metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(1,1,1,5,5,5-hexa­fluoro­pentane-2,4-dionato-κ2O,O′)bis­­(4-methyl-1,2,3-selena­diazole-κN3)copper(II)

aSchool of Computing, Science and Engineering, University of Salford, Salford M5 4WT, England, and bDepartment of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, England
*Correspondence e-mail: p.lickiss@imperial.co.uk

(Received 18 November 2009; accepted 11 January 2010; online 30 January 2010)

In the title compound, [Cu(C5HF6O2)2(C3H4N2Se)2], the CuII atom (site symmetry [\overline{1}]) is coordinated by two O,O′-bidentate 1,1,1,5,5,5-hexa­fluoro-2,4-penta­nedione (hp) ligands and two 4-methyl-1,2,3-selenadiazole mol­ecules, resulting in a slightly distorted trans-CuN2O4 octa­hedral geometry in which the cis angles deviate by less than 3° from 90°. The selenadiazole plane is canted at 73.13 (17)° to the square plane defined by the penta­nedionate O atoms. The F atoms of one of the hp ligands are disordered over two sets of sites in a 0.66 (3):0.34 (3) ratio. There are no significant inter­molecular inter­actions in the crystal.

Related literature

Similar stuctures are exhibited by bis­(hexa­fluoro­penta­dionato) copper complexes of imidazole (Colacio et al., 2000[Colacio, E., Ghazi, M., Kivekas, R., Klinga, M., Lloret, F. & Moreno, J. M. (2000). Inorg. Chem. 39, 2770-2776.]), pyrazole (Kogane et al., 1990[Kogane, T., Ishii, M., Harada, K., Hirota, R. & Nakahara, M. (1990). Bull. Chem. Soc. Jpn, 63, 1005-1009.]; Fokin et al., 2002[Fokin, S. V., Romanenko, G. V., Shvedenkov, Yu. G., Ikorskii, V. N., Vasilevsky, S. F., Tret'yakov, E. V. & Ovcharenko, V. I. (2002). J. Struct. Chem. 43, 828-834.]) and substituted pyridines (De Panthou et al., 1996[De Panthou, F. L., Luneau, D., Musin, R., Ohrstrom, L., Grand, A., Turek, P. & Rey, P. (1996). Inorg. Chem. 35, 3484-3491.]; Iwahori et al., 2001[Iwahori, F., Golhen, S., Ouahab, L., Carlier, R. & Sutter, J.-P. (2001). Inorg. Chem. 400, 6541-6542.]; Sano et al., 1997[Sano, Y., Tanaka, M., Koga, N., Matsuda, K., Iwamura, H., Rabu, P. & Drillon, M. (1997). J. Am. Chem. Soc. 119, 8246-8252.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5HF6O2)2(C3H4N2Se)2]

  • Mr = 771.74

  • Monoclinic, P 21 /c

  • a = 8.191 (2) Å

  • b = 14.390 (4) Å

  • c = 11.429 (4) Å

  • β = 104.86 (3)°

  • V = 1302.1 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.75 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Nicolet R3m/V diffractometer

  • Absorption correction: ψ scan (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.755, Tmax = 0.793

  • 3218 measured reflections

  • 3014 independent reflections

  • 1894 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.126

  • S = 1.03

  • 3014 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O1 1.967 (3)
Cu—O2 1.981 (3)
Cu—N1 2.391 (4)

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title molecule, [Cu(C3HF6O2)2(C3H4N2Se)2], (I) was prepared as a potential precursor to CuInSe2. The molecule (Fig. 1) is centrosymmetric resulting in pairs of equivalent ligands lying trans to each other in a slightly distorted octahedral coordination geometry in which the cis angles deviate less than 3° from right angles. The Cu is bound to N1 of the selenadiazole whose plane is canted at 73.13 (0.17) ° to the square plane defined by the pentanedionato oxygen atoms. The Cu—N bond is elongated. There are no intermolecular interactions.

Related literature top

Similar stuctures are exhibited by bis(hexafluoropentadionato) copper complexes of imidazole (Colacio et al. 2000), pyrazole (Kogane et al. 1990; Fokin et al. (2002) and substituted pyridines (De Panthou et al. 1996; Iwahori et al. 2001; Sano et al. (1997).

Experimental top

A solution of 4-methyl-1,2,3-selenadiazole (4.65 g, 0.032 mol) in dichloromethane was added dropwise to a solution of Cu(hfac)2.xH2O (7.84 g, 0.016 mol) in dichloromethane/toluene (50 ml) at 273 K in the absence of light. The mixture was stirred for 12 h, the solvent removed in vacuo and the residue dissolved in warm toluene. Slow cooling afforded olive-green parallelepipeds of (I). Yield 8.13 g (65%), mpt. 354–356 K. Found: C, 24.86; H, 1.24; N, 7.31%. Calc.for C16H12CuF12N4O4Se2: C, 24.90; H, 1.31; N, 7.26%. µ 2.15 BM.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model. All other hydrogen atoms were located and fully refined.

Structure description top

The title molecule, [Cu(C3HF6O2)2(C3H4N2Se)2], (I) was prepared as a potential precursor to CuInSe2. The molecule (Fig. 1) is centrosymmetric resulting in pairs of equivalent ligands lying trans to each other in a slightly distorted octahedral coordination geometry in which the cis angles deviate less than 3° from right angles. The Cu is bound to N1 of the selenadiazole whose plane is canted at 73.13 (0.17) ° to the square plane defined by the pentanedionato oxygen atoms. The Cu—N bond is elongated. There are no intermolecular interactions.

Similar stuctures are exhibited by bis(hexafluoropentadionato) copper complexes of imidazole (Colacio et al. 2000), pyrazole (Kogane et al. 1990; Fokin et al. (2002) and substituted pyridines (De Panthou et al. 1996; Iwahori et al. 2001; Sano et al. (1997).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids. Hydrogen atoms and the fluorine atoms have been excluded for clarity.
trans-Bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato- κ2O,O')bis(4-methyl-1,2,3-selenadiazole- κN3)copper(II) top
Crystal data top
[Cu(C5HF6O2)2(C3H4N2Se)2]Dx = 1.968 Mg m3
Mr = 771.74Melting point: 355 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.191 (2) ÅCell parameters from 20 reflections
b = 14.390 (4) Åθ = 7.9–14.5°
c = 11.429 (4) ŵ = 3.75 mm1
β = 104.86 (3)°T = 293 K
V = 1302.1 (7) Å3Parallelpiped, green
Z = 20.25 × 0.25 × 0.25 mm
F(000) = 742
Data collection top
Nicolet R3m/V
diffractometer
Rint = 0.048
Graphite monochromatorθmax = 27.6°, θmin = 2.3°
profile data from θ/2θ scansh = 210
Absorption correction: ψ scan
(SHELXTL; Sheldrick, 2008)
k = 618
Tmin = 0.755, Tmax = 0.793l = 1414
3218 measured reflections3 standard reflections every 97 reflections
3014 independent reflections intensity decay: none
1894 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0459P)2 + 1.964P]
where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu(C5HF6O2)2(C3H4N2Se)2]V = 1302.1 (7) Å3
Mr = 771.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.191 (2) ŵ = 3.75 mm1
b = 14.390 (4) ÅT = 293 K
c = 11.429 (4) Å0.25 × 0.25 × 0.25 mm
β = 104.86 (3)°
Data collection top
Nicolet R3m/V
diffractometer
1894 reflections with I > 2σ(I)
Absorption correction: ψ scan
(SHELXTL; Sheldrick, 2008)
Rint = 0.048
Tmin = 0.755, Tmax = 0.7933 standard reflections every 97 reflections
3218 measured reflections intensity decay: none
3014 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
3014 reflectionsΔρmin = 0.42 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.00000.00000.50000.0467 (2)
Se0.11516 (8)0.14840 (4)0.26686 (5)0.0667 (2)
N10.0700 (6)0.1433 (3)0.4188 (4)0.0564 (11)
N20.0391 (6)0.2234 (3)0.4541 (4)0.0572 (11)
C60.0853 (8)0.2732 (4)0.2739 (5)0.0628 (15)
C70.0470 (7)0.2966 (4)0.3777 (5)0.0577 (13)
C710.0087 (11)0.3911 (4)0.4164 (6)0.093 (2)
H71A0.01430.43220.34790.140*
H71B0.10400.41390.47720.140*
H71C0.08810.38820.44890.140*
O10.1707 (5)0.0178 (2)0.3457 (3)0.0546 (9)
O20.1614 (5)0.0692 (2)0.5702 (3)0.0520 (8)
C10.3071 (7)0.0274 (4)0.3148 (5)0.0582 (14)
C110.4037 (9)0.0109 (5)0.1836 (6)0.0771 (19)
F110.5552 (6)0.0472 (5)0.1545 (4)0.157 (3)
F120.3218 (6)0.0490 (3)0.1084 (3)0.1142 (15)
F130.4170 (6)0.0780 (3)0.1545 (4)0.1076 (14)
C20.3728 (8)0.0879 (4)0.3859 (5)0.0674 (16)
C30.2960 (7)0.1034 (4)0.5075 (5)0.0541 (13)
C310.3885 (10)0.1722 (5)0.5750 (7)0.0782 (19)
F3110.318 (2)0.2515 (8)0.581 (3)0.145 (9)0.66 (3)
F3120.5418 (12)0.1700 (18)0.5425 (19)0.161 (10)0.66 (3)
F3130.349 (2)0.1452 (18)0.6957 (10)0.137 (6)0.66 (3)
F3210.300 (2)0.210 (2)0.663 (3)0.105 (10)0.34 (3)
F3220.520 (6)0.141 (2)0.591 (5)0.18 (2)0.34 (3)
F3230.457 (6)0.2452 (19)0.4941 (19)0.138 (14)0.34 (3)
H20.475 (7)0.118 (4)0.347 (5)0.065 (17)*
H60.085 (9)0.314 (5)0.207 (7)0.12 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0603 (5)0.0401 (4)0.0375 (4)0.0048 (4)0.0085 (4)0.0043 (4)
Se0.0834 (5)0.0652 (4)0.0568 (4)0.0044 (3)0.0276 (3)0.0066 (3)
N10.072 (3)0.051 (3)0.051 (2)0.001 (2)0.023 (2)0.004 (2)
N20.081 (3)0.047 (3)0.047 (2)0.002 (2)0.023 (2)0.005 (2)
C60.080 (4)0.063 (4)0.049 (3)0.001 (3)0.022 (3)0.012 (3)
C70.080 (4)0.047 (3)0.046 (3)0.002 (3)0.014 (3)0.009 (2)
C710.152 (7)0.059 (4)0.076 (4)0.002 (4)0.044 (5)0.001 (3)
O10.065 (2)0.051 (2)0.0436 (18)0.0042 (18)0.0060 (17)0.0060 (16)
O20.064 (2)0.047 (2)0.0444 (18)0.0014 (17)0.0132 (17)0.0044 (15)
C10.067 (4)0.058 (3)0.045 (3)0.003 (3)0.007 (3)0.002 (2)
C110.077 (4)0.092 (5)0.052 (4)0.012 (4)0.003 (3)0.016 (3)
F110.098 (3)0.260 (7)0.081 (3)0.080 (4)0.033 (2)0.062 (4)
F120.149 (4)0.133 (4)0.052 (2)0.001 (3)0.011 (2)0.013 (2)
F130.130 (4)0.102 (3)0.072 (2)0.014 (3)0.008 (2)0.024 (2)
C20.061 (4)0.074 (4)0.060 (3)0.013 (3)0.003 (3)0.014 (3)
C30.056 (3)0.048 (3)0.061 (3)0.001 (3)0.019 (3)0.010 (3)
C310.081 (5)0.070 (5)0.089 (5)0.002 (4)0.032 (4)0.030 (4)
F3110.164 (16)0.064 (6)0.23 (2)0.004 (7)0.095 (18)0.043 (9)
F3120.045 (6)0.27 (2)0.158 (13)0.041 (8)0.001 (6)0.123 (14)
F3130.147 (12)0.188 (15)0.088 (6)0.053 (10)0.052 (7)0.030 (8)
F3210.067 (11)0.12 (2)0.104 (17)0.027 (14)0.015 (11)0.071 (14)
F3220.23 (4)0.132 (17)0.27 (5)0.10 (2)0.22 (4)0.10 (2)
F3230.21 (3)0.101 (14)0.094 (12)0.105 (18)0.034 (16)0.019 (10)
Geometric parameters (Å, º) top
Cu—O11.967 (3)C1—C21.390 (8)
Cu—O21.981 (3)C1—C111.524 (8)
Cu—N12.391 (4)C11—F111.308 (7)
Se—C61.817 (6)C11—F131.318 (8)
Se—N11.867 (4)C11—F121.336 (8)
N1—N21.268 (6)C2—C31.389 (8)
N2—C71.380 (6)C2—H20.95 (6)
C6—C71.345 (7)C3—C311.565 (8)
C6—H60.97 (8)C31—F3121.214 (12)
C7—C711.488 (8)C31—F3111.273 (12)
C71—H71A0.96C31—F3131.389 (15)
C71—H71B0.96C31—F3211.204 (17)
C71—H71C0.96C31—F3221.23 (2)
O1—C11.262 (6)C31—F3231.418 (17)
O2—C31.252 (6)
O1—Cu—O2i88.06 (14)O1—C1—C11113.2 (5)
O1—Cu—O291.94 (14)C2—C1—C11119.5 (5)
O1—Cu—N187.15 (15)F11—C11—F13108.2 (6)
O1i—Cu—N192.85 (15)F11—C11—F12105.9 (6)
O2i—Cu—N191.44 (15)F13—C11—F12105.0 (6)
O2—Cu—N188.57 (15)F11—C11—C1114.0 (5)
C6—Se—N186.4 (2)F13—C11—C1112.8 (6)
N2—N1—Se111.3 (3)F12—C11—C1110.4 (6)
N2—N1—Cu125.0 (3)C3—C2—C1122.8 (6)
Se—N1—Cu121.3 (2)C3—C2—H2121 (3)
N1—N2—C7116.6 (4)C1—C2—H2116 (3)
C7—C6—Se110.6 (4)O2—C3—C2128.1 (5)
C7—C6—H6126 (4)O2—C3—C31115.7 (5)
Se—C6—H6123 (4)C2—C3—C31116.3 (6)
C6—C7—N2115.2 (5)F312—C31—F311117.2 (13)
C6—C7—C71127.2 (5)F312—C31—F313104.9 (12)
N2—C7—C71117.5 (5)F311—C31—F313102.0 (11)
C7—C71—H71A109.5F312—C31—C3115.2 (8)
C7—C71—H71B109.5F311—C31—C3109.0 (8)
H71A—C71—H71B109.5F313—C31—C3107.1 (8)
C7—C71—H71C109.5F321—C31—F322114 (2)
H71A—C71—H71C109.5F321—C31—F323105.4 (16)
H71B—C71—H71C109.5F322—C31—F32399 (2)
C1—O1—Cu123.9 (3)F321—C31—C3115.3 (10)
C3—O2—Cu123.2 (3)F322—C31—C3113.4 (14)
O1—C1—C2127.4 (5)F323—C31—C3107.9 (9)
C6—Se—N1—N20.8 (4)Cu—O1—C1—C11171.1 (4)
C6—Se—N1—Cu164.0 (3)O1—C1—C11—F11171.4 (6)
O1—Cu—N1—N2109.9 (4)C2—C1—C11—F118.8 (10)
O1i—Cu—N1—N270.1 (4)O1—C1—C11—F1347.5 (8)
O2i—Cu—N1—N2162.1 (4)C2—C1—C11—F13132.7 (6)
O2—Cu—N1—N217.9 (4)O1—C1—C11—F1269.6 (7)
O1—Cu—N1—Se50.9 (3)C2—C1—C11—F12110.2 (7)
O1i—Cu—N1—Se129.1 (3)O1—C1—C2—C33.2 (11)
O2i—Cu—N1—Se37.1 (3)C11—C1—C2—C3177.1 (6)
O2—Cu—N1—Se142.9 (3)Cu—O2—C3—C211.9 (8)
Se—N1—N2—C71.0 (6)Cu—O2—C3—C31168.1 (4)
Cu—N1—N2—C7163.4 (4)C1—C2—C3—O21.3 (10)
N1—Se—C6—C70.5 (5)C1—C2—C3—C31178.8 (6)
Se—C6—C7—N20.1 (7)O2—C3—C31—F312145.3 (18)
Se—C6—C7—C71178.2 (6)C2—C3—C31—F31234.8 (19)
N1—N2—C7—C60.6 (8)O2—C3—C31—F31180.6 (17)
N1—N2—C7—C71179.1 (6)C2—C3—C31—F31199.4 (16)
O2i—Cu—O1—C1164.5 (4)O2—C3—C31—F31329.0 (14)
O2—Cu—O1—C115.5 (4)C2—C3—C31—F313151.0 (13)
N1i—Cu—O1—C1107.0 (4)O2—C3—C31—F32124 (3)
N1—Cu—O1—C173.0 (4)C2—C3—C31—F321156 (3)
O1—Cu—O2—C316.9 (4)O2—C3—C31—F322110 (3)
O1i—Cu—O2—C3163.1 (4)C2—C3—C31—F32271 (3)
N1i—Cu—O2—C3109.8 (4)O2—C3—C31—F323142 (2)
N1—Cu—O2—C370.2 (4)C2—C3—C31—F32338 (3)
Cu—O1—C1—C28.6 (8)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C5HF6O2)2(C3H4N2Se)2]
Mr771.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.191 (2), 14.390 (4), 11.429 (4)
β (°) 104.86 (3)
V3)1302.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)3.75
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerNicolet R3m/V
Absorption correctionψ scan
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.755, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
3218, 3014, 1894
Rint0.048
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.126, 1.03
No. of reflections3014
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.42

Computer programs: XSCANS (Siemens, 1996), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu—O11.967 (3)Cu—N12.391 (4)
Cu—O21.981 (3)
C6—C7—N2115.2 (5)
 

Acknowledgements

We wish to thank Dr D. Shah, Imperial College, for experimental assistance.

References

First citationColacio, E., Ghazi, M., Kivekas, R., Klinga, M., Lloret, F. & Moreno, J. M. (2000). Inorg. Chem. 39, 2770–2776.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDe Panthou, F. L., Luneau, D., Musin, R., Ohrstrom, L., Grand, A., Turek, P. & Rey, P. (1996). Inorg. Chem. 35, 3484–3491.  CAS Google Scholar
First citationFokin, S. V., Romanenko, G. V., Shvedenkov, Yu. G., Ikorskii, V. N., Vasilevsky, S. F., Tret'yakov, E. V. & Ovcharenko, V. I. (2002). J. Struct. Chem. 43, 828–834.  Web of Science CrossRef CAS Google Scholar
First citationIwahori, F., Golhen, S., Ouahab, L., Carlier, R. & Sutter, J.-P. (2001). Inorg. Chem. 400, 6541–6542.  Web of Science CSD CrossRef Google Scholar
First citationKogane, T., Ishii, M., Harada, K., Hirota, R. & Nakahara, M. (1990). Bull. Chem. Soc. Jpn, 63, 1005–1009.  CrossRef CAS Web of Science Google Scholar
First citationSano, Y., Tanaka, M., Koga, N., Matsuda, K., Iwamura, H., Rabu, P. & Drillon, M. (1997). J. Am. Chem. Soc. 119, 8246–8252.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds