metal-organic compounds
trans-Bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-κ2O,O′)bis(4-methyl-1,2,3-selenadiazole-κN3)copper(II)
aSchool of Computing, Science and Engineering, University of Salford, Salford M5 4WT, England, and bDepartment of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, England
*Correspondence e-mail: p.lickiss@imperial.co.uk
In the title compound, [Cu(C5HF6O2)2(C3H4N2Se)2], the CuII atom (site symmetry ) is coordinated by two O,O′-bidentate 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (hp) ligands and two 4-methyl-1,2,3-selenadiazole molecules, resulting in a slightly distorted trans-CuN2O4 octahedral geometry in which the cis angles deviate by less than 3° from 90°. The selenadiazole plane is canted at 73.13 (17)° to the square plane defined by the pentanedionate O atoms. The F atoms of one of the hp ligands are disordered over two sets of sites in a 0.66 (3):0.34 (3) ratio. There are no significant intermolecular interactions in the crystal.
Related literature
Similar stuctures are exhibited by bis(hexafluoropentadionato) copper complexes of imidazole (Colacio et al., 2000), pyrazole (Kogane et al., 1990; Fokin et al., 2002) and substituted pyridines (De Panthou et al., 1996; Iwahori et al., 2001; Sano et al., 1997).
Experimental
Crystal data
|
Refinement
|
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810001297/hb5239sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810001297/hb5239Isup2.hkl
A solution of 4-methyl-1,2,3-selenadiazole (4.65 g, 0.032 mol) in dichloromethane was added dropwise to a solution of Cu(hfac)2.xH2O (7.84 g, 0.016 mol) in dichloromethane/toluene (50 ml) at 273 K in the absence of light. The mixture was stirred for 12 h, the solvent removed in vacuo and the residue dissolved in warm toluene. Slow cooling afforded olive-green parallelepipeds of (I). Yield 8.13 g (65%), mpt. 354–356 K. Found: C, 24.86; H, 1.24; N, 7.31%. Calc.for C16H12CuF12N4O4Se2: C, 24.90; H, 1.31; N, 7.26%. µ 2.15 BM.
All H atoms were placed in calculated positions and refined using a riding model. All other hydrogen atoms were located and fully refined.
The title molecule, [Cu(C3HF6O2)2(C3H4N2Se)2], (I) was prepared as a potential precursor to CuInSe2. The molecule (Fig. 1) is centrosymmetric resulting in pairs of equivalent ligands lying trans to each other in a slightly distorted octahedral coordination geometry in which the cis angles deviate less than 3° from right angles. The Cu is bound to N1 of the selenadiazole whose plane is canted at 73.13 (0.17) ° to the square plane defined by the pentanedionato oxygen atoms. The Cu—N bond is elongated. There are no intermolecular interactions.
Similar stuctures are exhibited by bis(hexafluoropentadionato) copper complexes of imidazole (Colacio et al. 2000), pyrazole (Kogane et al. 1990; Fokin et al. (2002) and substituted pyridines (De Panthou et al. 1996; Iwahori et al. 2001; Sano et al. (1997).
Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids. Hydrogen atoms and the fluorine atoms have been excluded for clarity. |
[Cu(C5HF6O2)2(C3H4N2Se)2] | Dx = 1.968 Mg m−3 |
Mr = 771.74 | Melting point: 355 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.191 (2) Å | Cell parameters from 20 reflections |
b = 14.390 (4) Å | θ = 7.9–14.5° |
c = 11.429 (4) Å | µ = 3.75 mm−1 |
β = 104.86 (3)° | T = 293 K |
V = 1302.1 (7) Å3 | Parallelpiped, green |
Z = 2 | 0.25 × 0.25 × 0.25 mm |
F(000) = 742 |
Nicolet R3m/V diffractometer | Rint = 0.048 |
Graphite monochromator | θmax = 27.6°, θmin = 2.3° |
profile data from θ/2θ scans | h = −2→10 |
Absorption correction: ψ scan (SHELXTL; Sheldrick, 2008) | k = −6→18 |
Tmin = 0.755, Tmax = 0.793 | l = −14→14 |
3218 measured reflections | 3 standard reflections every 97 reflections |
3014 independent reflections | intensity decay: none |
1894 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0459P)2 + 1.964P] where P = (Fo2 + 2Fc2)/3 |
3014 reflections | (Δ/σ)max < 0.001 |
215 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
[Cu(C5HF6O2)2(C3H4N2Se)2] | V = 1302.1 (7) Å3 |
Mr = 771.74 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.191 (2) Å | µ = 3.75 mm−1 |
b = 14.390 (4) Å | T = 293 K |
c = 11.429 (4) Å | 0.25 × 0.25 × 0.25 mm |
β = 104.86 (3)° |
Nicolet R3m/V diffractometer | 1894 reflections with I > 2σ(I) |
Absorption correction: ψ scan (SHELXTL; Sheldrick, 2008) | Rint = 0.048 |
Tmin = 0.755, Tmax = 0.793 | 3 standard reflections every 97 reflections |
3218 measured reflections | intensity decay: none |
3014 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.126 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.44 e Å−3 |
3014 reflections | Δρmin = −0.42 e Å−3 |
215 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu | 0.0000 | 0.0000 | 0.5000 | 0.0467 (2) | |
Se | 0.11516 (8) | 0.14840 (4) | 0.26686 (5) | 0.0667 (2) | |
N1 | 0.0700 (6) | 0.1433 (3) | 0.4188 (4) | 0.0564 (11) | |
N2 | 0.0391 (6) | 0.2234 (3) | 0.4541 (4) | 0.0572 (11) | |
C6 | 0.0853 (8) | 0.2732 (4) | 0.2739 (5) | 0.0628 (15) | |
C7 | 0.0470 (7) | 0.2966 (4) | 0.3777 (5) | 0.0577 (13) | |
C71 | 0.0087 (11) | 0.3911 (4) | 0.4164 (6) | 0.093 (2) | |
H71A | −0.0143 | 0.4322 | 0.3479 | 0.140* | |
H71B | 0.1040 | 0.4139 | 0.4772 | 0.140* | |
H71C | −0.0881 | 0.3882 | 0.4489 | 0.140* | |
O1 | −0.1707 (5) | −0.0178 (2) | 0.3457 (3) | 0.0546 (9) | |
O2 | −0.1614 (5) | 0.0692 (2) | 0.5702 (3) | 0.0520 (8) | |
C1 | −0.3071 (7) | 0.0274 (4) | 0.3148 (5) | 0.0582 (14) | |
C11 | −0.4037 (9) | 0.0109 (5) | 0.1836 (6) | 0.0771 (19) | |
F11 | −0.5552 (6) | 0.0472 (5) | 0.1545 (4) | 0.157 (3) | |
F12 | −0.3218 (6) | 0.0490 (3) | 0.1084 (3) | 0.1142 (15) | |
F13 | −0.4170 (6) | −0.0780 (3) | 0.1545 (4) | 0.1076 (14) | |
C2 | −0.3728 (8) | 0.0879 (4) | 0.3859 (5) | 0.0674 (16) | |
C3 | −0.2960 (7) | 0.1034 (4) | 0.5075 (5) | 0.0541 (13) | |
C31 | −0.3885 (10) | 0.1722 (5) | 0.5750 (7) | 0.0782 (19) | |
F311 | −0.318 (2) | 0.2515 (8) | 0.581 (3) | 0.145 (9) | 0.66 (3) |
F312 | −0.5418 (12) | 0.1700 (18) | 0.5425 (19) | 0.161 (10) | 0.66 (3) |
F313 | −0.349 (2) | 0.1452 (18) | 0.6957 (10) | 0.137 (6) | 0.66 (3) |
F321 | −0.300 (2) | 0.210 (2) | 0.663 (3) | 0.105 (10) | 0.34 (3) |
F322 | −0.520 (6) | 0.141 (2) | 0.591 (5) | 0.18 (2) | 0.34 (3) |
F323 | −0.457 (6) | 0.2452 (19) | 0.4941 (19) | 0.138 (14) | 0.34 (3) |
H2 | −0.475 (7) | 0.118 (4) | 0.347 (5) | 0.065 (17)* | |
H6 | 0.085 (9) | 0.314 (5) | 0.207 (7) | 0.12 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0603 (5) | 0.0401 (4) | 0.0375 (4) | 0.0048 (4) | 0.0085 (4) | −0.0043 (4) |
Se | 0.0834 (5) | 0.0652 (4) | 0.0568 (4) | 0.0044 (3) | 0.0276 (3) | −0.0066 (3) |
N1 | 0.072 (3) | 0.051 (3) | 0.051 (2) | 0.001 (2) | 0.023 (2) | 0.004 (2) |
N2 | 0.081 (3) | 0.047 (3) | 0.047 (2) | 0.002 (2) | 0.023 (2) | 0.005 (2) |
C6 | 0.080 (4) | 0.063 (4) | 0.049 (3) | −0.001 (3) | 0.022 (3) | 0.012 (3) |
C7 | 0.080 (4) | 0.047 (3) | 0.046 (3) | 0.002 (3) | 0.014 (3) | 0.009 (2) |
C71 | 0.152 (7) | 0.059 (4) | 0.076 (4) | 0.002 (4) | 0.044 (5) | 0.001 (3) |
O1 | 0.065 (2) | 0.051 (2) | 0.0436 (18) | 0.0042 (18) | 0.0060 (17) | −0.0060 (16) |
O2 | 0.064 (2) | 0.047 (2) | 0.0444 (18) | 0.0014 (17) | 0.0132 (17) | −0.0044 (15) |
C1 | 0.067 (4) | 0.058 (3) | 0.045 (3) | 0.003 (3) | 0.007 (3) | −0.002 (2) |
C11 | 0.077 (4) | 0.092 (5) | 0.052 (4) | 0.012 (4) | −0.003 (3) | −0.016 (3) |
F11 | 0.098 (3) | 0.260 (7) | 0.081 (3) | 0.080 (4) | −0.033 (2) | −0.062 (4) |
F12 | 0.149 (4) | 0.133 (4) | 0.052 (2) | −0.001 (3) | 0.011 (2) | 0.013 (2) |
F13 | 0.130 (4) | 0.102 (3) | 0.072 (2) | −0.014 (3) | −0.008 (2) | −0.024 (2) |
C2 | 0.061 (4) | 0.074 (4) | 0.060 (3) | 0.013 (3) | 0.003 (3) | −0.014 (3) |
C3 | 0.056 (3) | 0.048 (3) | 0.061 (3) | −0.001 (3) | 0.019 (3) | −0.010 (3) |
C31 | 0.081 (5) | 0.070 (5) | 0.089 (5) | −0.002 (4) | 0.032 (4) | −0.030 (4) |
F311 | 0.164 (16) | 0.064 (6) | 0.23 (2) | 0.004 (7) | 0.095 (18) | −0.043 (9) |
F312 | 0.045 (6) | 0.27 (2) | 0.158 (13) | 0.041 (8) | −0.001 (6) | −0.123 (14) |
F313 | 0.147 (12) | 0.188 (15) | 0.088 (6) | 0.053 (10) | 0.052 (7) | −0.030 (8) |
F321 | 0.067 (11) | 0.12 (2) | 0.104 (17) | 0.027 (14) | −0.015 (11) | −0.071 (14) |
F322 | 0.23 (4) | 0.132 (17) | 0.27 (5) | −0.10 (2) | 0.22 (4) | −0.10 (2) |
F323 | 0.21 (3) | 0.101 (14) | 0.094 (12) | 0.105 (18) | 0.034 (16) | 0.019 (10) |
Cu—O1 | 1.967 (3) | C1—C2 | 1.390 (8) |
Cu—O2 | 1.981 (3) | C1—C11 | 1.524 (8) |
Cu—N1 | 2.391 (4) | C11—F11 | 1.308 (7) |
Se—C6 | 1.817 (6) | C11—F13 | 1.318 (8) |
Se—N1 | 1.867 (4) | C11—F12 | 1.336 (8) |
N1—N2 | 1.268 (6) | C2—C3 | 1.389 (8) |
N2—C7 | 1.380 (6) | C2—H2 | 0.95 (6) |
C6—C7 | 1.345 (7) | C3—C31 | 1.565 (8) |
C6—H6 | 0.97 (8) | C31—F312 | 1.214 (12) |
C7—C71 | 1.488 (8) | C31—F311 | 1.273 (12) |
C71—H71A | 0.96 | C31—F313 | 1.389 (15) |
C71—H71B | 0.96 | C31—F321 | 1.204 (17) |
C71—H71C | 0.96 | C31—F322 | 1.23 (2) |
O1—C1 | 1.262 (6) | C31—F323 | 1.418 (17) |
O2—C3 | 1.252 (6) | ||
O1—Cu—O2i | 88.06 (14) | O1—C1—C11 | 113.2 (5) |
O1—Cu—O2 | 91.94 (14) | C2—C1—C11 | 119.5 (5) |
O1—Cu—N1 | 87.15 (15) | F11—C11—F13 | 108.2 (6) |
O1i—Cu—N1 | 92.85 (15) | F11—C11—F12 | 105.9 (6) |
O2i—Cu—N1 | 91.44 (15) | F13—C11—F12 | 105.0 (6) |
O2—Cu—N1 | 88.57 (15) | F11—C11—C1 | 114.0 (5) |
C6—Se—N1 | 86.4 (2) | F13—C11—C1 | 112.8 (6) |
N2—N1—Se | 111.3 (3) | F12—C11—C1 | 110.4 (6) |
N2—N1—Cu | 125.0 (3) | C3—C2—C1 | 122.8 (6) |
Se—N1—Cu | 121.3 (2) | C3—C2—H2 | 121 (3) |
N1—N2—C7 | 116.6 (4) | C1—C2—H2 | 116 (3) |
C7—C6—Se | 110.6 (4) | O2—C3—C2 | 128.1 (5) |
C7—C6—H6 | 126 (4) | O2—C3—C31 | 115.7 (5) |
Se—C6—H6 | 123 (4) | C2—C3—C31 | 116.3 (6) |
C6—C7—N2 | 115.2 (5) | F312—C31—F311 | 117.2 (13) |
C6—C7—C71 | 127.2 (5) | F312—C31—F313 | 104.9 (12) |
N2—C7—C71 | 117.5 (5) | F311—C31—F313 | 102.0 (11) |
C7—C71—H71A | 109.5 | F312—C31—C3 | 115.2 (8) |
C7—C71—H71B | 109.5 | F311—C31—C3 | 109.0 (8) |
H71A—C71—H71B | 109.5 | F313—C31—C3 | 107.1 (8) |
C7—C71—H71C | 109.5 | F321—C31—F322 | 114 (2) |
H71A—C71—H71C | 109.5 | F321—C31—F323 | 105.4 (16) |
H71B—C71—H71C | 109.5 | F322—C31—F323 | 99 (2) |
C1—O1—Cu | 123.9 (3) | F321—C31—C3 | 115.3 (10) |
C3—O2—Cu | 123.2 (3) | F322—C31—C3 | 113.4 (14) |
O1—C1—C2 | 127.4 (5) | F323—C31—C3 | 107.9 (9) |
C6—Se—N1—N2 | 0.8 (4) | Cu—O1—C1—C11 | 171.1 (4) |
C6—Se—N1—Cu | 164.0 (3) | O1—C1—C11—F11 | 171.4 (6) |
O1—Cu—N1—N2 | 109.9 (4) | C2—C1—C11—F11 | −8.8 (10) |
O1i—Cu—N1—N2 | −70.1 (4) | O1—C1—C11—F13 | 47.5 (8) |
O2i—Cu—N1—N2 | −162.1 (4) | C2—C1—C11—F13 | −132.7 (6) |
O2—Cu—N1—N2 | 17.9 (4) | O1—C1—C11—F12 | −69.6 (7) |
O1—Cu—N1—Se | −50.9 (3) | C2—C1—C11—F12 | 110.2 (7) |
O1i—Cu—N1—Se | 129.1 (3) | O1—C1—C2—C3 | −3.2 (11) |
O2i—Cu—N1—Se | 37.1 (3) | C11—C1—C2—C3 | 177.1 (6) |
O2—Cu—N1—Se | −142.9 (3) | Cu—O2—C3—C2 | 11.9 (8) |
Se—N1—N2—C7 | −1.0 (6) | Cu—O2—C3—C31 | −168.1 (4) |
Cu—N1—N2—C7 | −163.4 (4) | C1—C2—C3—O2 | 1.3 (10) |
N1—Se—C6—C7 | −0.5 (5) | C1—C2—C3—C31 | −178.8 (6) |
Se—C6—C7—N2 | 0.1 (7) | O2—C3—C31—F312 | −145.3 (18) |
Se—C6—C7—C71 | −178.2 (6) | C2—C3—C31—F312 | 34.8 (19) |
N1—N2—C7—C6 | 0.6 (8) | O2—C3—C31—F311 | 80.6 (17) |
N1—N2—C7—C71 | 179.1 (6) | C2—C3—C31—F311 | −99.4 (16) |
O2i—Cu—O1—C1 | −164.5 (4) | O2—C3—C31—F313 | −29.0 (14) |
O2—Cu—O1—C1 | 15.5 (4) | C2—C3—C31—F313 | 151.0 (13) |
N1i—Cu—O1—C1 | 107.0 (4) | O2—C3—C31—F321 | 24 (3) |
N1—Cu—O1—C1 | −73.0 (4) | C2—C3—C31—F321 | −156 (3) |
O1—Cu—O2—C3 | −16.9 (4) | O2—C3—C31—F322 | −110 (3) |
O1i—Cu—O2—C3 | 163.1 (4) | C2—C3—C31—F322 | 71 (3) |
N1i—Cu—O2—C3 | −109.8 (4) | O2—C3—C31—F323 | 142 (2) |
N1—Cu—O2—C3 | 70.2 (4) | C2—C3—C31—F323 | −38 (3) |
Cu—O1—C1—C2 | −8.6 (8) |
Symmetry code: (i) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C5HF6O2)2(C3H4N2Se)2] |
Mr | 771.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.191 (2), 14.390 (4), 11.429 (4) |
β (°) | 104.86 (3) |
V (Å3) | 1302.1 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.75 |
Crystal size (mm) | 0.25 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Nicolet R3m/V |
Absorption correction | ψ scan (SHELXTL; Sheldrick, 2008) |
Tmin, Tmax | 0.755, 0.793 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3218, 3014, 1894 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.126, 1.03 |
No. of reflections | 3014 |
No. of parameters | 215 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.42 |
Computer programs: XSCANS (Siemens, 1996), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu—O1 | 1.967 (3) | Cu—N1 | 2.391 (4) |
Cu—O2 | 1.981 (3) | ||
C6—C7—N2 | 115.2 (5) |
Acknowledgements
We wish to thank Dr D. Shah, Imperial College, for experimental assistance.
References
Colacio, E., Ghazi, M., Kivekas, R., Klinga, M., Lloret, F. & Moreno, J. M. (2000). Inorg. Chem. 39, 2770–2776. Web of Science CSD CrossRef PubMed CAS Google Scholar
De Panthou, F. L., Luneau, D., Musin, R., Ohrstrom, L., Grand, A., Turek, P. & Rey, P. (1996). Inorg. Chem. 35, 3484–3491. CAS Google Scholar
Fokin, S. V., Romanenko, G. V., Shvedenkov, Yu. G., Ikorskii, V. N., Vasilevsky, S. F., Tret'yakov, E. V. & Ovcharenko, V. I. (2002). J. Struct. Chem. 43, 828–834. Web of Science CrossRef CAS Google Scholar
Iwahori, F., Golhen, S., Ouahab, L., Carlier, R. & Sutter, J.-P. (2001). Inorg. Chem. 400, 6541–6542. Web of Science CSD CrossRef Google Scholar
Kogane, T., Ishii, M., Harada, K., Hirota, R. & Nakahara, M. (1990). Bull. Chem. Soc. Jpn, 63, 1005–1009. CrossRef CAS Web of Science Google Scholar
Sano, Y., Tanaka, M., Koga, N., Matsuda, K., Iwamura, H., Rabu, P. & Drillon, M. (1997). J. Am. Chem. Soc. 119, 8246–8252. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title molecule, [Cu(C3HF6O2)2(C3H4N2Se)2], (I) was prepared as a potential precursor to CuInSe2. The molecule (Fig. 1) is centrosymmetric resulting in pairs of equivalent ligands lying trans to each other in a slightly distorted octahedral coordination geometry in which the cis angles deviate less than 3° from right angles. The Cu is bound to N1 of the selenadiazole whose plane is canted at 73.13 (0.17) ° to the square plane defined by the pentanedionato oxygen atoms. The Cu—N bond is elongated. There are no intermolecular interactions.