organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-{[(1Z)-(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene)(p-tol­yl)meth­yl]amino}-3-phenyl­propanoate

aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: zxin_tj@126.com

(Received 4 December 2009; accepted 21 December 2009; online 9 January 2010)

The asymmetric unit of the title compound, C29H29N3O3, contains two mol­ecules, which exist in their enamine–keto form, being stabilized by strong intra­molecular N—H⋯O hydrogen bonds, which generate S(6) loops. In the crystal, inter­molecular C–H⋯O hydrogen bonds link the mol­ecules into chains, which are further linked by weak C—H⋯π inter­actions, forming a two-dimensional network.

Related literature

For general background to Schiff base compounds in coordination chemistry, see: Habibi et al. (2007[Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.]). For the anti­bacterial properties of Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes, see: Li et al. (1997[Li, J. Z., Yu, W. J. & Du, X. Y. (1997). Chin. J. Appl. Chem. 14, 98-100.], 2004[Li, J. Z., Jiang, L. & An, Y. M. (2004). Chin. J. Appl. Chem. 21, 150-153.]). For the anti­bacterial and biological activity of amino acid esters, see: Xiong et al. (1993[Xiong, G. H., Yang, Z. M. & Guo, A. L. (1993). Fine Chem. 6, 1-3.]). For related structures, see: Wang et al. (2003[Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430-o432.]); Zhang et al. (2004[Zhang, X., Zhu, H., Xu, H. & Dong, M. (2004). Acta Cryst. E60, o1157-o1158.]). For further synthetic details, see: Remya et al. (2005[Remya, P. N., Pavithran, R. & Reddy, M. L. P. (2005). Solvent Extr. Ion Exch. 24, 5016-5022]).

[Scheme 1]

Experimental

Crystal data
  • C29H29N3O3

  • Mr = 467.55

  • Triclinic, [P \overline 1]

  • a = 11.0637 (11) Å

  • b = 13.2746 (14) Å

  • c = 20.299 (2) Å

  • α = 101.869 (2)°

  • β = 97.923 (2)°

  • γ = 112.861 (2)°

  • V = 2608.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.38 × 0.32 × 0.26 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.980

  • 13503 measured reflections

  • 9153 independent reflections

  • 5450 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.01

  • 9153 reflections

  • 636 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of C30–C35 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.86 2.01 2.713 (2) 138
N6—H6⋯O4 0.86 2.03 2.698 (2) 133
C16—H16⋯O6i 0.93 2.51 3.397 (3) 161
C28—H28B⋯O1ii 0.97 2.44 3.357 (3) 157
C45—H45⋯Cg6iii 0.93 2.77 3.449 (3) 130
C57—H57BCg6iv 0.96 2.78 3.663 (3) 152
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+2; (iv) x-1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, Schiff base compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and molecular architectures (Habibi et al., 2007). The structures of Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have been studied widely for their high antibacterial activation (Li et al., 1997, 2004). Both 1-phenyl-3-methyl-4-toluoyl-5-pyrazolone, Hpmtp, and its metal complexes are widely used and well known for their analgesic activity (Remya et al., 2005). Since amino acid esters also possess good antibacterial and biological activations (Xiong et al., 1993), we have studied the reactions of Hpmtp and amino acid esters.

In the molecule of the title compound, (I), (Fig.1) there are two molecules in the asymmetric unit, and the numerical results given here are for one of them; they are not significantly different. Atoms O1, C7, C8, C11 and N3 form a plane, the largest deviation being 0.0310 Å for atom C11. The dihedral angle between this mean plane and the pyrazolone ring is 1.52 (4)°, indicating that they are essentially coplanar, as seen in 4-{[3,4-dihydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4-ylidene]-(phenyl) methyl] amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one(3.56 (3)°;Wang et al.,2003). The bond lengths within this part of the molecule lie between classical single- and double-bond lengths, indicating extensive conjugation. Atoms N3, C19, C27 and O2 are not coplanar, the torsion angle being 22.5 (3)°, different from that in some other 4-acyl-5-prazolone Schiff bases (Zhang et al., 2004; Wang et al., 2003). The bond lengths in this part of the molecule indicate that only C27=O2 is a classical double bond and the other bonds are classical single bonds. The dihedral angle between the benzene ring of ethyl 2-amino-3-phenyl-propanoate and the pyrazolone ring is 63.95 (2)°, reducing steric hindrance. A strong intramolecular N–H···O hydrogen bond is observed (Table 1), stabilizing the enamine-keto form.

In the crystal structure, inter-molecular C–H···O hydrogen bonds (Table 1) link the molecules into 1-D chain (Fig.2), which is further linked by weak C–H···π interactions (Table 1) to form a two-dimensional network (Fig.3), in which they may be effective in the stabilization of the structure.

Related literature top

For general background to Schiff base compounds in coordination chemistry, see: Habibi et al. (2007). For the antibacterial properties of Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes, see: Li et al. (1997, 2004). For the antibacterial and biological activity of amino acid esters, see: Xiong et al. (1993). For related structures, see: Wang et al. (2003); Zhang et al. (2004). For further synthetic details, see: Remya et al. (2005).

Experimental top

The title compound was synthesized by refluxing a mixture of 1-phenyl-3-methyl-4-toluoyl-5-pyrazolone (15 mmol) (Remya et al., 2005) and phenylalanine ethyl ester (15 mmol) in ethanol (100 ml) for about 5 h. The product was recrystallized from ethanol, affording pale yellow crystals suitable for X-ray analysis.

Refinement top

All H atoms were positioned geometrically (N–H = 0.86Å and C–H = 0.93–0.97Å) and treated as riding, with Uiso(H)= 1.2Ueq(C); the Uiso value for the H atoms bonded to N atoms was refined freely. The ethyl group was found to be disordered and was refined as two components with equal occupancy, with the acid of restraints on geometry and displacement parameters.

Structure description top

In recent years, Schiff base compounds play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and molecular architectures (Habibi et al., 2007). The structures of Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes have been studied widely for their high antibacterial activation (Li et al., 1997, 2004). Both 1-phenyl-3-methyl-4-toluoyl-5-pyrazolone, Hpmtp, and its metal complexes are widely used and well known for their analgesic activity (Remya et al., 2005). Since amino acid esters also possess good antibacterial and biological activations (Xiong et al., 1993), we have studied the reactions of Hpmtp and amino acid esters.

In the molecule of the title compound, (I), (Fig.1) there are two molecules in the asymmetric unit, and the numerical results given here are for one of them; they are not significantly different. Atoms O1, C7, C8, C11 and N3 form a plane, the largest deviation being 0.0310 Å for atom C11. The dihedral angle between this mean plane and the pyrazolone ring is 1.52 (4)°, indicating that they are essentially coplanar, as seen in 4-{[3,4-dihydro-5-methyl-3-oxo-2-phenyl-2H-pyrazol-4-ylidene]-(phenyl) methyl] amino}-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one(3.56 (3)°;Wang et al.,2003). The bond lengths within this part of the molecule lie between classical single- and double-bond lengths, indicating extensive conjugation. Atoms N3, C19, C27 and O2 are not coplanar, the torsion angle being 22.5 (3)°, different from that in some other 4-acyl-5-prazolone Schiff bases (Zhang et al., 2004; Wang et al., 2003). The bond lengths in this part of the molecule indicate that only C27=O2 is a classical double bond and the other bonds are classical single bonds. The dihedral angle between the benzene ring of ethyl 2-amino-3-phenyl-propanoate and the pyrazolone ring is 63.95 (2)°, reducing steric hindrance. A strong intramolecular N–H···O hydrogen bond is observed (Table 1), stabilizing the enamine-keto form.

In the crystal structure, inter-molecular C–H···O hydrogen bonds (Table 1) link the molecules into 1-D chain (Fig.2), which is further linked by weak C–H···π interactions (Table 1) to form a two-dimensional network (Fig.3), in which they may be effective in the stabilization of the structure.

For general background to Schiff base compounds in coordination chemistry, see: Habibi et al. (2007). For the antibacterial properties of Schiff bases derived from 4-acyl-5-pyrazolones and their metal complexes, see: Li et al. (1997, 2004). For the antibacterial and biological activity of amino acid esters, see: Xiong et al. (1993). For related structures, see: Wang et al. (2003); Zhang et al. (2004). For further synthetic details, see: Remya et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing displacement ellipsoids drawn at the 30% probability level. The intra-molecular hydrogen bond is indicated by dashed line.
[Figure 2] Fig. 2. The one-dimensional plane of (I) formed by the intermolecular C–H···O weak hydrogen-bonding interactions.
[Figure 3] Fig. 3. The two-dimensional supra-molecular network of (I) produced by the inter-molecular C–H ···π interactions.
Ethyl 2-{[(1Z)-(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol- 4-ylidene)(p-tolyl)methyl]amino}-3-phenylpropanoate top
Crystal data top
C29H29N3O3Z = 4
Mr = 467.55F(000) = 992
Triclinic, P1Dx = 1.190 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.0637 (11) ÅCell parameters from 2516 reflections
b = 13.2746 (14) Åθ = 2.3–20.2°
c = 20.299 (2) ŵ = 0.08 mm1
α = 101.869 (2)°T = 296 K
β = 97.923 (2)°Block, yellow
γ = 112.861 (2)°0.38 × 0.32 × 0.26 mm
V = 2608.8 (5) Å3
Data collection top
Bruker SMART CCD
diffractometer
9153 independent reflections
Radiation source: fine-focus sealed tube5450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1311
Tmin = 0.971, Tmax = 0.980k = 1015
13503 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.1678P]
where P = (Fo2 + 2Fc2)/3
9153 reflections(Δ/σ)max = 0.001
636 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C29H29N3O3γ = 112.861 (2)°
Mr = 467.55V = 2608.8 (5) Å3
Triclinic, P1Z = 4
a = 11.0637 (11) ÅMo Kα radiation
b = 13.2746 (14) ŵ = 0.08 mm1
c = 20.299 (2) ÅT = 296 K
α = 101.869 (2)°0.38 × 0.32 × 0.26 mm
β = 97.923 (2)°
Data collection top
Bruker SMART CCD
diffractometer
9153 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
5450 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.021
13503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
9153 reflectionsΔρmin = 0.19 e Å3
636 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71923 (17)0.81845 (14)0.49334 (9)0.0766 (5)
O20.3638 (2)0.8629 (2)0.49767 (10)0.1062 (7)
O30.29842 (17)0.92431 (15)0.59120 (9)0.0799 (5)
O40.24307 (14)0.80519 (12)1.00473 (7)0.0631 (4)
O50.08684 (17)0.87650 (15)1.01365 (8)0.0776 (5)
O60.25145 (15)0.84962 (13)0.92501 (7)0.0649 (4)
N10.77524 (18)0.66606 (16)0.49565 (9)0.0609 (5)
N20.74399 (19)0.57817 (16)0.52761 (9)0.0616 (5)
N30.55387 (18)0.82573 (16)0.57946 (9)0.0617 (5)
H3A0.58570.84290.54490.074*
N40.29698 (16)0.65042 (14)0.99683 (9)0.0513 (4)
N50.23374 (18)0.53247 (14)0.96488 (9)0.0547 (5)
N60.01134 (18)0.73294 (15)0.92980 (9)0.0598 (5)
H60.04990.77850.96660.072*
C10.9533 (3)0.6259 (2)0.45793 (15)0.0834 (8)
H10.95430.58680.49100.100*
C21.0407 (3)0.6352 (3)0.4136 (2)0.1111 (11)
H21.10010.60160.41710.133*
C31.0397 (4)0.6932 (3)0.3653 (2)0.1202 (13)
H31.09880.69930.33640.144*
C40.9522 (3)0.7420 (3)0.35953 (17)0.1045 (10)
H40.95150.78090.32630.125*
C50.8643 (3)0.7342 (2)0.40263 (14)0.0801 (8)
H50.80500.76790.39870.096*
C60.8655 (2)0.6759 (2)0.45169 (13)0.0667 (7)
C70.7118 (2)0.7346 (2)0.51423 (11)0.0591 (6)
C80.6389 (2)0.68835 (18)0.56273 (10)0.0520 (5)
C90.6635 (2)0.59172 (19)0.56667 (11)0.0551 (6)
C100.6086 (3)0.5064 (2)0.60524 (12)0.0732 (7)
H10A0.63910.44790.59400.110*
H10B0.51160.47290.59230.110*
H10C0.63970.54350.65420.110*
C110.5662 (2)0.73839 (18)0.59647 (10)0.0508 (5)
C120.5048 (2)0.69619 (18)0.65205 (10)0.0497 (5)
C130.3756 (2)0.6121 (2)0.63623 (11)0.0634 (6)
H130.32230.58570.59120.076*
C140.3246 (3)0.5665 (2)0.68735 (12)0.0720 (7)
H140.23680.50950.67600.086*
C150.3998 (3)0.6030 (2)0.75424 (12)0.0689 (7)
C160.5282 (3)0.6890 (2)0.76938 (12)0.0757 (7)
H160.58100.71590.81450.091*
C170.5807 (2)0.7364 (2)0.71958 (11)0.0648 (6)
H170.66720.79540.73150.078*
C180.3415 (3)0.5521 (3)0.80965 (15)0.1137 (11)
H18A0.27490.57760.82100.170*
H18B0.41260.57600.85040.170*
H18C0.30030.47040.79250.170*
C190.4935 (2)0.89585 (19)0.61186 (11)0.0596 (6)
H190.45960.86850.65000.071*
C200.5985 (2)1.0210 (2)0.64057 (12)0.0695 (7)
H20A0.64001.04460.60390.083*
H20B0.55251.06810.65430.083*
C210.7078 (2)1.04170 (19)0.70174 (12)0.0595 (6)
C220.8205 (2)1.0246 (2)0.69331 (13)0.0709 (7)
H220.83040.99990.64890.085*
C230.9190 (3)1.0439 (2)0.75043 (16)0.0812 (8)
H230.99461.03200.74430.097*
C240.9055 (3)1.0806 (2)0.81618 (15)0.0781 (8)
H240.97231.09430.85450.094*
C250.7943 (3)1.0970 (2)0.82516 (14)0.0806 (8)
H250.78461.12150.86960.097*
C260.6963 (3)1.0772 (2)0.76821 (13)0.0758 (7)
H260.62021.08800.77480.091*
C270.3774 (3)0.8892 (2)0.55943 (14)0.0695 (7)
C280.1891 (3)0.9351 (3)0.54875 (16)0.0943 (9)
H28A0.13420.86440.51250.113*
H28B0.22570.99550.52710.113*
C290.1067 (3)0.9618 (3)0.59471 (19)0.1302 (13)
H29A0.06460.89860.61260.195*
H29B0.03840.97590.56900.195*
H29C0.16361.02840.63250.195*
C300.4752 (2)0.7986 (2)1.09284 (12)0.0640 (6)
H300.42030.83581.10020.077*
C310.6034 (3)0.8419 (2)1.13540 (14)0.0793 (7)
H310.63490.90871.17140.095*
C320.6846 (3)0.7867 (3)1.12470 (16)0.0868 (8)
H320.77000.81531.15410.104*
C330.6400 (3)0.6900 (3)1.07104 (16)0.0837 (8)
H330.69580.65371.06330.100*
C340.5129 (2)0.6461 (2)1.02831 (13)0.0667 (6)
H340.48280.58010.99180.080*
C350.4297 (2)0.70014 (18)1.03960 (11)0.0527 (5)
C360.2138 (2)0.70135 (18)0.98212 (10)0.0486 (5)
C370.0921 (2)0.61086 (17)0.93655 (10)0.0472 (5)
C380.1131 (2)0.50964 (17)0.92975 (10)0.0503 (5)
C390.0195 (2)0.38911 (18)0.89275 (12)0.0700 (7)
H39A0.01120.37700.84370.105*
H39B0.06760.37250.90240.105*
H39C0.05440.33990.90820.105*
C400.0169 (2)0.62915 (18)0.90837 (10)0.0486 (5)
C410.1392 (2)0.54022 (17)0.85620 (10)0.0490 (5)
C420.1335 (2)0.4956 (2)0.78968 (11)0.0642 (6)
H420.05100.51930.77750.077*
C430.2494 (3)0.4158 (2)0.74106 (12)0.0730 (7)
H430.24360.38650.69650.088*
C440.3731 (3)0.3787 (2)0.75699 (13)0.0706 (7)
C450.3777 (2)0.4225 (2)0.82360 (14)0.0722 (7)
H450.46010.39750.83580.087*
C460.2635 (2)0.5025 (2)0.87262 (12)0.0620 (6)
H460.26980.53140.91710.074*
C470.5008 (3)0.2919 (2)0.70330 (15)0.1088 (11)
H47A0.47780.26590.66120.163*
H47B0.56070.32650.69420.163*
H47C0.54480.22830.72060.163*
C480.0969 (2)0.77755 (18)0.89797 (11)0.0546 (6)
H480.17600.71460.86440.065*
C490.0201 (2)0.86357 (19)0.86083 (12)0.0654 (6)
H49A0.08070.89140.84010.078*
H49B0.05390.92820.89500.078*
C500.0360 (2)0.81547 (19)0.80509 (12)0.0611 (6)
C510.1668 (3)0.8278 (2)0.81830 (15)0.0867 (8)
H510.22260.86630.86260.104*
C520.2163 (3)0.7838 (3)0.76661 (19)0.1075 (10)
H520.30500.79240.77640.129*
C530.1357 (4)0.7275 (3)0.70104 (17)0.1027 (10)
H530.16990.69930.66600.123*
C540.0062 (3)0.7131 (3)0.68762 (14)0.0938 (9)
H540.04960.67360.64340.113*
C550.0432 (3)0.7568 (2)0.73906 (13)0.0792 (7)
H550.13260.74640.72900.095*
C560.1432 (2)0.83904 (18)0.95348 (12)0.0559 (6)
C570.3000 (2)0.9187 (2)0.96945 (12)0.0712 (7)
H57A0.23620.99840.98270.085*
H57B0.31040.89491.01120.085*
C580.4329 (3)0.9022 (2)0.92927 (14)0.0898 (8)
H58A0.42280.92020.88630.135*
H58B0.46430.95160.95580.135*
H58C0.49730.82440.91990.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0967 (13)0.0666 (11)0.0890 (12)0.0408 (10)0.0529 (10)0.0364 (10)
O20.1053 (15)0.157 (2)0.0633 (12)0.0714 (15)0.0118 (11)0.0198 (13)
O30.0790 (12)0.0933 (13)0.0854 (12)0.0542 (11)0.0211 (10)0.0268 (10)
O40.0664 (10)0.0462 (9)0.0731 (10)0.0302 (8)0.0019 (8)0.0076 (8)
O50.0844 (12)0.0958 (13)0.0531 (10)0.0533 (11)0.0010 (9)0.0034 (9)
O60.0677 (10)0.0708 (11)0.0603 (9)0.0456 (9)0.0032 (8)0.0033 (8)
N10.0631 (12)0.0593 (12)0.0646 (12)0.0269 (10)0.0288 (10)0.0165 (10)
N20.0683 (12)0.0587 (12)0.0589 (11)0.0290 (10)0.0182 (10)0.0138 (10)
N30.0771 (13)0.0679 (13)0.0563 (11)0.0393 (11)0.0305 (10)0.0248 (10)
N40.0500 (11)0.0447 (11)0.0613 (11)0.0261 (9)0.0077 (9)0.0117 (9)
N50.0607 (12)0.0452 (11)0.0615 (11)0.0280 (9)0.0113 (10)0.0136 (9)
N60.0675 (12)0.0537 (12)0.0559 (11)0.0363 (10)0.0058 (9)0.0042 (9)
C10.0691 (17)0.0748 (18)0.099 (2)0.0304 (15)0.0289 (16)0.0060 (15)
C20.083 (2)0.091 (2)0.155 (3)0.0365 (19)0.059 (2)0.008 (2)
C30.110 (3)0.091 (3)0.157 (3)0.028 (2)0.092 (3)0.021 (2)
C40.120 (3)0.084 (2)0.118 (2)0.035 (2)0.078 (2)0.0294 (19)
C50.0825 (19)0.0724 (18)0.0863 (18)0.0255 (15)0.0465 (16)0.0224 (15)
C60.0580 (15)0.0572 (15)0.0730 (16)0.0168 (12)0.0272 (13)0.0028 (13)
C70.0584 (14)0.0550 (15)0.0615 (14)0.0218 (12)0.0206 (12)0.0124 (12)
C80.0537 (13)0.0542 (13)0.0488 (12)0.0230 (11)0.0177 (10)0.0131 (11)
C90.0577 (14)0.0597 (15)0.0465 (12)0.0260 (12)0.0109 (11)0.0118 (11)
C100.0963 (19)0.0688 (17)0.0644 (15)0.0409 (15)0.0259 (14)0.0242 (13)
C110.0477 (12)0.0528 (14)0.0436 (12)0.0165 (11)0.0078 (10)0.0088 (10)
C120.0508 (13)0.0546 (13)0.0423 (12)0.0233 (11)0.0123 (10)0.0088 (10)
C130.0614 (15)0.0665 (16)0.0465 (13)0.0158 (13)0.0101 (11)0.0093 (12)
C140.0735 (16)0.0625 (16)0.0628 (16)0.0111 (13)0.0263 (14)0.0123 (13)
C150.0896 (19)0.0717 (17)0.0528 (15)0.0370 (16)0.0308 (14)0.0194 (13)
C160.0830 (19)0.104 (2)0.0425 (13)0.0455 (18)0.0106 (13)0.0170 (14)
C170.0558 (14)0.0799 (17)0.0482 (14)0.0245 (13)0.0083 (11)0.0087 (13)
C180.155 (3)0.123 (3)0.088 (2)0.060 (2)0.066 (2)0.056 (2)
C190.0682 (15)0.0646 (15)0.0545 (13)0.0357 (13)0.0191 (12)0.0175 (12)
C200.0818 (17)0.0656 (16)0.0653 (15)0.0384 (14)0.0125 (13)0.0174 (13)
C210.0676 (15)0.0531 (14)0.0584 (15)0.0268 (12)0.0148 (12)0.0157 (11)
C220.0697 (17)0.0745 (17)0.0682 (16)0.0282 (14)0.0213 (14)0.0224 (13)
C230.0619 (17)0.0771 (19)0.103 (2)0.0280 (15)0.0158 (16)0.0279 (17)
C240.082 (2)0.0573 (16)0.0770 (19)0.0183 (14)0.0039 (15)0.0207 (14)
C250.094 (2)0.0754 (19)0.0606 (16)0.0312 (17)0.0121 (16)0.0096 (14)
C260.0777 (17)0.0802 (19)0.0651 (17)0.0374 (15)0.0150 (14)0.0062 (14)
C270.0703 (17)0.0749 (18)0.0681 (18)0.0339 (15)0.0199 (14)0.0227 (14)
C280.0720 (18)0.093 (2)0.121 (2)0.0429 (17)0.0049 (18)0.0337 (19)
C290.110 (3)0.145 (3)0.185 (4)0.088 (3)0.056 (3)0.069 (3)
C300.0568 (15)0.0622 (16)0.0718 (16)0.0288 (13)0.0098 (13)0.0141 (13)
C310.0630 (17)0.0732 (18)0.0826 (18)0.0192 (15)0.0029 (14)0.0134 (14)
C320.0466 (15)0.092 (2)0.109 (2)0.0200 (16)0.0009 (15)0.0339 (19)
C330.0530 (16)0.086 (2)0.118 (2)0.0347 (15)0.0158 (16)0.0331 (19)
C340.0590 (15)0.0660 (16)0.0834 (17)0.0333 (13)0.0197 (13)0.0236 (13)
C350.0488 (13)0.0527 (14)0.0617 (14)0.0247 (11)0.0125 (11)0.0216 (12)
C360.0538 (13)0.0473 (13)0.0527 (13)0.0282 (11)0.0133 (10)0.0172 (11)
C370.0514 (13)0.0460 (12)0.0505 (12)0.0281 (11)0.0103 (10)0.0139 (10)
C380.0570 (14)0.0468 (13)0.0497 (12)0.0252 (11)0.0112 (11)0.0146 (10)
C390.0757 (16)0.0449 (14)0.0826 (17)0.0272 (13)0.0033 (13)0.0124 (12)
C400.0576 (13)0.0498 (13)0.0448 (12)0.0278 (11)0.0139 (10)0.0160 (10)
C410.0560 (13)0.0470 (13)0.0480 (13)0.0279 (11)0.0078 (11)0.0135 (10)
C420.0650 (15)0.0743 (17)0.0573 (15)0.0386 (14)0.0113 (12)0.0117 (13)
C430.0835 (19)0.0774 (18)0.0542 (15)0.0437 (16)0.0008 (14)0.0027 (13)
C440.0768 (18)0.0536 (15)0.0696 (17)0.0253 (14)0.0079 (14)0.0158 (13)
C450.0599 (15)0.0656 (17)0.0803 (18)0.0141 (13)0.0089 (14)0.0302 (15)
C460.0644 (16)0.0639 (15)0.0572 (14)0.0239 (13)0.0173 (12)0.0221 (12)
C470.096 (2)0.082 (2)0.106 (2)0.0169 (18)0.0275 (18)0.0158 (18)
C480.0609 (14)0.0509 (13)0.0538 (13)0.0333 (12)0.0023 (11)0.0075 (11)
C490.0808 (17)0.0587 (15)0.0656 (15)0.0418 (14)0.0127 (13)0.0156 (12)
C500.0661 (16)0.0585 (15)0.0641 (15)0.0339 (13)0.0132 (13)0.0162 (12)
C510.0710 (18)0.100 (2)0.0845 (19)0.0420 (17)0.0091 (15)0.0132 (16)
C520.076 (2)0.141 (3)0.117 (3)0.062 (2)0.029 (2)0.025 (2)
C530.107 (3)0.136 (3)0.089 (2)0.072 (2)0.042 (2)0.028 (2)
C540.101 (2)0.116 (3)0.0665 (18)0.058 (2)0.0163 (17)0.0102 (16)
C550.0745 (17)0.099 (2)0.0676 (17)0.0487 (16)0.0117 (15)0.0125 (15)
C560.0560 (14)0.0507 (13)0.0566 (15)0.0250 (11)0.0038 (12)0.0082 (11)
C570.0790 (17)0.0708 (17)0.0755 (16)0.0488 (15)0.0207 (14)0.0098 (13)
C580.0792 (19)0.098 (2)0.105 (2)0.0576 (17)0.0228 (16)0.0164 (17)
Geometric parameters (Å, º) top
O1—C71.248 (3)C24—C251.358 (4)
O2—C271.201 (3)C24—H240.9300
O3—C271.320 (3)C25—C261.374 (3)
O3—C281.457 (3)C25—H250.9300
O4—C361.252 (2)C26—H260.9300
O5—C561.195 (2)C28—C291.475 (4)
O6—C561.327 (2)C28—H28A0.9700
O6—C571.456 (2)C28—H28B0.9700
N1—C71.375 (3)C29—H29A0.9600
N1—N21.401 (2)C29—H29B0.9600
N1—C61.415 (3)C29—H29C0.9600
N2—C91.309 (3)C30—C351.374 (3)
N3—C111.325 (3)C30—C311.383 (3)
N3—C191.449 (3)C30—H300.9300
N3—H3A0.8600C31—C321.376 (4)
N4—C361.373 (2)C31—H310.9300
N4—N51.403 (2)C32—C331.364 (4)
N4—C351.416 (3)C32—H320.9300
N5—C381.310 (2)C33—C341.374 (3)
N6—C401.331 (2)C33—H330.9300
N6—C481.445 (2)C34—C351.385 (3)
N6—H60.8600C34—H340.9300
C1—C61.378 (3)C36—C371.433 (3)
C1—C21.396 (4)C37—C401.390 (3)
C1—H10.9300C37—C381.433 (3)
C2—C31.366 (5)C38—C391.483 (3)
C2—H20.9300C39—H39A0.9600
C3—C41.364 (4)C39—H39B0.9600
C3—H30.9300C39—H39C0.9600
C4—C51.383 (3)C40—C411.482 (3)
C4—H40.9300C41—C421.379 (3)
C5—C61.383 (3)C41—C461.383 (3)
C5—H50.9300C42—C431.381 (3)
C7—C81.443 (3)C42—H420.9300
C8—C111.392 (3)C43—C441.373 (3)
C8—C91.426 (3)C43—H430.9300
C9—C101.492 (3)C44—C451.374 (3)
C10—H10A0.9600C44—C471.518 (3)
C10—H10B0.9600C45—C461.375 (3)
C10—H10C0.9600C45—H450.9300
C11—C121.491 (3)C46—H460.9300
C12—C131.371 (3)C47—H47A0.9600
C12—C171.379 (3)C47—H47B0.9600
C13—C141.384 (3)C47—H47C0.9600
C13—H130.9300C48—C561.518 (3)
C14—C151.370 (3)C48—C491.540 (3)
C14—H140.9300C48—H480.9800
C15—C161.375 (3)C49—C501.510 (3)
C15—C181.521 (3)C49—H49A0.9700
C16—C171.377 (3)C49—H49B0.9700
C16—H160.9300C50—C511.372 (3)
C17—H170.9300C50—C551.374 (3)
C18—H18A0.9599C51—C521.378 (4)
C18—H18B0.9600C51—H510.9300
C18—H18C0.9600C52—C531.368 (4)
C19—C271.512 (3)C52—H520.9300
C19—C201.538 (3)C53—C541.350 (4)
C19—H190.9800C53—H530.9300
C20—C211.506 (3)C54—C551.371 (3)
C20—H20A0.9700C54—H540.9300
C20—H20B0.9700C55—H550.9300
C21—C261.375 (3)C57—C581.491 (3)
C21—C221.378 (3)C57—H57A0.9700
C22—C231.382 (3)C57—H57B0.9700
C22—H220.9300C58—H58A0.9600
C23—C241.373 (3)C58—H58B0.9600
C23—H230.9300C58—H58C0.9600
C27—O3—C28118.0 (2)C29—C28—H28B110.2
C56—O6—C57117.64 (17)H28A—C28—H28B108.5
C7—N1—N2111.98 (17)C28—C29—H29A109.5
C7—N1—C6128.7 (2)C28—C29—H29B109.5
N2—N1—C6119.28 (19)H29A—C29—H29B109.5
C9—N2—N1106.36 (17)C28—C29—H29C109.5
C11—N3—C19128.05 (18)H29A—C29—H29C109.5
C11—N3—H3A116.0H29B—C29—H29C109.5
C19—N3—H3A116.0C35—C30—C31119.5 (2)
C36—N4—N5111.77 (16)C35—C30—H30120.2
C36—N4—C35129.02 (18)C31—C30—H30120.2
N5—N4—C35119.18 (16)C32—C31—C30120.3 (3)
C38—N5—N4106.38 (16)C32—C31—H31119.9
C40—N6—C48127.15 (18)C30—C31—H31119.9
C40—N6—H6116.4C33—C32—C31120.0 (3)
C48—N6—H6116.4C33—C32—H32120.0
C6—C1—C2118.7 (3)C31—C32—H32120.0
C6—C1—H1120.7C32—C33—C34120.3 (3)
C2—C1—H1120.7C32—C33—H33119.9
C3—C2—C1120.7 (3)C34—C33—H33119.9
C3—C2—H2119.7C33—C34—C35120.0 (2)
C1—C2—H2119.7C33—C34—H34120.0
C4—C3—C2120.1 (3)C35—C34—H34120.0
C4—C3—H3119.9C30—C35—C34119.9 (2)
C2—C3—H3119.9C30—C35—N4121.19 (19)
C3—C4—C5120.5 (3)C34—C35—N4118.9 (2)
C3—C4—H4119.7O4—C36—N4125.45 (19)
C5—C4—H4119.7O4—C36—C37129.52 (18)
C6—C5—C4119.4 (3)N4—C36—C37105.02 (17)
C6—C5—H5120.3C40—C37—C38132.1 (2)
C4—C5—H5120.3C40—C37—C36122.48 (18)
C1—C6—C5120.6 (2)C38—C37—C36105.47 (17)
C1—C6—N1119.3 (2)N5—C38—C37111.32 (19)
C5—C6—N1120.1 (2)N5—C38—C39118.58 (19)
O1—C7—N1126.4 (2)C37—C38—C39130.0 (2)
O1—C7—C8129.1 (2)C38—C39—H39A109.5
N1—C7—C8104.5 (2)C38—C39—H39B109.5
C11—C8—C9132.3 (2)H39A—C39—H39B109.5
C11—C8—C7122.2 (2)C38—C39—H39C109.5
C9—C8—C7105.55 (18)H39A—C39—H39C109.5
N2—C9—C8111.57 (19)H39B—C39—H39C109.5
N2—C9—C10118.3 (2)N6—C40—C37118.00 (19)
C8—C9—C10130.1 (2)N6—C40—C41117.83 (18)
C9—C10—H10A109.5C37—C40—C41124.17 (18)
C9—C10—H10B109.5C42—C41—C46118.2 (2)
H10A—C10—H10B109.5C42—C41—C40121.3 (2)
C9—C10—H10C109.5C46—C41—C40120.46 (19)
H10A—C10—H10C109.5C41—C42—C43120.4 (2)
H10B—C10—H10C109.5C41—C42—H42119.8
N3—C11—C8119.18 (19)C43—C42—H42119.8
N3—C11—C12120.08 (18)C44—C43—C42121.5 (2)
C8—C11—C12120.7 (2)C44—C43—H43119.2
C13—C12—C17119.0 (2)C42—C43—H43119.2
C13—C12—C11120.66 (18)C43—C44—C45117.6 (2)
C17—C12—C11120.16 (19)C43—C44—C47121.5 (3)
C12—C13—C14119.9 (2)C45—C44—C47120.9 (3)
C12—C13—H13120.0C44—C45—C46121.7 (2)
C14—C13—H13120.0C44—C45—H45119.2
C15—C14—C13121.8 (2)C46—C45—H45119.2
C15—C14—H14119.1C45—C46—C41120.5 (2)
C13—C14—H14119.1C45—C46—H46119.8
C14—C15—C16117.4 (2)C41—C46—H46119.8
C14—C15—C18121.0 (3)C44—C47—H47A109.5
C16—C15—C18121.7 (2)C44—C47—H47B109.5
C15—C16—C17121.9 (2)H47A—C47—H47B109.5
C15—C16—H16119.1C44—C47—H47C109.5
C17—C16—H16119.1H47A—C47—H47C109.5
C16—C17—C12119.9 (2)H47B—C47—H47C109.5
C16—C17—H17120.0N6—C48—C56109.45 (17)
C12—C17—H17120.0N6—C48—C49111.18 (18)
C15—C18—H18A109.5C56—C48—C49107.89 (17)
C15—C18—H18B109.5N6—C48—H48109.4
H18A—C18—H18B109.5C56—C48—H48109.4
C15—C18—H18C109.5C49—C48—H48109.4
H18A—C18—H18C109.5C50—C49—C48114.14 (18)
H18B—C18—H18C109.5C50—C49—H49A108.7
N3—C19—C27110.08 (19)C48—C49—H49A108.7
N3—C19—C20110.38 (19)C50—C49—H49B108.7
C27—C19—C20108.61 (18)C48—C49—H49B108.7
N3—C19—H19109.2H49A—C49—H49B107.6
C27—C19—H19109.2C51—C50—C55117.6 (2)
C20—C19—H19109.2C51—C50—C49121.6 (2)
C21—C20—C19113.60 (19)C55—C50—C49120.8 (2)
C21—C20—H20A108.8C50—C51—C52120.7 (3)
C19—C20—H20A108.8C50—C51—H51119.6
C21—C20—H20B108.8C52—C51—H51119.6
C19—C20—H20B108.8C53—C52—C51120.3 (3)
H20A—C20—H20B107.7C53—C52—H52119.8
C26—C21—C22118.0 (2)C51—C52—H52119.8
C26—C21—C20120.3 (2)C54—C53—C52119.5 (3)
C22—C21—C20121.7 (2)C54—C53—H53120.2
C21—C22—C23120.4 (2)C52—C53—H53120.2
C21—C22—H22119.8C53—C54—C55120.2 (3)
C23—C22—H22119.8C53—C54—H54119.9
C24—C23—C22120.2 (3)C55—C54—H54119.9
C24—C23—H23119.9C54—C55—C50121.6 (2)
C22—C23—H23119.9C54—C55—H55119.2
C25—C24—C23119.9 (3)C50—C55—H55119.2
C25—C24—H24120.0O5—C56—O6125.0 (2)
C23—C24—H24120.0O5—C56—C48124.8 (2)
C24—C25—C26119.7 (3)O6—C56—C48110.16 (18)
C24—C25—H25120.2O6—C57—C58107.41 (19)
C26—C25—H25120.2O6—C57—H57A110.2
C25—C26—C21121.8 (2)C58—C57—H57A110.2
C25—C26—H26119.1O6—C57—H57B110.2
C21—C26—H26119.1C58—C57—H57B110.2
O2—C27—O3124.7 (2)H57A—C57—H57B108.5
O2—C27—C19124.7 (2)C57—C58—H58A109.5
O3—C27—C19110.4 (2)C57—C58—H58B109.5
O3—C28—C29107.6 (2)H58A—C58—H58B109.5
O3—C28—H28A110.2C57—C58—H58C109.5
C29—C28—H28A110.2H58A—C58—H58C109.5
O3—C28—H28B110.2H58B—C58—H58C109.5
C7—N1—N2—C90.9 (2)C20—C19—C27—O377.0 (2)
C6—N1—N2—C9177.74 (19)C27—O3—C28—C29173.4 (2)
C36—N4—N5—C380.9 (2)C35—C30—C31—C320.2 (4)
C35—N4—N5—C38179.14 (17)C30—C31—C32—C331.4 (4)
C6—C1—C2—C30.3 (5)C31—C32—C33—C341.3 (4)
C1—C2—C3—C40.5 (5)C32—C33—C34—C350.1 (4)
C2—C3—C4—C50.5 (5)C31—C30—C35—C341.0 (3)
C3—C4—C5—C60.3 (5)C31—C30—C35—N4177.2 (2)
C2—C1—C6—C50.1 (4)C33—C34—C35—C301.0 (3)
C2—C1—C6—N1179.3 (2)C33—C34—C35—N4177.2 (2)
C4—C5—C6—C10.1 (4)C36—N4—C35—C3025.2 (3)
C4—C5—C6—N1179.3 (2)N5—N4—C35—C30152.77 (19)
C7—N1—C6—C1157.5 (2)C36—N4—C35—C34156.7 (2)
N2—N1—C6—C120.9 (3)N5—N4—C35—C3425.4 (3)
C7—N1—C6—C523.1 (4)N5—N4—C36—O4178.62 (19)
N2—N1—C6—C5158.5 (2)C35—N4—C36—O40.6 (3)
N2—N1—C7—O1179.0 (2)N5—N4—C36—C371.7 (2)
C6—N1—C7—O12.5 (4)C35—N4—C36—C37179.78 (19)
N2—N1—C7—C81.7 (2)O4—C36—C37—C401.4 (3)
C6—N1—C7—C8176.8 (2)N4—C36—C37—C40178.28 (18)
O1—C7—C8—C112.5 (4)O4—C36—C37—C38178.5 (2)
N1—C7—C8—C11176.71 (19)N4—C36—C37—C381.9 (2)
O1—C7—C8—C9179.0 (2)N4—N5—C38—C370.4 (2)
N1—C7—C8—C91.8 (2)N4—N5—C38—C39177.18 (18)
N1—N2—C9—C80.4 (2)C40—C37—C38—N5178.7 (2)
N1—N2—C9—C10177.50 (18)C36—C37—C38—N51.4 (2)
C11—C8—C9—N2176.9 (2)C40—C37—C38—C394.1 (4)
C7—C8—C9—N21.4 (2)C36—C37—C38—C39175.8 (2)
C11—C8—C9—C105.5 (4)C48—N6—C40—C37165.84 (19)
C7—C8—C9—C10176.2 (2)C48—N6—C40—C4114.5 (3)
C19—N3—C11—C8174.1 (2)C38—C37—C40—N6173.7 (2)
C19—N3—C11—C124.7 (3)C36—C37—C40—N66.1 (3)
C9—C8—C11—N3176.2 (2)C38—C37—C40—C416.0 (4)
C7—C8—C11—N35.8 (3)C36—C37—C40—C41174.20 (18)
C9—C8—C11—C125.0 (4)N6—C40—C41—C42112.5 (2)
C7—C8—C11—C12173.09 (19)C37—C40—C41—C4267.8 (3)
N3—C11—C12—C1390.7 (3)N6—C40—C41—C4665.4 (3)
C8—C11—C12—C1390.5 (3)C37—C40—C41—C46114.3 (2)
N3—C11—C12—C1793.4 (3)C46—C41—C42—C430.4 (3)
C8—C11—C12—C1785.4 (3)C40—C41—C42—C43177.6 (2)
C17—C12—C13—C141.9 (3)C41—C42—C43—C440.1 (4)
C11—C12—C13—C14174.0 (2)C42—C43—C44—C450.9 (4)
C12—C13—C14—C150.0 (4)C42—C43—C44—C47179.4 (2)
C13—C14—C15—C161.3 (4)C43—C44—C45—C461.3 (4)
C13—C14—C15—C18179.7 (2)C47—C44—C45—C46179.0 (2)
C14—C15—C16—C170.7 (4)C44—C45—C46—C410.9 (4)
C18—C15—C16—C17179.1 (3)C42—C41—C46—C450.0 (3)
C15—C16—C17—C121.2 (4)C40—C41—C46—C45178.0 (2)
C13—C12—C17—C162.5 (3)C40—N6—C48—C56134.3 (2)
C11—C12—C17—C16173.5 (2)C40—N6—C48—C49106.6 (2)
C11—N3—C19—C27120.7 (2)N6—C48—C49—C5058.3 (2)
C11—N3—C19—C20119.4 (2)C56—C48—C49—C50178.36 (19)
N3—C19—C20—C2168.9 (2)C48—C49—C50—C5195.1 (3)
C27—C19—C20—C21170.4 (2)C48—C49—C50—C5584.4 (3)
C19—C20—C21—C2694.8 (3)C55—C50—C51—C520.8 (4)
C19—C20—C21—C2284.4 (3)C49—C50—C51—C52179.7 (3)
C26—C21—C22—C230.6 (4)C50—C51—C52—C530.4 (5)
C20—C21—C22—C23179.8 (2)C51—C52—C53—C541.4 (5)
C21—C22—C23—C240.2 (4)C52—C53—C54—C551.3 (5)
C22—C23—C24—C250.6 (4)C53—C54—C55—C500.2 (5)
C23—C24—C25—C260.3 (4)C51—C50—C55—C540.9 (4)
C24—C25—C26—C210.5 (4)C49—C50—C55—C54179.5 (2)
C22—C21—C26—C251.0 (4)C57—O6—C56—O54.4 (3)
C20—C21—C26—C25179.9 (2)C57—O6—C56—C48172.72 (19)
C28—O3—C27—O21.8 (4)N6—C48—C56—O521.9 (3)
C28—O3—C27—C19173.7 (2)C49—C48—C56—O599.2 (3)
N3—C19—C27—O222.5 (3)N6—C48—C56—O6160.91 (17)
C20—C19—C27—O298.5 (3)C49—C48—C56—O678.0 (2)
N3—C19—C27—O3162.01 (19)C56—O6—C57—C58171.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of C30–C35 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.012.713 (2)138
N6—H6···O40.862.032.698 (2)133
C16—H16···O6i0.932.513.397 (3)161
C28—H28B···O1ii0.972.443.357 (3)157
C45—H45···Cg6iii0.932.773.449 (3)130
C57—H57B···Cg6iv0.962.783.663 (3)152
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z+2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC29H29N3O3
Mr467.55
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.0637 (11), 13.2746 (14), 20.299 (2)
α, β, γ (°)101.869 (2), 97.923 (2), 112.861 (2)
V3)2608.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.32 × 0.26
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
13503, 9153, 5450
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.01
No. of reflections9153
No. of parameters636
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of C30–C35 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.012.713 (2)138
N6—H6···O40.862.032.698 (2)133
C16—H16···O6i0.932.513.397 (3)161
C28—H28B···O1ii0.972.443.357 (3)157
C45—H45···Cg6iii0.932.773.449 (3)130
C57—H57B···Cg6iv0.962.783.663 (3)152
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x, y+1, z+2; (iv) x1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20771083).

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHabibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. Z., Jiang, L. & An, Y. M. (2004). Chin. J. Appl. Chem. 21, 150–153.  CAS Google Scholar
First citationLi, J. Z., Yu, W. J. & Du, X. Y. (1997). Chin. J. Appl. Chem. 14, 98–100.  CAS Google Scholar
First citationRemya, P. N., Pavithran, R. & Reddy, M. L. P. (2005). Solvent Extr. Ion Exch. 24, 5016–5022  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, o430–o432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, G. H., Yang, Z. M. & Guo, A. L. (1993). Fine Chem. 6, 1–3.  Google Scholar
First citationZhang, X., Zhu, H., Xu, H. & Dong, M. (2004). Acta Cryst. E60, o1157–o1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds