organic compounds
(4-Benzyl-2-oxo-1,3-oxazolidin-5-yl)methyl methanesulfonate
aDepartamento de Química Orgânica, Universidade Federal de Pelotas (UFPel), Campus Universitário, s/n°, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil, bFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–Farmanguinhos, R. Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com
The title compound, C12H15NO5S, features an approximately planar five-membered oxazolidin ring (r.m.s. deviation = 0.045 Å) with the peripheral benzyl and methyl methanesulfonate residues lying to either side of the plane. In the crystal, N—H⋯O hydrogen bonds, involving one of the sulfur-bound oxo groups as acceptor, lead to the formation of supramolecular chains along the b axis. These chains are reinforced by C—H⋯O contacts with the carbonyl O atom accepting three such interactions. The structure was refined as a racemic twin, with the major component being present 89% of the time.
Related literature
For the use of 1,3-oxazolidin-2-ones as chiral auxiliaries in organic synthesis, see: Evans et al. (1981); Ager et al. (1996, 1997); Hintermann & Seebach (1998). For their biological activity, see: Poce et al. (2008); Brickner et al. (2008); Means et al. (2006); Kaiser et al. (2007); Clemmet & Markham (2000); Ebner et al. (2008); Negwer & Scharnow (2007); Mai et al. (2003). For background to their syntheses, see: Ochoa-Terán & Rivero (2008); Zappia et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536809055020/hb5289sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809055020/hb5289Isup2.hkl
A solution of (4S,5R)-4-benzyl-5-(hydroxymethyl)-1,3-oxazolidin-2-one (1.036 g, 5 mmol) and methanesulfonyl chloride (0.75 ml, 10 mmol) in triethylamine (10 ml) was stirred at room temperature for 2 h, HCl (20 ml, 15%) was added and the mixture was extracted with dichloromethane (5 x 20 ml). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and evaporated, giving (I) as a brown solid (0.62 g, 44%) which was recrystallized from aqueous ethanol. 1H-NMR (MeOD, 400 MHz): δ 7.30 (m, 5H, Ph), 4.57 (m, 1H, CHO), 4.23 (dd, 1H, 1J = 11.6; 2J = 3.0 Hz, CH2O), 4.11 (dd, 1H, 1J = 11.6; 2J = 4.9 Hz, CH2O), 4.00 (m, 1H, CHN), 3.05 (s, 3H, CH3), 2.92 (m, 2H, CH2Ph) p.p.m.; NH not obs. 13C-NMR (MeOD, 100 MHz): 160.4 (C═O), 137.1–128.2 (Ph), 79.5 (CHO), 70.4 (CH2O), 56.3 (CHN), 41.7 (CH2Ph), 37.4 (CH3) p.p.m. MS (m/z): MH+ 286.2.
The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The methyl H atoms were rotated to fit the electron density. The N–H atom was located in a difference map and refined with the distance restraint N–H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N). The structure was refined as a racemic twin precluding the determination of the absolute structure.
1,3-Oxazolidin-2-ones have found use initially as chiral auxiliaries in organic synthesis (Evans et al., 1981; Ager et al., 1996, 1997; Hintermann & Seebach 1998) and more recently in various biological applications, e.g., as a class of synthetic antibacterial agents with potent activity against clinically important susceptible and resistant Gram-positive and anaerobic pathogens (Poce et al., 2008; Brickner et al., 2008; Means et al., 2006; Kaiser et al., 2007; Clemmet & Markham, 2000; Ebner et al., 2008), as interneuron blocking agents or depressants of central synaptic transmission, muscle relaxants, anticonvulsants, and tranquilizers (Negwer & Scharnow, 2007), and as potent and selective monoamine oxidase type A (MAO) inhibitors (Mai et al., 2003). The syntheses of 1,3-oxazolidin-2-ones have been variously reported (Ochoa-Terán & Rivero, 2008; Zappia et al., 2007).
The oxazolidin ring in (I), Fig. 1, is essentially planar with the maximum deviations of 0.036 (5) Å for atom C5 and -0.040 (4) Å for atom N1. The O5 atom lies 0.089 (3) Å out of the plane in the direction of the C2 atom, and the C6 atom is below the plane. The C2–C3–C5–C6 torsion angle of 124.6 (4) ° shows a significant twist consistent with the methanesulfonate residue being splayed out from the rest of the molecule. The methanesulfonate-methyl group is oriented towards the ring-O4 atom.
Supramolecular chains are formed in the
of (I) along the b direction. These are sustained by N—H···O hydrogen bonds where the oxygen acceptor is an sulfur-bound oxo group, Fig. 2 and Table 1. Three close C–H···O-carbonyl contacts, Table 1, provide additional stability to the chain. Chains are linked into supramolecular arrays in the bc plane via weaker C—H···O contacts and these stack along the a axis, Fig. 3 and Table 1.For the use of 1,3-oxazolidin-2-ones as chiral auxiliaries in organic synthesis, see: Evans et al. (1981); Ager et al. (1996, 1997); Hintermann & Seebach (1998). For their biological activity, see: Poce et al. (2008); Brickner et al. (2008); Means et al. (2006); Kaiser et al. (2007); Clemmet & Markham (2000); Ebner et al. (2008); Negwer & Scharnow (2007); Mai et al. (2003). For background to their syntheses, see: Ochoa-Terán & Rivero (2008); Zappia et al. (2007).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).C12H15NO5S | F(000) = 300 |
Mr = 285.31 | Dx = 1.464 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 7909 reflections |
a = 8.7332 (5) Å | θ = 2.9–27.5° |
b = 5.8757 (3) Å | µ = 0.27 mm−1 |
c = 12.9650 (7) Å | T = 120 K |
β = 103.317 (3)° | Plate, colourless |
V = 647.39 (6) Å3 | 0.26 × 0.08 × 0.02 mm |
Z = 2 |
Nonius KappaCCD area-detector diffractometer | 2587 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 2266 reflections with I > 2σ(I) |
10 cm confocal mirrors monochromator | Rint = 0.059 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.5°, θmin = 3.2° |
φ and ω scans | h = −8→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −7→7 |
Tmin = 0.700, Tmax = 1.000 | l = −16→14 |
6748 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + 1.5106P] where P = (Fo2 + 2Fc2)/3 |
2587 reflections | (Δ/σ)max < 0.001 |
177 parameters | Δρmax = 0.33 e Å−3 |
2 restraints | Δρmin = −0.36 e Å−3 |
C12H15NO5S | V = 647.39 (6) Å3 |
Mr = 285.31 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.7332 (5) Å | µ = 0.27 mm−1 |
b = 5.8757 (3) Å | T = 120 K |
c = 12.9650 (7) Å | 0.26 × 0.08 × 0.02 mm |
β = 103.317 (3)° |
Nonius KappaCCD area-detector diffractometer | 2587 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 2266 reflections with I > 2σ(I) |
Tmin = 0.700, Tmax = 1.000 | Rint = 0.059 |
6748 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 2 restraints |
wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.33 e Å−3 |
2587 reflections | Δρmin = −0.36 e Å−3 |
177 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.44667 (11) | 0.00547 (18) | 0.67229 (8) | 0.0215 (2) | |
O1 | 0.6105 (3) | 0.0327 (6) | 0.7186 (2) | 0.0284 (7) | |
O2 | 0.3629 (4) | −0.1750 (5) | 0.7089 (2) | 0.0283 (8) | |
O3 | 0.4391 (3) | −0.0275 (5) | 0.5504 (2) | 0.0210 (7) | |
O4 | 0.2132 (3) | 0.2865 (5) | 0.4405 (2) | 0.0222 (7) | |
O5 | 0.0104 (3) | 0.5267 (5) | 0.4294 (2) | 0.0233 (6) | |
N1 | −0.0074 (4) | 0.2084 (6) | 0.3228 (3) | 0.0223 (8) | |
H1N | −0.1104 (13) | 0.208 (8) | 0.305 (4) | 0.027* | |
C1 | 0.3493 (6) | 0.2628 (8) | 0.6800 (4) | 0.0278 (11) | |
H1A | 0.3625 | 0.3063 | 0.7545 | 0.042* | |
H1B | 0.2370 | 0.2448 | 0.6473 | 0.042* | |
H1C | 0.3937 | 0.3815 | 0.6425 | 0.042* | |
C2 | 0.2907 (5) | −0.1031 (7) | 0.4793 (3) | 0.0207 (9) | |
H2A | 0.2078 | −0.1193 | 0.5196 | 0.025* | |
H2B | 0.3058 | −0.2524 | 0.4478 | 0.025* | |
C3 | 0.2425 (5) | 0.0726 (7) | 0.3934 (3) | 0.0208 (9) | |
H3 | 0.3280 | 0.0922 | 0.3544 | 0.025* | |
C4 | 0.0626 (5) | 0.3548 (7) | 0.3990 (3) | 0.0209 (9) | |
C5 | 0.0868 (4) | 0.0065 (9) | 0.3147 (3) | 0.0198 (8) | |
H5 | 0.0396 | −0.1304 | 0.3410 | 0.024* | |
C6 | 0.1067 (5) | −0.0349 (8) | 0.2020 (3) | 0.0246 (10) | |
H6A | 0.1506 | 0.1036 | 0.1763 | 0.030* | |
H6B | 0.1824 | −0.1607 | 0.2030 | 0.030* | |
C7 | −0.0472 (5) | −0.0941 (8) | 0.1270 (3) | 0.0229 (9) | |
C8 | −0.1231 (5) | 0.0627 (8) | 0.0526 (3) | 0.0289 (11) | |
H8 | −0.0773 | 0.2083 | 0.0492 | 0.035* | |
C9 | −0.2646 (5) | 0.0105 (11) | −0.0168 (3) | 0.0333 (10) | |
H9 | −0.3146 | 0.1199 | −0.0674 | 0.040* | |
C10 | −0.3333 (6) | −0.1999 (9) | −0.0126 (4) | 0.0326 (11) | |
H10 | −0.4308 | −0.2360 | −0.0597 | 0.039* | |
C11 | −0.2577 (6) | −0.3580 (8) | 0.0615 (4) | 0.0301 (11) | |
H11 | −0.3037 | −0.5033 | 0.0653 | 0.036* | |
C12 | −0.1161 (5) | −0.3054 (8) | 0.1297 (4) | 0.0267 (10) | |
H12 | −0.0651 | −0.4160 | 0.1792 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0215 (5) | 0.0219 (5) | 0.0206 (5) | −0.0014 (5) | 0.0037 (4) | −0.0012 (5) |
O1 | 0.0221 (14) | 0.036 (2) | 0.0237 (15) | −0.0046 (16) | −0.0008 (11) | −0.0039 (15) |
O2 | 0.0333 (19) | 0.0263 (18) | 0.0235 (17) | −0.0045 (15) | 0.0030 (14) | 0.0029 (14) |
O3 | 0.0161 (13) | 0.0277 (18) | 0.0178 (13) | −0.0015 (13) | 0.0007 (10) | −0.0043 (13) |
O4 | 0.0176 (15) | 0.0207 (15) | 0.0260 (16) | 0.0016 (12) | 0.0001 (12) | −0.0014 (13) |
O5 | 0.0240 (14) | 0.0174 (16) | 0.0294 (15) | 0.0013 (14) | 0.0082 (12) | 0.0000 (14) |
N1 | 0.0172 (18) | 0.026 (2) | 0.024 (2) | 0.0008 (15) | 0.0046 (15) | −0.0014 (15) |
C1 | 0.032 (3) | 0.021 (2) | 0.031 (3) | 0.000 (2) | 0.009 (2) | −0.005 (2) |
C2 | 0.020 (2) | 0.022 (2) | 0.019 (2) | 0.0003 (17) | 0.0018 (17) | −0.0022 (17) |
C3 | 0.020 (2) | 0.014 (2) | 0.028 (2) | −0.0019 (15) | 0.0052 (17) | −0.0025 (16) |
C4 | 0.022 (2) | 0.021 (2) | 0.021 (2) | −0.0033 (18) | 0.0066 (17) | 0.0057 (17) |
C5 | 0.0181 (17) | 0.0195 (19) | 0.0217 (19) | 0.001 (2) | 0.0041 (14) | 0.006 (2) |
C6 | 0.022 (2) | 0.026 (3) | 0.025 (2) | 0.0009 (18) | 0.0060 (17) | 0.0007 (18) |
C7 | 0.027 (2) | 0.026 (2) | 0.017 (2) | 0.0023 (18) | 0.0080 (18) | −0.0022 (17) |
C8 | 0.035 (2) | 0.029 (3) | 0.024 (2) | −0.001 (2) | 0.0093 (19) | 0.0006 (18) |
C9 | 0.041 (2) | 0.035 (3) | 0.020 (2) | 0.004 (3) | 0.0000 (18) | −0.003 (3) |
C10 | 0.027 (2) | 0.043 (3) | 0.027 (3) | 0.003 (2) | 0.003 (2) | −0.007 (2) |
C11 | 0.033 (3) | 0.024 (3) | 0.034 (3) | −0.005 (2) | 0.008 (2) | −0.003 (2) |
C12 | 0.029 (2) | 0.028 (2) | 0.022 (2) | −0.001 (2) | 0.0024 (18) | 0.0016 (19) |
S1—O1 | 1.427 (3) | C3—H3 | 1.0000 |
S1—O2 | 1.430 (3) | C5—C6 | 1.529 (5) |
S1—O3 | 1.578 (3) | C5—H5 | 1.0000 |
S1—C1 | 1.749 (5) | C6—C7 | 1.507 (6) |
O3—C2 | 1.475 (5) | C6—H6A | 0.9900 |
O4—C4 | 1.362 (5) | C6—H6B | 0.9900 |
O4—C3 | 1.445 (5) | C7—C12 | 1.383 (6) |
O5—C4 | 1.210 (5) | C7—C8 | 1.387 (6) |
N1—C4 | 1.346 (6) | C8—C9 | 1.385 (6) |
N1—C5 | 1.462 (6) | C8—H8 | 0.9500 |
N1—H1N | 0.875 (10) | C9—C10 | 1.381 (8) |
C1—H1A | 0.9800 | C9—H9 | 0.9500 |
C1—H1B | 0.9800 | C10—C11 | 1.390 (7) |
C1—H1C | 0.9800 | C10—H10 | 0.9500 |
C2—C3 | 1.506 (5) | C11—C12 | 1.379 (7) |
C2—H2A | 0.9900 | C11—H11 | 0.9500 |
C2—H2B | 0.9900 | C12—H12 | 0.9500 |
C3—C5 | 1.550 (5) | ||
O1—S1—O2 | 118.9 (2) | N1—C4—O4 | 109.6 (4) |
O1—S1—O3 | 103.99 (16) | N1—C5—C6 | 112.8 (3) |
O2—S1—O3 | 109.53 (18) | N1—C5—C3 | 99.9 (4) |
O1—S1—C1 | 109.4 (2) | C6—C5—C3 | 113.2 (3) |
O2—S1—C1 | 109.2 (2) | N1—C5—H5 | 110.2 |
O3—S1—C1 | 104.8 (2) | C6—C5—H5 | 110.2 |
C2—O3—S1 | 119.4 (2) | C3—C5—H5 | 110.2 |
C4—O4—C3 | 109.8 (3) | C7—C6—C5 | 111.9 (3) |
C4—N1—C5 | 113.8 (4) | C7—C6—H6A | 109.2 |
C4—N1—H1N | 117 (3) | C5—C6—H6A | 109.2 |
C5—N1—H1N | 123 (3) | C7—C6—H6B | 109.2 |
S1—C1—H1A | 109.5 | C5—C6—H6B | 109.2 |
S1—C1—H1B | 109.5 | H6A—C6—H6B | 107.9 |
H1A—C1—H1B | 109.5 | C12—C7—C8 | 118.2 (4) |
S1—C1—H1C | 109.5 | C12—C7—C6 | 121.3 (4) |
H1A—C1—H1C | 109.5 | C8—C7—C6 | 120.5 (4) |
H1B—C1—H1C | 109.5 | C9—C8—C7 | 121.1 (5) |
O3—C2—C3 | 108.1 (3) | C9—C8—H8 | 119.4 |
O3—C2—H2A | 110.1 | C7—C8—H8 | 119.4 |
C3—C2—H2A | 110.1 | C10—C9—C8 | 120.2 (5) |
O3—C2—H2B | 110.1 | C10—C9—H9 | 119.9 |
C3—C2—H2B | 110.1 | C8—C9—H9 | 119.9 |
H2A—C2—H2B | 108.4 | C9—C10—C11 | 118.9 (4) |
O4—C3—C2 | 109.3 (3) | C9—C10—H10 | 120.5 |
O4—C3—C5 | 106.4 (3) | C11—C10—H10 | 120.5 |
C2—C3—C5 | 111.6 (3) | C12—C11—C10 | 120.4 (5) |
O4—C3—H3 | 109.8 | C12—C11—H11 | 119.8 |
C2—C3—H3 | 109.8 | C10—C11—H11 | 119.8 |
C5—C3—H3 | 109.8 | C11—C12—C7 | 121.1 (4) |
O5—C4—N1 | 129.1 (4) | C11—C12—H12 | 119.5 |
O5—C4—O4 | 121.3 (4) | C7—C12—H12 | 119.5 |
O1—S1—O3—C2 | 168.8 (3) | C2—C3—C5—N1 | 123.5 (4) |
O2—S1—O3—C2 | 40.7 (4) | O4—C3—C5—C6 | 124.6 (4) |
C1—S1—O3—C2 | −76.4 (3) | C2—C3—C5—C6 | −116.3 (4) |
S1—O3—C2—C3 | 122.4 (3) | N1—C5—C6—C7 | −66.3 (5) |
C4—O4—C3—C2 | −121.3 (4) | C3—C5—C6—C7 | −178.9 (4) |
C4—O4—C3—C5 | −0.7 (4) | C5—C6—C7—C12 | −73.9 (5) |
O3—C2—C3—O4 | −62.6 (4) | C5—C6—C7—C8 | 106.5 (5) |
O3—C2—C3—C5 | 180.0 (3) | C12—C7—C8—C9 | 0.4 (6) |
C5—N1—C4—O5 | −174.4 (4) | C6—C7—C8—C9 | −180.0 (4) |
C5—N1—C4—O4 | 7.3 (5) | C7—C8—C9—C10 | 0.3 (7) |
C3—O4—C4—O5 | 177.7 (4) | C8—C9—C10—C11 | −0.5 (7) |
C3—O4—C4—N1 | −3.8 (5) | C9—C10—C11—C12 | −0.1 (7) |
C4—N1—C5—C6 | −127.6 (4) | C10—C11—C12—C7 | 0.9 (7) |
C4—N1—C5—C3 | −7.1 (4) | C8—C7—C12—C11 | −1.0 (7) |
O4—C3—C5—N1 | 4.4 (4) | C6—C7—C12—C11 | 179.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.88 (2) | 2.28 (2) | 3.113 (5) | 160 (4) |
C1—H1B···O5ii | 0.98 | 2.51 | 3.428 (6) | 155 |
C2—H2A···O5ii | 0.99 | 2.32 | 3.214 (5) | 150 |
C5—H5···O5iii | 1.00 | 2.36 | 3.326 (6) | 162 |
C6—H6B···O1iv | 0.99 | 2.59 | 3.528 (6) | 158 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x, y−1/2, −z+1; (iii) x, y−1, z; (iv) −x+1, y−1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C12H15NO5S |
Mr | 285.31 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 120 |
a, b, c (Å) | 8.7332 (5), 5.8757 (3), 12.9650 (7) |
β (°) | 103.317 (3) |
V (Å3) | 647.39 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.26 × 0.08 × 0.02 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.700, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6748, 2587, 2266 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.123, 1.11 |
No. of reflections | 2587 |
No. of parameters | 177 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.36 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.88 (2) | 2.28 (2) | 3.113 (5) | 160 (4) |
C1—H1B···O5ii | 0.98 | 2.51 | 3.428 (6) | 155 |
C2—H2A···O5ii | 0.99 | 2.32 | 3.214 (5) | 150 |
C5—H5···O5iii | 1.00 | 2.36 | 3.326 (6) | 162 |
C6—H6B···O1iv | 0.99 | 2.59 | 3.528 (6) | 158 |
Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x, y−1/2, −z+1; (iii) x, y−1, z; (iv) −x+1, y−1/2, −z+1. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).
References
Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835–876. CrossRef PubMed CAS Web of Science Google Scholar
Ager, D. J., Prakash, I. & Schaad, D. R. (1997). Aldrichim. Acta, 30, 3–11. CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brickner, S. J., Barbachyn, M. R., Hutchinson, D. K. & Manninen, P. R. (2008). J. Med. Chem. 51, 1981–1990. Web of Science CrossRef PubMed CAS Google Scholar
Clemmet, D. & Markham, A. (2000). Drugs, 59, 815–827. Web of Science PubMed Google Scholar
Ebner, D. C., Culhane, J. C., Winkelman, T. N., Haustein, M. D., Ditty, J. L. & Ippoliti, J. T. (2008). Bioorg. Med. Chem. 16, 2651–2656. Web of Science CrossRef PubMed CAS Google Scholar
Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hintermann, T. & Seebach, D. (1998). Helv. Chim. Acta, 81, 2093–2126. CrossRef CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Kaiser, C., Cunico, W., Pinheiro, A. C., de Oliveira, A. G. & Souza, M. V. N. (2007). Rev. Brás. Farm. 88, 83–88. CAS Google Scholar
Mai, A., Artico, M., Esposito, M., Ragno, R., Sbardella, G. & Massa, S. (2003). Il Farmaco, 58, 231–241. CrossRef PubMed CAS Google Scholar
Means, J. A., Katz, S., Nayek, A., Anupm, R., Hines, J. V. & Bergmeier, S. C. (2006). Bioorg. Med. Chem. Lett. 16, 3600–3604. Web of Science CrossRef PubMed CAS Google Scholar
Negwer, M. & Scharnow, H. G. (2007). Organic Chemical Drugs and Their Synonyms, 9th ed. Weinheim, Germany: Wiley–VCH. Google Scholar
Ochoa-Terán, A. & Rivero, I. A. (2008). Arkivoc, pp. 330–343. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Poce, G., Zappia, G., Porretta, G. C., Botta, B. & Biava, M. (2008). Exp. Opin. Ther. Patents, 18, 97–121. Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Zappia, G., Gacs-Baitz, E., Delle Monache, G., Misiti, D., Nevola, L. & Botta, B. (2007). Curr. Org. Synth. 4, 81–135. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3-Oxazolidin-2-ones have found use initially as chiral auxiliaries in organic synthesis (Evans et al., 1981; Ager et al., 1996, 1997; Hintermann & Seebach 1998) and more recently in various biological applications, e.g., as a class of synthetic antibacterial agents with potent activity against clinically important susceptible and resistant Gram-positive and anaerobic pathogens (Poce et al., 2008; Brickner et al., 2008; Means et al., 2006; Kaiser et al., 2007; Clemmet & Markham, 2000; Ebner et al., 2008), as interneuron blocking agents or depressants of central synaptic transmission, muscle relaxants, anticonvulsants, and tranquilizers (Negwer & Scharnow, 2007), and as potent and selective monoamine oxidase type A (MAO) inhibitors (Mai et al., 2003). The syntheses of 1,3-oxazolidin-2-ones have been variously reported (Ochoa-Terán & Rivero, 2008; Zappia et al., 2007).
The oxazolidin ring in (I), Fig. 1, is essentially planar with the maximum deviations of 0.036 (5) Å for atom C5 and -0.040 (4) Å for atom N1. The O5 atom lies 0.089 (3) Å out of the plane in the direction of the C2 atom, and the C6 atom is below the plane. The C2–C3–C5–C6 torsion angle of 124.6 (4) ° shows a significant twist consistent with the methanesulfonate residue being splayed out from the rest of the molecule. The methanesulfonate-methyl group is oriented towards the ring-O4 atom.
Supramolecular chains are formed in the crystal structure of (I) along the b direction. These are sustained by N—H···O hydrogen bonds where the oxygen acceptor is an sulfur-bound oxo group, Fig. 2 and Table 1. Three close C–H···O-carbonyl contacts, Table 1, provide additional stability to the chain. Chains are linked into supramolecular arrays in the bc plane via weaker C—H···O contacts and these stack along the a axis, Fig. 3 and Table 1.