organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-{[(E)-2-(4-Iodo­phen­yl)hydrazinyl­­idene]meth­yl}thio­phene-2-carbaldehyde

aCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, bDepartamento de Quimica, ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 December 2009; accepted 22 December 2009; online 9 January 2010)

The title compound, C12H9IN2OS, has an overall U-shape, with a dihedral angle of 21.4 (3)° between the thio­phene and benzene rings. In the crystal, supra­molecular chains mediated by N—H⋯O hydrogen bonds are formed along the b-axis direction.

Related literature

For background to 2-substituted thio­phenes, see: Campaigne (1984[Campaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863-934. Oxford: Pergamon.]); Kleemann et al. (2006[Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.]). For the anti­mycobacterial activity of 2-substituted thio­phenes, see: Lourenço et al. (2007[Lourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895-6898.]). For a related structure, see: Ferreira et al. (2009[Ferreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.]). For background to the production of mono-hydrazones by the reaction of aryl­hydrazines with arenedicarbaldehydes, see: Reuch & Heflet (1956[Reuch, H. & Heflet, L. (1956). J. Org. Chem. 21, 708.]); Vaysse & Pastour (1964[Vaysse, M. & Pastour, P. (1964). Compt. Rend. 259, 2657-2659.]); Butler et al. (1990[Butler, R. N., Gillan, A. M., Lysaght, F. A., McArdle, P. & Cunningham, D. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 555-561.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o493-o495.]); Low et al. (2006[Low, J. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1816-o1818.]); Wardell et al. (2006[Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2204-o2206.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9IN2OS

  • Mr = 356.17

  • Orthorhombic, P b c a

  • a = 6.9291 (9) Å

  • b = 11.7602 (10) Å

  • c = 30.958 (4) Å

  • V = 2522.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 120 K

  • 0.16 × 0.08 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.616, Tmax = 0.746

  • 15735 measured reflections

  • 2614 independent reflections

  • 1674 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.113

  • S = 1.04

  • 2614 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.88 (4) 2.05 (5) 2.916 (8) 172 (5)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The various uses of 2-substituted thiophenes have been well documented (Campaigne, 1984; Kleemann et al., 2006). Amongst these appplications, are antimycobacterial activities, as found for a series of N-(aryl)-2-thiophen-2-ylacetamide derivatives (Lourenço et al., 2007), one structure of which, i.e. N-(2,6-dimethylphenyl)-2-(thiophen-2-yl)acetamide, was recently reported (Ferreira et al., 2009). Herein, we now report the structure of the title compound (I) prepared by the controlled reaction of p-iodophenylhydrazine with 2,5-thiophenedicarbaldehyde. As indicated in the literature, controlled reactions of arylhydrazines with arenedicarbaldehydes can successfully produce mono-hydrazones (Reuch & Heflet, 1956; Vaysse & Pastour, 1964; Butler et al., 1990; Glidewell, et al., 2005; Low et al., 2006; Wardell et al., 2006).

The overall molecule of (I), Fig. 1, is non-planar as evidenced by the dihedral angle of 21.4 (3)° formed between the thiophene and benzene rings. The twist in the molecule is most evident in the C4–N1–N2–C7 torsion angle of -172.2 (6) ° and. more particularly, in the adjacent N2–N1–C4–C3 torsion angle of -20.8 (9) °. The conformation about the C7N2 bond [1.284 (8) Å] is E. The thiophene-S and aldehyde-O atoms are syn and are directed towards the benzene ring so that, overall, the molecule has a U-shape. The most prominent intermolecular interactions operating in the crystal structure are N–H···O hydrogen bonds, Table 1. These lead to supramolecular chains along the b direction, Fig. 2. Chains are connected along the c direction by I···I contacts [I···Ii = 3.7630 (8) Å for i: -x, 1 - y, 1 - z] to form a 2-D array. Layers thus formed stack along the a direction, Fig. 3.

Related literature top

For background to 2-substituted thiophenes, see: Campaigne (1984); Kleemann et al. (2006). For the antimycobacterial activity of 2-substituted thiophenes, see: Lourenço et al. (2007). For a related structure, see: Ferreira et al. (2009). For background to the production of mono-hydrazones by the reaction of arylhydrazines with arenedicarbaldehydes, see: Reuch & Heflet (1956); Vaysse & Pastour (1964); Butler et al. (1990); Glidewell et al. (2005); Low et al. (2006); Wardell et al. (2006).

Experimental top

A solution of p-iodophenylhydrazine (117 mg, 0.5 mmol) in MeOH (10 ml) was slowly added to a solution of 2,5-thiophenedicarbaldehyde (70 mg, 0.5 mmol) in MeOH (5 ml) at room temperature. The reaction mixture was maintained at room temperature and the crystals, which slowly formed, were collected and recrystallized from MeOH, m.pt. 464–467 K (dec.). IR(KBr, cm-1): 1675 (CO), 1593(CN).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N–H atom was located in a difference map and refined with the distance restraint N–H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N).

Structure description top

The various uses of 2-substituted thiophenes have been well documented (Campaigne, 1984; Kleemann et al., 2006). Amongst these appplications, are antimycobacterial activities, as found for a series of N-(aryl)-2-thiophen-2-ylacetamide derivatives (Lourenço et al., 2007), one structure of which, i.e. N-(2,6-dimethylphenyl)-2-(thiophen-2-yl)acetamide, was recently reported (Ferreira et al., 2009). Herein, we now report the structure of the title compound (I) prepared by the controlled reaction of p-iodophenylhydrazine with 2,5-thiophenedicarbaldehyde. As indicated in the literature, controlled reactions of arylhydrazines with arenedicarbaldehydes can successfully produce mono-hydrazones (Reuch & Heflet, 1956; Vaysse & Pastour, 1964; Butler et al., 1990; Glidewell, et al., 2005; Low et al., 2006; Wardell et al., 2006).

The overall molecule of (I), Fig. 1, is non-planar as evidenced by the dihedral angle of 21.4 (3)° formed between the thiophene and benzene rings. The twist in the molecule is most evident in the C4–N1–N2–C7 torsion angle of -172.2 (6) ° and. more particularly, in the adjacent N2–N1–C4–C3 torsion angle of -20.8 (9) °. The conformation about the C7N2 bond [1.284 (8) Å] is E. The thiophene-S and aldehyde-O atoms are syn and are directed towards the benzene ring so that, overall, the molecule has a U-shape. The most prominent intermolecular interactions operating in the crystal structure are N–H···O hydrogen bonds, Table 1. These lead to supramolecular chains along the b direction, Fig. 2. Chains are connected along the c direction by I···I contacts [I···Ii = 3.7630 (8) Å for i: -x, 1 - y, 1 - z] to form a 2-D array. Layers thus formed stack along the a direction, Fig. 3.

For background to 2-substituted thiophenes, see: Campaigne (1984); Kleemann et al. (2006). For the antimycobacterial activity of 2-substituted thiophenes, see: Lourenço et al. (2007). For a related structure, see: Ferreira et al. (2009). For background to the production of mono-hydrazones by the reaction of arylhydrazines with arenedicarbaldehydes, see: Reuch & Heflet (1956); Vaysse & Pastour (1964); Butler et al. (1990); Glidewell et al. (2005); Low et al. (2006); Wardell et al. (2006).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular 2-D array in (I) mediated by N–H···O hydrogen bonding (orange dashed lines) leading to chains in the b direction held together in the c direction by I···I contacts (not illustrated). Colour code: I, pink; S, yellow; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view of the stacking of layers (illustrated in Fig. 2) along the a direction in (I). Colour code: I, pink; S, yellow; O, red; N, blue; C, grey; and H, green.
5-{[(E)-2-(4-Iodophenyl)hydrazinylidene]methyl}thiophene-2-carbaldehyde top
Crystal data top
C12H9IN2OSF(000) = 1376
Mr = 356.17Dx = 1.876 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 16555 reflections
a = 6.9291 (9) Åθ = 2.9–27.5°
b = 11.7602 (10) ŵ = 2.69 mm1
c = 30.958 (4) ÅT = 120 K
V = 2522.7 (5) Å3Prism, colourless
Z = 80.16 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2614 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1674 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.095
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 3.2°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1414
Tmin = 0.616, Tmax = 0.746l = 3837
15735 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0257P)2 + 17.1487P]
where P = (Fo2 + 2Fc2)/3
2614 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 1.08 e Å3
1 restraintΔρmin = 0.60 e Å3
Crystal data top
C12H9IN2OSV = 2522.7 (5) Å3
Mr = 356.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.9291 (9) ŵ = 2.69 mm1
b = 11.7602 (10) ÅT = 120 K
c = 30.958 (4) Å0.16 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2614 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1674 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.746Rint = 0.095
15735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0257P)2 + 17.1487P]
where P = (Fo2 + 2Fc2)/3
2614 reflectionsΔρmax = 1.08 e Å3
157 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.01127 (8)0.34335 (4)0.487908 (18)0.04277 (19)
S10.1013 (3)0.10271 (14)0.21597 (6)0.0261 (4)
N10.0936 (8)0.0324 (5)0.3466 (2)0.0282 (14)
H1N0.039 (9)0.099 (3)0.350 (2)0.034*
N20.1043 (8)0.0033 (5)0.3048 (2)0.0266 (13)
O10.1012 (7)0.2541 (4)0.13359 (16)0.0336 (12)
C10.0410 (10)0.2143 (6)0.4423 (2)0.0323 (18)
C20.1194 (10)0.2425 (6)0.4030 (2)0.0322 (18)
H20.16100.31820.39760.039*
C30.1374 (9)0.1609 (6)0.3714 (2)0.0278 (16)
H30.19000.18080.34410.033*
C40.0794 (9)0.0499 (6)0.3792 (2)0.0231 (15)
C50.0110 (10)0.0198 (5)0.4197 (2)0.0284 (16)
H50.02020.05730.42570.034*
C60.0121 (10)0.1017 (6)0.4514 (2)0.0332 (17)
H60.06310.08200.47890.040*
C70.0949 (10)0.0729 (6)0.2752 (2)0.0275 (17)
H70.08370.15090.28270.033*
C80.1016 (9)0.0394 (5)0.2306 (2)0.0249 (16)
C90.1085 (9)0.0672 (6)0.1616 (2)0.0239 (15)
C100.1118 (10)0.0491 (6)0.1562 (2)0.0291 (17)
H100.11770.08490.12880.035*
C110.1057 (10)0.1090 (6)0.1951 (2)0.0292 (16)
H110.10460.18970.19680.035*
C120.1088 (9)0.1509 (6)0.1282 (2)0.0288 (16)
H120.11560.12430.09930.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0425 (3)0.0365 (3)0.0493 (3)0.0005 (3)0.0024 (3)0.0128 (3)
S10.0228 (9)0.0219 (8)0.0336 (10)0.0006 (8)0.0004 (8)0.0049 (8)
N10.023 (3)0.020 (3)0.042 (4)0.002 (3)0.004 (3)0.001 (3)
N20.020 (3)0.030 (3)0.030 (4)0.001 (3)0.005 (3)0.003 (3)
O10.027 (3)0.025 (3)0.049 (3)0.003 (2)0.004 (3)0.001 (2)
C10.029 (4)0.033 (4)0.035 (4)0.001 (3)0.007 (3)0.003 (3)
C20.025 (4)0.027 (4)0.045 (5)0.005 (3)0.005 (4)0.002 (3)
C30.018 (3)0.026 (4)0.039 (4)0.002 (3)0.002 (3)0.001 (3)
C40.018 (3)0.024 (4)0.027 (4)0.001 (3)0.002 (3)0.001 (3)
C50.027 (4)0.020 (3)0.038 (4)0.001 (3)0.003 (4)0.003 (3)
C60.034 (4)0.032 (4)0.034 (4)0.002 (4)0.001 (4)0.001 (3)
C70.021 (4)0.022 (4)0.040 (5)0.000 (3)0.000 (4)0.001 (3)
C80.017 (3)0.018 (3)0.039 (4)0.002 (3)0.001 (3)0.005 (3)
C90.012 (3)0.031 (4)0.029 (4)0.002 (3)0.001 (3)0.006 (3)
C100.023 (4)0.025 (4)0.039 (5)0.001 (3)0.002 (3)0.011 (3)
C110.026 (4)0.018 (3)0.044 (5)0.000 (3)0.010 (4)0.006 (3)
C120.020 (3)0.027 (4)0.040 (5)0.005 (4)0.002 (3)0.007 (3)
Geometric parameters (Å, º) top
I1—C12.103 (7)C4—C51.387 (9)
S1—C81.732 (7)C5—C61.386 (9)
S1—C91.734 (7)C5—H50.9500
N1—N21.362 (8)C6—H60.9500
N1—C41.402 (8)C7—C81.436 (9)
N1—H1N0.876 (10)C7—H70.9500
N2—C71.284 (8)C8—C111.371 (9)
O1—C121.227 (8)C9—C101.378 (9)
C1—C21.374 (10)C9—C121.429 (9)
C1—C61.403 (10)C10—C111.395 (10)
C2—C31.376 (9)C10—H100.9500
C2—H20.9500C11—H110.9500
C3—C41.388 (9)C12—H120.9500
C3—H30.9500
C8—S1—C991.2 (3)C5—C6—H6120.5
N2—N1—C4118.3 (6)C1—C6—H6120.5
N2—N1—H1N114 (5)N2—C7—C8119.6 (6)
C4—N1—H1N120 (5)N2—C7—H7120.2
C7—N2—N1117.4 (6)C8—C7—H7120.2
C2—C1—C6120.6 (7)C11—C8—C7127.4 (6)
C2—C1—I1119.2 (5)C11—C8—S1111.5 (5)
C6—C1—I1120.1 (5)C7—C8—S1121.1 (5)
C1—C2—C3119.8 (7)C10—C9—C12126.6 (6)
C1—C2—H2120.1C10—C9—S1110.9 (5)
C3—C2—H2120.1C12—C9—S1122.5 (5)
C2—C3—C4120.5 (7)C9—C10—C11113.3 (6)
C2—C3—H3119.8C9—C10—H10123.3
C4—C3—H3119.8C11—C10—H10123.3
C3—C4—C5119.7 (6)C8—C11—C10113.0 (6)
C3—C4—N1120.4 (6)C8—C11—H11123.5
C5—C4—N1119.9 (6)C10—C11—H11123.5
C6—C5—C4120.2 (6)O1—C12—C9125.7 (7)
C6—C5—H5119.9O1—C12—H12117.2
C4—C5—H5119.9C9—C12—H12117.2
C5—C6—C1118.9 (7)
C4—N1—N2—C7172.2 (6)N2—C7—C8—C11175.5 (7)
C6—C1—C2—C33.2 (11)N2—C7—C8—S15.6 (9)
I1—C1—C2—C3173.9 (5)C9—S1—C8—C110.4 (5)
C1—C2—C3—C40.9 (10)C9—S1—C8—C7179.4 (6)
C2—C3—C4—C53.0 (10)C8—S1—C9—C100.3 (5)
C2—C3—C4—N1178.4 (6)C8—S1—C9—C12179.2 (6)
N2—N1—C4—C320.8 (9)C12—C9—C10—C11178.5 (6)
N2—N1—C4—C5160.6 (6)S1—C9—C10—C110.9 (8)
C3—C4—C5—C64.5 (10)C7—C8—C11—C10180.0 (7)
N1—C4—C5—C6176.9 (6)S1—C8—C11—C101.0 (8)
C4—C5—C6—C12.1 (11)C9—C10—C11—C81.2 (9)
C2—C1—C6—C51.7 (11)C10—C9—C12—O1178.2 (7)
I1—C1—C6—C5175.4 (5)S1—C9—C12—O11.2 (10)
N1—N2—C7—C8178.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.88 (4)2.05 (5)2.916 (8)172 (5)
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H9IN2OS
Mr356.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)6.9291 (9), 11.7602 (10), 30.958 (4)
V3)2522.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)2.69
Crystal size (mm)0.16 × 0.08 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.616, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15735, 2614, 1674
Rint0.095
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.113, 1.04
No. of reflections2614
No. of parameters157
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0257P)2 + 17.1487P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.08, 0.60

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.88 (4)2.05 (5)2.916 (8)172 (5)
Symmetry code: (i) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationButler, R. N., Gillan, A. M., Lysaght, F. A., McArdle, P. & Cunningham, D. (1990). J. Chem. Soc. Perkin Trans. 1, pp. 555–561.  CSD CrossRef Web of Science Google Scholar
First citationCampaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863–934. Oxford: Pergamon.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o493–o495.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationLourenço, M. C. S., Vicente, F. R., Henriques, M., das, G. M. de O., Candéa, A. L. P., Gonçalves, R. S. B., Nogueira, T. C. M., Ferreira, M. de L. & de Souza, M. V. N. (2007). Bioorg. Med. Chem. Lett. 17, 6895–6898.  PubMed Google Scholar
First citationLow, J. N., Wardell, J. L. & Glidewell, C. (2006). Acta Cryst. E62, o1816–o1818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReuch, H. & Heflet, L. (1956). J. Org. Chem. 21, 708.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaysse, M. & Pastour, P. (1964). Compt. Rend. 259, 2657–2659.  CAS Google Scholar
First citationWardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2204–o2206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds