metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ5-2-methyl-3,5-di­nitro­benzoato)sodium]

aDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, and bInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: drdanish62@gmail.com

(Received 11 December 2009; accepted 5 January 2010; online 9 January 2010)

In the crystal of the title coordination polymer, [Na(C8H5N2O6)]n, the Na(I) ion is linked to five nearby anions. Their bonding modes are three monodentate carboxyl­ate O atoms, one O,O′-bidentate carboxyl­ate group and one O,O′-bidentate nitro group. This results in an irregular NaO7 coordination geometry for the metal ion. This connectivity leads to a layered network propagating in (100).

Related literature

For the structure of a trimethyl-tin complex with the ortho-toluate ligand, see: Danish et al. (2010[Danish, M., Saleem, I., Ahmad, N., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m4.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C8H5N2O6)]

  • Mr = 248.13

  • Orthorhombic, P b c n

  • a = 27.8428 (13) Å

  • b = 10.452 (2) Å

  • c = 6.642 (6) Å

  • V = 1932.8 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.42 × 0.14 × 0.08 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England]) Tmin = 0.975, Tmax = 0.984

  • 2659 measured reflections

  • 2406 independent reflections

  • 1273 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections every 200 reflections intensity decay: 0.01%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.132

  • S = 1.00

  • 2406 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Na1—O1 2.4567 (19)
Na1—O2 2.780 (2)
Na1—O2i 2.3571 (17)
Na1—O1ii 2.364 (3)
Na1—O2iii 2.383 (3)
Na1—O22iv 2.6102 (19)
Na1—O21iv 2.635 (2)
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of compound (1) is composed of molecular sheets in which Na(I) ions are bridged by ligand carboxylate and nitro-group O atoms. The carboxylate O1 atom acts as bidentate and chelates Na1 and Na1(IV) ions, the O2 atom is bonded to Na1(II) and Na1(V) ions and to the Na1 ion at a longer distance of 2.780 (2) Å. The O1, O2, Na and Na(II) ions form a distorted plane [r.m.s. 0.0261 (2) Å], the O1 atom chelates the Na(IV) ion below this plane, the O2 atom - the Na(V)ion above, giving rise to a molecular column. However, when distances between atoms from a nitro-group of an adjacent ligand to the Na ion are accounted for, the columns form molecular sheets. The coordination geometry of the Na1 ion is represented by a strongly distorted eight-faced polyhedron with an equatorial plane formed by carboxylate O1 and O2(II), nitro O21(VI) and O22(VI) atoms and Na1 [r.m.s. 0.1217 (2)Å]. Carboxylate O2(IV) is at an apex on one side, O2 and O1(V) form two apices on the other side of the equatorial plane. The toluene ring is planar [r.m.s. 0.0070 (2) Å], the carboxylate group makes with it a dihedral angle of 78.0 (2)o, the nitro-groups - dihedral angles of 42.0 (2)o (N1/O11/O12) and 9.5 (2)o (N2/O21/O22). The sheets are held together via weak interactions of the van der Waals type since the closest approach between two atoms from adjacent sheets is 3.54 (4) Å.

Related literature top

For the structure of a trimethyl-tin complex with the ortho-toluate ligand, see: Danish et al. (2010).

Experimental top

0.0119 mol of 3,5-dinitro-ortho toluic acid was suspended in 15 ml of distilled water contained in a round-bottom flask. Then, 0.0119 mol of an aqueous solution of sodium bicarbonate was added drop-wise with stirring. The mixture was refluxed for 3 h and concentrated to half of its volume, then left at room temperature. Crude crystals appeared within a week. Yellow needles of (I) crystals were obtained by recrystallization from a water/ethanol 3:1 mixture at room temperature.

Refinement top

H atoms attached to toluene-ring C atoms were positioned geometrically and refined with a riding model.

Structure description top

The structure of compound (1) is composed of molecular sheets in which Na(I) ions are bridged by ligand carboxylate and nitro-group O atoms. The carboxylate O1 atom acts as bidentate and chelates Na1 and Na1(IV) ions, the O2 atom is bonded to Na1(II) and Na1(V) ions and to the Na1 ion at a longer distance of 2.780 (2) Å. The O1, O2, Na and Na(II) ions form a distorted plane [r.m.s. 0.0261 (2) Å], the O1 atom chelates the Na(IV) ion below this plane, the O2 atom - the Na(V)ion above, giving rise to a molecular column. However, when distances between atoms from a nitro-group of an adjacent ligand to the Na ion are accounted for, the columns form molecular sheets. The coordination geometry of the Na1 ion is represented by a strongly distorted eight-faced polyhedron with an equatorial plane formed by carboxylate O1 and O2(II), nitro O21(VI) and O22(VI) atoms and Na1 [r.m.s. 0.1217 (2)Å]. Carboxylate O2(IV) is at an apex on one side, O2 and O1(V) form two apices on the other side of the equatorial plane. The toluene ring is planar [r.m.s. 0.0070 (2) Å], the carboxylate group makes with it a dihedral angle of 78.0 (2)o, the nitro-groups - dihedral angles of 42.0 (2)o (N1/O11/O12) and 9.5 (2)o (N2/O21/O22). The sheets are held together via weak interactions of the van der Waals type since the closest approach between two atoms from adjacent sheets is 3.54 (4) Å.

For the structure of a trimethyl-tin complex with the ortho-toluate ligand, see: Danish et al. (2010).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of (1) with 50% probability displacement ellipsoids. Symmetry code: (I) x,y + 1,z; (II) -x + 2,-y,-z + 2; (III) -x + 2,y,-z + 3/2; (IV) x,-y,z - 1/2; (V) x,-y,z + 1/2; (VI) x,y - 1,z.
[Figure 2] Fig. 2. Packing diagram of the structure.
Poly[(µ5-2-methyl-3,5-dinitrobenzoato)sodium] top
Crystal data top
[Na(C8H5N2O6)]Dx = 1.705 Mg m3
Mr = 248.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 25 reflections
a = 27.8428 (13) Åθ = 6–15°
b = 10.452 (2) ŵ = 0.18 mm1
c = 6.642 (6) ÅT = 293 K
V = 1932.8 (17) Å3Needle, yellow
Z = 80.42 × 0.14 × 0.08 mm
F(000) = 1008
Data collection top
Kuma KM-4 four-circle
diffractometer
1273 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 29.1°, θmin = 1.5°
profile data from ω/2θ scansh = 036
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 141
Tmin = 0.975, Tmax = 0.984l = 09
2659 measured reflections3 standard reflections every 200 reflections
2406 independent reflections intensity decay: 0.01%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.6169P]
where P = (Fo2 + 2Fc2)/3
2406 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Na(C8H5N2O6)]V = 1932.8 (17) Å3
Mr = 248.13Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 27.8428 (13) ŵ = 0.18 mm1
b = 10.452 (2) ÅT = 293 K
c = 6.642 (6) Å0.42 × 0.14 × 0.08 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
1273 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.047
Tmin = 0.975, Tmax = 0.9843 standard reflections every 200 reflections
2659 measured reflections intensity decay: 0.01%
2406 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
2406 reflectionsΔρmin = 0.30 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.95606 (3)0.10192 (7)0.92650 (12)0.0318 (2)
O20.96094 (6)0.14635 (16)1.0752 (2)0.0389 (4)
O110.75046 (8)0.2906 (2)0.8738 (4)0.0747 (7)
O10.93442 (7)0.10334 (16)0.7707 (3)0.0482 (5)
N10.77183 (7)0.3679 (2)0.9765 (4)0.0427 (5)
C10.90187 (7)0.28318 (18)0.9385 (3)0.0246 (4)
C70.93555 (7)0.16846 (18)0.9265 (3)0.0268 (4)
C50.89172 (7)0.50978 (19)0.9440 (3)0.0273 (4)
C30.82465 (7)0.3756 (2)0.9576 (3)0.0294 (5)
C20.85223 (7)0.26469 (19)0.9491 (3)0.0283 (5)
C40.84279 (7)0.4982 (2)0.9550 (3)0.0287 (4)
H40.82280.56950.96040.034*
C60.92178 (8)0.40496 (18)0.9386 (3)0.0273 (4)
H60.95490.41570.93500.033*
C80.83187 (9)0.1325 (2)0.9644 (5)0.0479 (7)
H8A0.80390.13391.04890.072*
H8B0.85550.07621.02140.072*
H8C0.82320.10270.83260.072*
O120.75280 (7)0.4416 (2)1.0929 (3)0.0605 (6)
N20.91229 (7)0.63855 (17)0.9404 (3)0.0328 (4)
O210.88557 (7)0.72989 (15)0.9215 (3)0.0461 (5)
O220.95584 (7)0.64912 (16)0.9575 (3)0.0537 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0349 (5)0.0263 (4)0.0341 (5)0.0013 (3)0.0000 (4)0.0016 (3)
O20.0341 (9)0.0433 (9)0.0392 (9)0.0091 (7)0.0041 (7)0.0086 (7)
O110.0389 (9)0.0753 (15)0.1098 (19)0.0043 (11)0.0178 (13)0.0198 (15)
O10.0640 (12)0.0410 (9)0.0396 (10)0.0191 (9)0.0004 (9)0.0092 (8)
N10.0259 (9)0.0409 (10)0.0614 (14)0.0058 (8)0.0002 (10)0.0064 (11)
C10.0269 (9)0.0237 (8)0.0233 (10)0.0025 (7)0.0026 (9)0.0012 (8)
C70.0245 (9)0.0250 (9)0.0309 (11)0.0025 (8)0.0038 (9)0.0057 (9)
C50.0373 (11)0.0244 (9)0.0204 (9)0.0007 (8)0.0007 (9)0.0008 (8)
C30.0257 (10)0.0349 (11)0.0276 (10)0.0022 (8)0.0011 (8)0.0009 (9)
C20.0275 (10)0.0283 (10)0.0292 (11)0.0004 (8)0.0018 (9)0.0014 (9)
C40.0332 (9)0.0294 (9)0.0235 (10)0.0085 (9)0.0002 (9)0.0016 (8)
C60.0291 (10)0.0279 (9)0.0247 (10)0.0015 (8)0.0004 (8)0.0018 (9)
C80.0372 (12)0.0314 (11)0.0751 (19)0.0062 (10)0.0010 (14)0.0028 (12)
O120.0391 (9)0.0542 (11)0.0881 (15)0.0131 (9)0.0199 (11)0.0039 (12)
N20.0467 (11)0.0250 (8)0.0266 (9)0.0013 (8)0.0019 (9)0.0017 (7)
O210.0611 (12)0.0252 (7)0.0518 (11)0.0044 (7)0.0022 (10)0.0003 (7)
O220.0440 (10)0.0352 (9)0.0819 (14)0.0116 (8)0.0011 (10)0.0017 (9)
Geometric parameters (Å, º) top
Na1—O12.4567 (19)C1—C21.397 (3)
Na1—O22.780 (2)C1—C71.524 (3)
Na1—O2i2.3571 (17)C5—C41.370 (3)
Na1—O1ii2.364 (3)C5—C61.379 (3)
Na1—O2iii2.383 (3)C5—N21.463 (3)
Na1—O22iv2.6102 (19)C3—C41.377 (3)
Na1—O21iv2.635 (2)C3—C21.392 (3)
Na1—Na1i3.3881 (17)C2—C81.497 (3)
Na1—Na1v3.389 (2)C4—H40.9300
Na1—Na1iii3.946 (3)C6—H60.9300
O2—C71.237 (3)C8—H8A0.9600
O2—Na1i2.3571 (17)C8—H8B0.9600
O2—Na1ii2.383 (3)C8—H8C0.9600
O11—N11.213 (3)N2—O211.217 (2)
O1—C71.239 (3)N2—O221.223 (2)
O1—Na1iii2.364 (3)N2—Na1vi2.975 (2)
N1—O121.212 (3)O21—Na1vi2.635 (2)
N1—C31.478 (3)O22—Na1vi2.6102 (19)
C1—C61.388 (3)
O2i—Na1—O1ii104.67 (7)C6—C1—C2121.45 (18)
O2i—Na1—O2iii84.31 (7)C6—C1—C7118.39 (18)
O1ii—Na1—O2iii163.77 (7)C2—C1—C7120.16 (17)
O2i—Na1—O1114.23 (7)O2—C7—O1125.38 (19)
O1ii—Na1—O1110.50 (7)O2—C7—C1117.19 (18)
O2iii—Na1—O176.81 (7)O1—C7—C1117.40 (18)
O2i—Na1—O22iv78.83 (6)C4—C5—C6122.34 (19)
O1ii—Na1—O22iv85.23 (7)C4—C5—N2118.12 (18)
O2iii—Na1—O22iv83.28 (7)C6—C5—N2119.53 (19)
O1—Na1—O22iv154.57 (7)C4—C3—C2124.91 (19)
O2i—Na1—O21iv126.78 (6)C4—C3—N1114.59 (18)
O1ii—Na1—O21iv79.53 (6)C2—C3—N1120.47 (19)
O2iii—Na1—O21iv84.27 (6)C3—C2—C1115.62 (18)
O1—Na1—O21iv113.24 (7)C3—C2—C8123.86 (19)
O22iv—Na1—O21iv48.26 (6)C1—C2—C8120.38 (18)
O2i—Na1—O297.91 (6)C5—C4—C3116.57 (19)
O1ii—Na1—O271.01 (6)C5—C4—H4121.7
O2iii—Na1—O2121.81 (6)C3—C4—H4121.7
O1—Na1—O249.20 (6)C5—C6—C1119.07 (19)
O22iv—Na1—O2154.51 (7)C5—C6—H6120.5
O21iv—Na1—O2131.58 (6)C1—C6—H6120.5
C7—O2—Na1i126.39 (14)C2—C8—H8A109.5
C7—O2—Na1ii141.83 (14)C2—C8—H8B109.5
Na1i—O2—Na1ii91.28 (6)H8A—C8—H8B109.5
C7—O2—Na182.10 (12)C2—C8—H8C109.5
Na1i—O2—Na182.09 (6)H8A—C8—H8C109.5
Na1ii—O2—Na199.40 (6)H8B—C8—H8C109.5
C7—O1—Na1iii143.56 (16)O21—N2—O22123.02 (18)
C7—O1—Na197.00 (14)O21—N2—C5118.96 (19)
Na1iii—O1—Na1109.83 (7)O22—N2—C5118.02 (17)
O12—N1—O11124.5 (2)N2—O21—Na1vi93.83 (13)
O12—N1—C3117.0 (2)N2—O22—Na1vi94.88 (13)
O11—N1—C3118.5 (2)
Symmetry codes: (i) x+2, y, z+2; (ii) x, y, z+1/2; (iii) x, y, z1/2; (iv) x, y1, z; (v) x+2, y, z+3/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Na(C8H5N2O6)]
Mr248.13
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)27.8428 (13), 10.452 (2), 6.642 (6)
V3)1932.8 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.42 × 0.14 × 0.08
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.975, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
2659, 2406, 1273
Rint0.047
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.132, 1.00
No. of reflections2406
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.30

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Na1—O12.4567 (19)Na1—O2iii2.383 (3)
Na1—O22.780 (2)Na1—O22iv2.6102 (19)
Na1—O2i2.3571 (17)Na1—O21iv2.635 (2)
Na1—O1ii2.364 (3)
Symmetry codes: (i) x+2, y, z+2; (ii) x, y, z+1/2; (iii) x, y, z1/2; (iv) x, y1, z.
 

Acknowledgements

MD is grateful to the Australian Government for the award of Endeavour Post Doctoral Fellowships for the year 2009–2010

References

First citationDanish, M., Saleem, I., Ahmad, N., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m4.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds