905–o906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B., Xian, L. & Xiang, X. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 447–448.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds