organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,3-Di­fluoro­phen­yl)ethyl toluene-4-sulfonate

aKey Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213162, People's Republic of China, and bHigh Technology Research Institute of Nanjing University, Changzhou 213162, People's Republic of China
*Correspondence e-mail: ycui_rong@163.com

(Received 17 December 2009; accepted 24 December 2009; online 9 January 2010)

In the title compound, C15H14F2O3S, the dihedral angle between the aromatic rings is 6.19 (13)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, generating [110] chains.

Related literature

For related structures, see: Zhang & Zang (2008[Zhang, C. & Zang, Y. (2008). Chin. J. Organo-Fluorine Ind. 2, 48-50.]); Xi et al. (2008[Xi, H., Gao, Y., Sun, X., Meng, Q. & Jiang, Y. (2008). Acta Cryst. E64, o1853.]); Wang & Qin (2008[Wang, Q. & Qin, H. (2008). Chin. J. Chem. Ind. Eng. 25, 271-272.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14F2O3S

  • Mr = 312.32

  • Triclinic, [P \overline 1]

  • a = 7.487 (12) Å

  • b = 8.386 (14) Å

  • c = 12.69 (2) Å

  • α = 91.67 (3)°

  • β = 96.51 (3)°

  • γ = 105.65 (3)°

  • V = 761 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 K

  • 0.21 × 0.21 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.966

  • 4133 measured reflections

  • 2630 independent reflections

  • 2246 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.180

  • S = 1.10

  • 2630 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.58 3.442 (7) 154
Symmetry code: (i) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Toluene-4-sulfonic acid 2-(2,3-difluoro-phenyl)-ethyl ester is an important intermediate for the synthesis of natural products. We have already synthesized and reported several related structures (Zhang et al.,2008; Xi et al.,2008; Wang et al.2008). In this research we report the X-ray crystal structure of the title compound, (I).

In the structure, the dihedral angle between the benzene(C1—C6) and benzene(C9—C14) ring is 6.18°. Weak intermolecular C–H···O hydrogen bonds and C–F···F interactions contribute to the crystal packing.

Related literature top

For related structures, see: Zhang & Zang (2008); Xi et al. (2008); Wang et al. (2008).

Experimental top

A solution of 2-(2,3-difluoro-phenyl)-ethanol (5 g, 32 mmol) in pyridine (15 ml) was added slowly (in 1 h) to a solution of p-toluenesulfonyl chloride (7.23 g, 38 mmol) in pyridine (17 ml) in ice bath. After being stirred for 3 h in ice bath, The solvent was evaporated on a rotary evaporator and the resulting solid was recrystallized in methanol, yielding the title compound (7.5 g, 76%). Colourless blocks of (I) were grown in methanol by slow evaporation at room temperature.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, 0.96 Å or 0.97 Å, and Uiso(H)=1.2Ueq(C-methylene,C-aromatic) or 1.5Ueq(C-methyl).

Structure description top

Toluene-4-sulfonic acid 2-(2,3-difluoro-phenyl)-ethyl ester is an important intermediate for the synthesis of natural products. We have already synthesized and reported several related structures (Zhang et al.,2008; Xi et al.,2008; Wang et al.2008). In this research we report the X-ray crystal structure of the title compound, (I).

In the structure, the dihedral angle between the benzene(C1—C6) and benzene(C9—C14) ring is 6.18°. Weak intermolecular C–H···O hydrogen bonds and C–F···F interactions contribute to the crystal packing.

For related structures, see: Zhang & Zang (2008); Xi et al. (2008); Wang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level and H atoms represented as spheres of arbitrary radius.
2-(2,3-Difluorophenyl)ethyl toluene-4-sulfonate top
Crystal data top
C15H14F2O3SZ = 2
Mr = 312.32F(000) = 324
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.487 (12) ÅCell parameters from 2108 reflections
b = 8.386 (14) Åθ = 2.5–26.9°
c = 12.69 (2) ŵ = 0.24 mm1
α = 91.67 (3)°T = 295 K
β = 96.51 (3)°Block, colorless
γ = 105.65 (3)°0.21 × 0.21 × 0.16 mm
V = 761 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2630 independent reflections
Radiation source: fine-focus sealed tube2246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 88
Tmin = 0.955, Tmax = 0.966k = 97
4133 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.125P)2 + 0.1095P]
where P = (Fo2 + 2Fc2)/3
2630 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C15H14F2O3Sγ = 105.65 (3)°
Mr = 312.32V = 761 (2) Å3
Triclinic, P1Z = 2
a = 7.487 (12) ÅMo Kα radiation
b = 8.386 (14) ŵ = 0.24 mm1
c = 12.69 (2) ÅT = 295 K
α = 91.67 (3)°0.21 × 0.21 × 0.16 mm
β = 96.51 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2630 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2246 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.966Rint = 0.018
4133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.10Δρmax = 0.35 e Å3
2630 reflectionsΔρmin = 0.25 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.10764 (8)0.91567 (7)0.72239 (5)0.0436 (3)
F10.7545 (3)0.2961 (2)1.01476 (15)0.0728 (6)
F20.8697 (2)0.6359 (2)1.04849 (14)0.0664 (5)
O11.3018 (3)0.9177 (3)0.75887 (18)0.0631 (6)
O21.0724 (3)1.0423 (2)0.65329 (16)0.0631 (6)
O31.0172 (2)0.9271 (2)0.83135 (14)0.0489 (5)
C10.5485 (4)0.3112 (3)0.8590 (2)0.0493 (6)
H10.51080.19620.84870.059*
C20.6824 (4)0.3906 (3)0.9445 (2)0.0474 (6)
C30.7407 (3)0.5666 (3)0.96112 (19)0.0429 (6)
C40.6655 (3)0.6682 (3)0.8921 (2)0.0430 (6)
C50.5301 (4)0.5870 (3)0.8060 (2)0.0498 (6)
H50.47800.65080.75970.060*
C60.4721 (4)0.4123 (4)0.7884 (2)0.0542 (7)
H60.38410.36330.73080.065*
C70.7222 (4)0.8606 (3)0.9135 (2)0.0525 (7)
H7A0.80200.88990.98080.063*
H7B0.61050.89610.91950.063*
C80.8273 (4)0.9564 (3)0.8242 (2)0.0532 (7)
H8A0.75790.91640.75490.064*
H8B0.83921.07410.83400.064*
C90.9802 (3)0.7116 (3)0.66443 (19)0.0369 (5)
C101.0027 (4)0.5709 (3)0.7179 (2)0.0430 (6)
H101.08350.58370.78080.052*
C110.9002 (4)0.4104 (3)0.6741 (2)0.0479 (6)
H110.91610.31800.70860.057*
C120.7747 (3)0.3873 (3)0.5795 (2)0.0469 (6)
C130.7558 (4)0.5309 (3)0.5248 (2)0.0511 (7)
H130.67630.51790.46140.061*
C140.8594 (4)0.6939 (3)0.5678 (2)0.0466 (6)
H140.84750.78700.53270.056*
C150.6567 (5)0.2110 (4)0.5350 (3)0.0740 (10)
H15A0.73620.13830.53460.111*
H15B0.60070.21680.46380.111*
H15C0.56050.16910.57910.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0463 (4)0.0295 (4)0.0505 (4)0.0020 (3)0.0082 (3)0.0014 (3)
F10.0742 (12)0.0693 (12)0.0839 (13)0.0319 (10)0.0117 (10)0.0265 (10)
F20.0549 (10)0.0767 (12)0.0594 (11)0.0096 (8)0.0050 (8)0.0008 (8)
O10.0448 (11)0.0510 (11)0.0832 (15)0.0004 (8)0.0024 (10)0.0082 (10)
O20.0868 (15)0.0357 (10)0.0659 (13)0.0110 (10)0.0173 (11)0.0143 (9)
O30.0545 (11)0.0423 (10)0.0471 (11)0.0101 (8)0.0038 (8)0.0037 (8)
C10.0527 (15)0.0376 (13)0.0559 (16)0.0057 (11)0.0167 (12)0.0006 (11)
C20.0452 (14)0.0464 (14)0.0560 (16)0.0165 (11)0.0175 (12)0.0132 (12)
C30.0356 (12)0.0515 (15)0.0402 (13)0.0084 (10)0.0077 (10)0.0008 (11)
C40.0425 (13)0.0397 (14)0.0476 (14)0.0089 (11)0.0146 (11)0.0023 (10)
C50.0528 (15)0.0511 (15)0.0471 (15)0.0172 (12)0.0047 (11)0.0066 (12)
C60.0501 (15)0.0521 (16)0.0532 (16)0.0031 (12)0.0050 (12)0.0047 (13)
C70.0617 (16)0.0400 (14)0.0580 (16)0.0141 (12)0.0180 (13)0.0007 (12)
C80.0637 (17)0.0395 (14)0.0618 (17)0.0203 (12)0.0148 (13)0.0060 (12)
C90.0366 (12)0.0320 (12)0.0403 (12)0.0058 (9)0.0061 (10)0.0011 (9)
C100.0458 (13)0.0388 (13)0.0423 (13)0.0100 (10)0.0011 (10)0.0026 (10)
C110.0543 (15)0.0329 (13)0.0562 (16)0.0106 (11)0.0088 (12)0.0051 (11)
C120.0420 (13)0.0414 (14)0.0531 (15)0.0025 (11)0.0133 (11)0.0085 (11)
C130.0456 (14)0.0582 (16)0.0414 (14)0.0036 (12)0.0004 (11)0.0042 (12)
C140.0523 (14)0.0442 (14)0.0415 (13)0.0109 (11)0.0033 (11)0.0076 (10)
C150.072 (2)0.0494 (17)0.084 (2)0.0101 (15)0.0149 (17)0.0241 (16)
Geometric parameters (Å, º) top
S1—O21.456 (3)C7—H7A0.9700
S1—O11.470 (3)C7—H7B0.9700
S1—O31.618 (3)C8—H8A0.9700
S1—C91.808 (3)C8—H8B0.9700
F1—C21.369 (3)C9—C141.417 (4)
F2—C31.384 (3)C9—C101.417 (4)
O3—C81.500 (4)C10—C111.418 (4)
C1—C21.406 (4)C10—H100.9300
C1—C61.428 (4)C11—C121.412 (4)
C1—H10.9300C11—H110.9300
C2—C31.423 (5)C12—C131.438 (4)
C3—C41.414 (4)C12—C151.555 (4)
C4—C51.421 (4)C13—C141.434 (4)
C4—C71.561 (4)C13—H130.9300
C5—C61.414 (5)C14—H140.9300
C5—H50.9300C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C81.569 (4)C15—H15C0.9600
O2—S1—O1119.16 (13)O3—C8—C7108.0 (2)
O2—S1—O3109.80 (14)O3—C8—H8A110.1
O1—S1—O3103.90 (15)C7—C8—H8A110.1
O2—S1—C9110.16 (16)O3—C8—H8B110.1
O1—S1—C9109.48 (13)C7—C8—H8B110.1
O3—S1—C9103.00 (12)H8A—C8—H8B108.4
C8—O3—S1118.26 (17)C14—C9—C10121.1 (2)
C2—C1—C6118.1 (3)C14—C9—S1120.24 (19)
C2—C1—H1121.0C10—C9—S1118.7 (2)
C6—C1—H1121.0C9—C10—C11119.0 (2)
F1—C2—C1119.1 (3)C9—C10—H10120.5
F1—C2—C3119.5 (3)C11—C10—H10120.5
C1—C2—C3121.4 (2)C12—C11—C10121.8 (2)
F2—C3—C4120.7 (3)C12—C11—H11119.1
F2—C3—C2118.2 (2)C10—C11—H11119.1
C4—C3—C2121.1 (3)C11—C12—C13118.7 (2)
C3—C4—C5117.1 (3)C11—C12—C15121.2 (3)
C3—C4—C7121.1 (2)C13—C12—C15120.1 (3)
C5—C4—C7121.7 (2)C14—C13—C12120.2 (3)
C6—C5—C4122.2 (3)C14—C13—H13119.9
C6—C5—H5118.9C12—C13—H13119.9
C4—C5—H5118.9C9—C14—C13119.2 (2)
C5—C6—C1120.1 (3)C9—C14—H14120.4
C5—C6—H6120.0C13—C14—H14120.4
C1—C6—H6120.0C12—C15—H15A109.5
C4—C7—C8113.2 (2)C12—C15—H15B109.5
C4—C7—H7A108.9H15A—C15—H15B109.5
C8—C7—H7A108.9C12—C15—H15C109.5
C4—C7—H7B108.9H15A—C15—H15C109.5
C8—C7—H7B108.9H15B—C15—H15C109.5
H7A—C7—H7B107.7
O2—S1—O3—C841.5 (2)S1—O3—C8—C7146.04 (19)
O1—S1—O3—C8170.02 (17)C4—C7—C8—O370.1 (3)
C9—S1—O3—C875.8 (2)O2—S1—C9—C143.1 (2)
C6—C1—C2—F1178.5 (2)O1—S1—C9—C14136.0 (2)
C6—C1—C2—C30.1 (4)O3—S1—C9—C14114.0 (2)
F1—C2—C3—F20.1 (3)O2—S1—C9—C10177.34 (18)
C1—C2—C3—F2178.4 (2)O1—S1—C9—C1044.5 (2)
F1—C2—C3—C4178.1 (2)O3—S1—C9—C1065.6 (2)
C1—C2—C3—C40.2 (4)C14—C9—C10—C110.9 (4)
F2—C3—C4—C5178.3 (2)S1—C9—C10—C11178.70 (19)
C2—C3—C4—C50.1 (3)C9—C10—C11—C120.9 (4)
F2—C3—C4—C71.2 (3)C10—C11—C12—C132.1 (4)
C2—C3—C4—C7177.0 (2)C10—C11—C12—C15177.3 (2)
C3—C4—C5—C60.3 (4)C11—C12—C13—C141.7 (4)
C7—C4—C5—C6177.4 (2)C15—C12—C13—C14177.7 (2)
C4—C5—C6—C10.6 (4)C10—C9—C14—C131.2 (4)
C2—C1—C6—C50.5 (4)S1—C9—C14—C13178.31 (18)
C3—C4—C7—C8116.4 (3)C12—C13—C14—C90.0 (4)
C5—C4—C7—C866.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.583.442 (7)154
Symmetry code: (i) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC15H14F2O3S
Mr312.32
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.487 (12), 8.386 (14), 12.69 (2)
α, β, γ (°)91.67 (3), 96.51 (3), 105.65 (3)
V3)761 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.21 × 0.21 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.955, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
4133, 2630, 2246
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.180, 1.10
No. of reflections2630
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.583.442 (7)154
Symmetry code: (i) x1, y1, z.
 

Acknowledgements

The authors are grateful to Jiangsu Polytechnic University and the Natural Science Foundation of China (No.20872051) for financial support.

References

First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q. & Qin, H. (2008). Chin. J. Chem. Ind. Eng. 25, 271–272.  CAS Google Scholar
First citationXi, H., Gao, Y., Sun, X., Meng, Q. & Jiang, Y. (2008). Acta Cryst. E64, o1853.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, C. & Zang, Y. (2008). Chin. J. Organo-Fluorine Ind. 2, 48–50.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds