metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri­benzyl­ammonium) tetra­chloridoaurate(III) chloride

aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: m-pouramini@cc.sbu.ac.ir

(Received 22 December 2009; accepted 23 January 2010; online 30 January 2010)

In the title compound, (C21H22N)2[AuCl4]Cl, the AuIII atom adopts a square-planar coordination geometry defined by four chloride ions. In the crystal structure, inter­molecular N—H⋯Cl hydrogen bonds link the organic cations and the uncoordinated chloride ion.

Related literature

For related structures, see: Calleja et al. (2001[Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978-4985.]); Hasan et al. (1999[Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637-5641.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840-m841.]); Jarvinen et al. (1988[Jarvinen, G. D., Larson, E. M., Wasserman, H. J., Burns, C. J. & Ryan, R. R. (1988). Acta Cryst. C44, 1701-1703.]); Johnson & Steed (1998[Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.]); Safari et al. (2009[Safari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344.]); Yıldırım et al. (2009a[Yıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009a). Acta Cryst. E65, m479-m480.],b[Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009b). Acta Cryst. E65, m491-m492.]); Yap et al. (1995[Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474-3476.]); Yousefi et al. (2007[Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2748-m2749.]); Zeng et al. (1994[Zeng, G.-F., Qin, M., Lin, Y.-H. & Xi, S.-Q. (1994). Acta Cryst. C50, 200-202.]); Zhang et al. (2006[Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.]).

[Scheme 1]

Experimental

Crystal data
  • (C21H22N)2[AuCl4]Cl

  • Mr = 951.01

  • Triclinic, [P \overline 1]

  • a = 11.135 (1) Å

  • b = 13.7920 (11) Å

  • c = 13.8417 (12) Å

  • α = 95.894 (7)°

  • β = 100.300 (7)°

  • γ = 95.222 (7)°

  • V = 2067.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.91 mm−1

  • T = 298 K

  • 0.35 × 0.32 × 0.27 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.280, Tmax = 0.350

  • 28425 measured reflections

  • 12513 independent reflections

  • 10542 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.144

  • S = 1.11

  • 12513 reflections

  • 451 parameters

  • H-atom parameters constrained

  • Δρmax = 1.82 e Å−3

  • Δρmin = −2.10 e Å−3

Table 1
Selected bond lengths (Å)

Au1—Cl1 2.259 (2)
Au1—Cl2 2.2891 (15)
Au1—Cl3 2.2574 (17)
Au1—Cl4 2.2703 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl5 0.91 2.19 3.089 (5) 168
N2—H2⋯Cl5i 0.91 2.16 3.066 (4) 172
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are several proton transfer systems using tribenzylamine, with proton donor molecules, such as {(TBA)(DBA)[CuCl4]}, (II), (Zeng et al., 1994), (TBA)[DCHSTO], (III), (Jarvine et al., 1988) and {(TBA)3[PtCl6]Cl}, (IV), (Yousefi et al., 2007) [where TBA is tribenzylammonium, DBA is dibenzylammonium and DCHSTO is 1,1,1,1,2,2,2,3,3,3-decacarbonyl-2,3-(µ-hydrido) -2,3-(µ-sulfonyl)-triangulo-tri-osmium] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several proton transfer systems using HAuCl4 with proton acceptor molecules, such as [EMI][AuCl4], (V) and [BMI]2[AuCl4].2H2O, (VI), (Hasan et al., 1999), [H2bipy][AuCl4][Cl], (VII), (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4], (VIII) and [H5O2][benzo-15-crown-5]2[AuCl4], (IX), (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, (X), [H3O][18-crown-6][AuCl4], (XI) and [H3O] [4-nitrobenzo-18-crown-6][AuCl4], (XII), (Calleja et al., 2001), [DPpy.H][AuCl4], (XIII), (Yap et al., 1995), [H2DA18C6][AuCl4].2H2O, (XIV), (Hojjat Kashani et al., 2008), [dafonium][dafone][AuCl4], (XV), (Safari et al., 2009), [pz(py)2.H][AuCl4], (XVI), (Yıldırım, Akkurt, Safari et al., 2009a), [Ph2Phen.H][AuCl4], (XVII), (Yıldırım, Akkurt, Safari, Abedi et al., 2009b) [Where EMI is 1-ethyl-3-methylimidazolium, BMI is 1-butyl-3-methylimidazolium, H2bipy is 2,2'-bipyridinium, DPpy.H is 2,6-diphenylpyridinium, H2DA18C6 is 1,10-diazonia-18-crown-6, dafonium is 9-oxo-4,5-diazafluoren-4-ium, dafone is 4,5-diazafluoren-9-one, pz(py)2.H is 2-(3-pyridin-2-ylpyrazin-2-yl)pyridinium and Ph2Phen.H is 2,9-dimethyl-4,7-diphenyl-1,10- phenanthrolin-1-ium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1), contains two independent protonated tribenzylammonium cations and [AuCl4]- and Cl- anions. The AuIII atom has a squareplanar environment defined by four Cl atoms. The bond lengths and angles, in cation, are in good agreement with the corresponding values in (II), (III) and (IV). In [AuCl4]- anion, the Au—Cl bond lengths and angles (Table 1) are within normal range (X, XIII, XIV, XV and XVI).

In the crystal structure, intermolecular N—H···Cl hydrogen bonds (Table 2) result in the formation of a supramolecular structure (Fig. 2).

Related literature top

For related structures, see: Calleja et al. (2001); Hasan et al. (1999); Hojjat Kashani et al. (2008); Jarvinen et al. (1988); Johnson & Steed (1998); Safari et al. (2009); Yıldırım, Akkurt, Safari, Abedi et al. (2009); Yıldırım, Akkurt, Safari et al. (2009a,b); Yap et al. (1995); Yousefi et al. (2007); Zeng et al. (1994); Zhang et al. (2006).

Experimental top

A solution of tribenzylamine (0.22 g, 0.74 mmol) in methanol (15 ml) was added to a solution of HAuCl4.3H2O, (0.29 g, 0.74 mmol) in acetonitrile (15 ml) and the resulting yellow solution was stirred for 30 min at 313 K. Then, it was left to evaporate slowly at room temperature. After five days, yellow blocks of (I) were isolated (yield 0.50 g; 71.1%; m.p. < 573 K).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

There are several proton transfer systems using tribenzylamine, with proton donor molecules, such as {(TBA)(DBA)[CuCl4]}, (II), (Zeng et al., 1994), (TBA)[DCHSTO], (III), (Jarvine et al., 1988) and {(TBA)3[PtCl6]Cl}, (IV), (Yousefi et al., 2007) [where TBA is tribenzylammonium, DBA is dibenzylammonium and DCHSTO is 1,1,1,1,2,2,2,3,3,3-decacarbonyl-2,3-(µ-hydrido) -2,3-(µ-sulfonyl)-triangulo-tri-osmium] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several proton transfer systems using HAuCl4 with proton acceptor molecules, such as [EMI][AuCl4], (V) and [BMI]2[AuCl4].2H2O, (VI), (Hasan et al., 1999), [H2bipy][AuCl4][Cl], (VII), (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4], (VIII) and [H5O2][benzo-15-crown-5]2[AuCl4], (IX), (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, (X), [H3O][18-crown-6][AuCl4], (XI) and [H3O] [4-nitrobenzo-18-crown-6][AuCl4], (XII), (Calleja et al., 2001), [DPpy.H][AuCl4], (XIII), (Yap et al., 1995), [H2DA18C6][AuCl4].2H2O, (XIV), (Hojjat Kashani et al., 2008), [dafonium][dafone][AuCl4], (XV), (Safari et al., 2009), [pz(py)2.H][AuCl4], (XVI), (Yıldırım, Akkurt, Safari et al., 2009a), [Ph2Phen.H][AuCl4], (XVII), (Yıldırım, Akkurt, Safari, Abedi et al., 2009b) [Where EMI is 1-ethyl-3-methylimidazolium, BMI is 1-butyl-3-methylimidazolium, H2bipy is 2,2'-bipyridinium, DPpy.H is 2,6-diphenylpyridinium, H2DA18C6 is 1,10-diazonia-18-crown-6, dafonium is 9-oxo-4,5-diazafluoren-4-ium, dafone is 4,5-diazafluoren-9-one, pz(py)2.H is 2-(3-pyridin-2-ylpyrazin-2-yl)pyridinium and Ph2Phen.H is 2,9-dimethyl-4,7-diphenyl-1,10- phenanthrolin-1-ium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1), contains two independent protonated tribenzylammonium cations and [AuCl4]- and Cl- anions. The AuIII atom has a squareplanar environment defined by four Cl atoms. The bond lengths and angles, in cation, are in good agreement with the corresponding values in (II), (III) and (IV). In [AuCl4]- anion, the Au—Cl bond lengths and angles (Table 1) are within normal range (X, XIII, XIV, XV and XVI).

In the crystal structure, intermolecular N—H···Cl hydrogen bonds (Table 2) result in the formation of a supramolecular structure (Fig. 2).

For related structures, see: Calleja et al. (2001); Hasan et al. (1999); Hojjat Kashani et al. (2008); Jarvinen et al. (1988); Johnson & Steed (1998); Safari et al. (2009); Yıldırım, Akkurt, Safari, Abedi et al. (2009); Yıldırım, Akkurt, Safari et al. (2009a,b); Yap et al. (1995); Yousefi et al. (2007); Zeng et al. (1994); Zhang et al. (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Bis(tribenzylammonium) tetrachloridoaurate(III) chloride top
Crystal data top
(C21H22N)2[AuCl4]ClZ = 2
Mr = 951.01F(000) = 948
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.135 (1) ÅCell parameters from 1237 reflections
b = 13.7920 (11) Åθ = 1.9–30.6°
c = 13.8417 (12) ŵ = 3.91 mm1
α = 95.894 (7)°T = 298 K
β = 100.300 (7)°Block, yellow
γ = 95.222 (7)°0.35 × 0.32 × 0.27 mm
V = 2067.4 (3) Å3
Data collection top
Stoe IPDS II
diffractometer
12513 independent reflections
Radiation source: fine-focus sealed tube10542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 0.15 mm pixels mm-1θmax = 30.6°, θmin = 1.9°
rotation method scansh = 1515
Absorption correction: numerical
(X-RED; Stoe & Cie, 2005)
k = 1919
Tmin = 0.280, Tmax = 0.350l = 1919
28425 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0689P)2 + 1.4093P]
where P = (Fo2 + 2Fc2)/3
12513 reflections(Δ/σ)max = 0.002
451 parametersΔρmax = 1.82 e Å3
0 restraintsΔρmin = 2.10 e Å3
Crystal data top
(C21H22N)2[AuCl4]Clγ = 95.222 (7)°
Mr = 951.01V = 2067.4 (3) Å3
Triclinic, P1Z = 2
a = 11.135 (1) ÅMo Kα radiation
b = 13.7920 (11) ŵ = 3.91 mm1
c = 13.8417 (12) ÅT = 298 K
α = 95.894 (7)°0.35 × 0.32 × 0.27 mm
β = 100.300 (7)°
Data collection top
Stoe IPDS II
diffractometer
12513 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 2005)
10542 reflections with I > 2σ(I)
Tmin = 0.280, Tmax = 0.350Rint = 0.075
28425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.11Δρmax = 1.82 e Å3
12513 reflectionsΔρmin = 2.10 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3537 (5)0.9891 (3)0.3590 (4)0.0603 (11)
H1A0.43260.96670.38240.072*
H1B0.36901.05420.33990.072*
C20.2835 (4)0.9955 (3)0.4423 (4)0.0568 (10)
C30.2041 (5)1.0661 (4)0.4502 (4)0.0688 (13)
H30.19351.10980.40320.083*
C40.1403 (6)1.0724 (6)0.5269 (6)0.087 (2)
H40.08611.11940.53090.104*
C50.1563 (8)1.0110 (7)0.5954 (6)0.098 (3)
H50.11331.01610.64710.117*
C60.2359 (8)0.9397 (6)0.5909 (5)0.092 (2)
H60.24650.89730.63910.110*
C70.2996 (6)0.9327 (4)0.5134 (5)0.0724 (14)
H70.35340.88530.50950.087*
C80.2330 (6)0.9805 (4)0.1885 (5)0.0680 (13)
H8A0.17811.02180.21570.082*
H8B0.29971.02360.17420.082*
C90.1643 (5)0.9255 (3)0.0930 (4)0.0624 (11)
C100.2214 (8)0.9082 (6)0.0137 (6)0.091 (2)
H100.30510.92750.02060.109*
C110.1552 (12)0.8619 (8)0.0770 (6)0.116 (3)
H110.19520.84770.12940.140*
C120.0306 (13)0.8374 (7)0.0885 (7)0.119 (4)
H120.01460.80870.14940.142*
C130.0264 (8)0.8554 (5)0.0104 (6)0.092 (2)
H130.11040.83740.01810.111*
C140.0386 (6)0.9001 (4)0.0804 (5)0.0710 (14)
H140.00190.91310.13270.085*
C150.3678 (5)0.8484 (4)0.2333 (4)0.0622 (11)
H15A0.43870.88430.21650.075*
H15B0.32340.80800.17400.075*
C160.4110 (4)0.7832 (3)0.3102 (4)0.0547 (9)
C170.5296 (5)0.7974 (4)0.3657 (5)0.0694 (13)
H170.58580.84690.35400.083*
C180.5642 (6)0.7389 (5)0.4377 (5)0.0822 (18)
H180.64350.74950.47490.099*
C190.4823 (8)0.6642 (6)0.4556 (6)0.092 (2)
H190.50590.62470.50460.110*
C200.3664 (7)0.6496 (5)0.4004 (6)0.089 (2)
H200.31110.59960.41230.107*
C210.3291 (6)0.7067 (4)0.3276 (5)0.0709 (14)
H210.25000.69470.29010.085*
C220.0653 (5)0.4432 (4)0.6633 (4)0.0592 (10)
H22A0.02060.44790.66550.071*
H22B0.10760.50920.67680.071*
C230.0748 (5)0.4012 (3)0.5602 (3)0.0533 (9)
C240.1722 (5)0.4335 (4)0.5175 (4)0.0630 (11)
H240.23130.48260.55250.076*
C250.1835 (6)0.3944 (5)0.4239 (4)0.0707 (14)
H250.25040.41590.39690.085*
C260.0949 (7)0.3235 (5)0.3713 (4)0.0771 (16)
H260.10190.29670.30830.093*
C270.0033 (7)0.2920 (5)0.4106 (4)0.0820 (18)
H270.06380.24490.37390.098*
C280.0135 (5)0.3306 (5)0.5063 (4)0.0684 (13)
H280.08010.30830.53320.082*
C290.2478 (4)0.3628 (4)0.7359 (4)0.0606 (11)
H29A0.24520.32570.67190.073*
H29B0.29850.42440.73840.073*
C300.3066 (4)0.3067 (5)0.8150 (4)0.0605 (11)
C310.4046 (6)0.3513 (7)0.8857 (5)0.093 (2)
H310.43130.41730.88650.112*
C320.4632 (8)0.2975 (12)0.9557 (7)0.132 (4)
H320.52930.32771.00340.159*
C330.4255 (11)0.2024 (12)0.9551 (7)0.134 (5)
H330.46500.16741.00290.160*
C340.3298 (10)0.1564 (8)0.8852 (8)0.115 (3)
H340.30510.09000.88480.138*
C350.2689 (6)0.2088 (5)0.8143 (5)0.0784 (16)
H350.20320.17780.76680.094*
C360.1151 (4)0.4354 (4)0.8449 (3)0.0590 (11)
H36A0.16160.49970.85300.071*
H36B0.15560.39830.89450.071*
C370.0122 (4)0.4478 (3)0.8636 (3)0.0525 (9)
C380.0641 (7)0.5326 (5)0.8472 (5)0.0783 (16)
H380.02200.58260.82210.094*
C390.1807 (8)0.5434 (7)0.8686 (6)0.099 (3)
H390.21640.60030.85590.118*
C400.2417 (7)0.4738 (8)0.9066 (6)0.093 (2)
H400.31960.48180.91930.112*
C410.1895 (6)0.3906 (6)0.9269 (5)0.084 (2)
H410.23100.34300.95550.101*
C420.0750 (5)0.3766 (4)0.9053 (4)0.0644 (12)
H420.04030.31950.91870.077*
N10.2864 (4)0.9198 (3)0.2678 (3)0.0530 (8)
H1C0.22250.88470.28580.064*
N20.1179 (3)0.3846 (3)0.7443 (3)0.0480 (7)
H20.07000.32620.73630.058*
Cl10.27943 (18)0.67440 (18)0.7747 (3)0.1484 (13)
Cl20.45070 (15)0.88061 (11)0.80407 (14)0.0772 (4)
Cl30.67313 (17)0.76296 (12)0.7524 (2)0.1114 (8)
Cl40.49931 (17)0.56099 (11)0.71556 (16)0.0871 (5)
Cl50.04611 (12)0.81169 (9)0.30405 (10)0.0636 (3)
Au10.475074 (16)0.719913 (12)0.760740 (14)0.05584 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (2)0.046 (2)0.075 (3)0.0076 (18)0.007 (2)0.006 (2)
C20.052 (2)0.047 (2)0.064 (3)0.0038 (17)0.0008 (19)0.0004 (18)
C30.069 (3)0.062 (3)0.070 (3)0.011 (2)0.002 (2)0.004 (2)
C40.068 (3)0.096 (5)0.087 (4)0.005 (3)0.011 (3)0.025 (4)
C50.090 (5)0.121 (7)0.070 (4)0.019 (5)0.016 (4)0.017 (4)
C60.107 (5)0.087 (4)0.068 (4)0.019 (4)0.005 (4)0.012 (3)
C70.078 (3)0.059 (3)0.072 (3)0.001 (2)0.005 (3)0.009 (2)
C80.071 (3)0.044 (2)0.086 (4)0.000 (2)0.007 (3)0.011 (2)
C90.071 (3)0.045 (2)0.073 (3)0.007 (2)0.011 (2)0.015 (2)
C100.098 (5)0.098 (5)0.089 (5)0.027 (4)0.032 (4)0.027 (4)
C110.157 (9)0.136 (8)0.067 (4)0.067 (7)0.025 (5)0.014 (4)
C120.178 (11)0.085 (5)0.075 (5)0.029 (6)0.022 (6)0.004 (4)
C130.099 (5)0.073 (4)0.090 (5)0.007 (3)0.021 (4)0.022 (3)
C140.074 (3)0.062 (3)0.076 (3)0.004 (2)0.006 (3)0.017 (2)
C150.065 (3)0.056 (2)0.068 (3)0.009 (2)0.021 (2)0.005 (2)
C160.054 (2)0.053 (2)0.056 (2)0.0082 (18)0.0115 (19)0.0006 (18)
C170.053 (2)0.066 (3)0.090 (4)0.008 (2)0.017 (3)0.004 (3)
C180.067 (3)0.083 (4)0.088 (4)0.018 (3)0.008 (3)0.000 (3)
C190.103 (5)0.076 (4)0.096 (5)0.028 (4)0.004 (4)0.021 (3)
C200.088 (4)0.061 (3)0.116 (6)0.006 (3)0.006 (4)0.029 (3)
C210.063 (3)0.052 (3)0.091 (4)0.001 (2)0.003 (3)0.011 (2)
C220.070 (3)0.056 (2)0.052 (2)0.012 (2)0.008 (2)0.0113 (18)
C230.061 (2)0.052 (2)0.046 (2)0.0107 (18)0.0032 (18)0.0116 (16)
C240.063 (3)0.063 (3)0.061 (3)0.002 (2)0.006 (2)0.018 (2)
C250.079 (4)0.072 (3)0.065 (3)0.010 (3)0.017 (3)0.023 (3)
C260.107 (5)0.075 (3)0.052 (3)0.020 (3)0.013 (3)0.013 (2)
C270.096 (4)0.084 (4)0.054 (3)0.008 (3)0.006 (3)0.005 (3)
C280.065 (3)0.078 (3)0.056 (3)0.007 (2)0.001 (2)0.016 (2)
C290.047 (2)0.082 (3)0.055 (2)0.008 (2)0.0089 (19)0.019 (2)
C300.043 (2)0.090 (4)0.050 (2)0.012 (2)0.0066 (17)0.017 (2)
C310.058 (3)0.143 (7)0.071 (4)0.003 (4)0.005 (3)0.016 (4)
C320.074 (5)0.246 (15)0.072 (4)0.035 (7)0.014 (4)0.032 (7)
C330.121 (8)0.220 (13)0.090 (6)0.097 (9)0.026 (5)0.079 (8)
C340.123 (7)0.134 (8)0.112 (6)0.049 (6)0.040 (6)0.068 (6)
C350.076 (4)0.083 (4)0.081 (4)0.022 (3)0.010 (3)0.027 (3)
C360.054 (2)0.068 (3)0.047 (2)0.001 (2)0.0006 (18)0.0025 (19)
C370.059 (2)0.053 (2)0.0426 (18)0.0084 (18)0.0023 (17)0.0007 (16)
C380.101 (5)0.068 (3)0.071 (3)0.026 (3)0.018 (3)0.018 (3)
C390.106 (6)0.112 (6)0.081 (4)0.068 (5)0.002 (4)0.007 (4)
C400.062 (3)0.131 (7)0.079 (4)0.025 (4)0.002 (3)0.016 (4)
C410.076 (4)0.096 (5)0.076 (4)0.017 (3)0.027 (3)0.014 (3)
C420.075 (3)0.056 (3)0.060 (3)0.006 (2)0.014 (2)0.001 (2)
N10.0501 (18)0.0395 (16)0.067 (2)0.0057 (13)0.0113 (16)0.0031 (15)
N20.0433 (16)0.0518 (18)0.0465 (17)0.0007 (13)0.0054 (13)0.0048 (14)
Cl10.0593 (9)0.0925 (14)0.282 (4)0.0136 (9)0.0373 (15)0.0173 (19)
Cl20.0738 (8)0.0579 (7)0.0990 (10)0.0136 (6)0.0098 (7)0.0116 (6)
Cl30.0754 (9)0.0559 (7)0.217 (3)0.0043 (7)0.0601 (13)0.0278 (11)
Cl40.0884 (10)0.0512 (6)0.1191 (13)0.0014 (6)0.0184 (9)0.0055 (7)
Cl50.0573 (6)0.0615 (6)0.0690 (7)0.0125 (5)0.0167 (5)0.0028 (5)
Au10.05173 (10)0.04902 (10)0.06372 (12)0.00099 (6)0.00227 (7)0.01189 (7)
Geometric parameters (Å, º) top
C1—C21.504 (8)C22—H22B0.9700
C1—N11.533 (6)C23—C281.373 (7)
C1—H1A0.9700C23—C241.386 (7)
C1—H1B0.9700C24—C251.382 (8)
C2—C71.376 (8)C24—H240.9300
C2—C31.381 (7)C25—C261.371 (9)
C3—C41.379 (10)C25—H250.9300
C3—H30.9300C26—C271.362 (10)
C4—C51.334 (13)C26—H260.9300
C4—H40.9300C27—C281.403 (9)
C5—C61.386 (13)C27—H270.9300
C5—H50.9300C28—H280.9300
C6—C71.388 (11)C29—C301.496 (7)
C6—H60.9300C29—N21.525 (6)
C7—H70.9300C29—H29A0.9700
C8—C91.496 (8)C29—H29B0.9700
C8—N11.518 (7)C30—C351.375 (9)
C8—H8A0.9700C30—C311.378 (8)
C8—H8B0.9700C31—C321.388 (13)
C9—C101.374 (9)C31—H310.9300
C9—C141.387 (8)C32—C331.339 (18)
C10—C111.394 (13)C32—H320.9300
C10—H100.9300C33—C341.363 (16)
C11—C121.375 (16)C33—H330.9300
C11—H110.9300C34—C351.393 (10)
C12—C131.361 (14)C34—H340.9300
C12—H120.9300C35—H350.9300
C13—C141.384 (9)C36—N21.501 (6)
C13—H130.9300C36—C371.506 (7)
C14—H140.9300C36—H36A0.9700
C15—N11.497 (6)C36—H36B0.9700
C15—C161.505 (7)C37—C381.373 (8)
C15—H15A0.9700C37—C421.387 (7)
C15—H15B0.9700C38—C391.400 (11)
C16—C171.390 (7)C38—H380.9300
C16—C211.399 (8)C39—C401.332 (13)
C17—C181.369 (10)C39—H390.9300
C17—H170.9300C40—C411.364 (12)
C18—C191.385 (11)C40—H400.9300
C18—H180.9300C41—C421.386 (9)
C19—C201.364 (11)C41—H410.9300
C19—H190.9300C42—H420.9300
C20—C211.371 (9)N1—H1C0.9100
C20—H200.9300N2—H20.9100
C21—H210.9300Au1—Cl12.259 (2)
C22—C231.510 (7)Au1—Cl22.2891 (15)
C22—N21.514 (6)Au1—Cl32.2574 (17)
C22—H22A0.9700Au1—Cl42.2703 (15)
C2—C1—N1113.4 (4)C25—C24—C23121.5 (5)
C2—C1—H1A108.9C25—C24—H24119.2
N1—C1—H1A108.9C23—C24—H24119.2
C2—C1—H1B108.9C26—C25—C24119.3 (6)
N1—C1—H1B108.9C26—C25—H25120.4
H1A—C1—H1B107.7C24—C25—H25120.4
C7—C2—C3118.8 (6)C27—C26—C25120.4 (6)
C7—C2—C1120.5 (5)C27—C26—H26119.8
C3—C2—C1120.7 (5)C25—C26—H26119.8
C4—C3—C2120.7 (7)C26—C27—C28120.2 (6)
C4—C3—H3119.7C26—C27—H27119.9
C2—C3—H3119.7C28—C27—H27119.9
C5—C4—C3120.1 (7)C23—C28—C27120.1 (6)
C5—C4—H4120.0C23—C28—H28120.0
C3—C4—H4120.0C27—C28—H28120.0
C4—C5—C6121.2 (8)C30—C29—N2113.9 (4)
C4—C5—H5119.4C30—C29—H29A108.8
C6—C5—H5119.4N2—C29—H29A108.8
C5—C6—C7118.9 (7)C30—C29—H29B108.8
C5—C6—H6120.6N2—C29—H29B108.8
C7—C6—H6120.6H29A—C29—H29B107.7
C2—C7—C6120.3 (6)C35—C30—C31119.3 (6)
C2—C7—H7119.8C35—C30—C29120.6 (5)
C6—C7—H7119.8C31—C30—C29120.0 (6)
C9—C8—N1116.9 (4)C30—C31—C32119.8 (10)
C9—C8—H8A108.1C30—C31—H31120.1
N1—C8—H8A108.1C32—C31—H31120.1
C9—C8—H8B108.1C33—C32—C31120.5 (9)
N1—C8—H8B108.1C33—C32—H32119.7
H8A—C8—H8B107.3C31—C32—H32119.7
C10—C9—C14119.0 (6)C32—C33—C34120.7 (8)
C10—C9—C8120.9 (6)C32—C33—H33119.6
C14—C9—C8119.8 (6)C34—C33—H33119.6
C9—C10—C11120.6 (8)C33—C34—C35119.9 (10)
C9—C10—H10119.7C33—C34—H34120.0
C11—C10—H10119.7C35—C34—H34120.0
C12—C11—C10119.6 (8)C30—C35—C34119.7 (8)
C12—C11—H11120.2C30—C35—H35120.2
C10—C11—H11120.2C34—C35—H35120.2
C13—C12—C11119.7 (8)N2—C36—C37114.2 (4)
C13—C12—H12120.1N2—C36—H36A108.7
C11—C12—H12120.1C37—C36—H36A108.7
C12—C13—C14121.1 (8)N2—C36—H36B108.7
C12—C13—H13119.4C37—C36—H36B108.7
C14—C13—H13119.4H36A—C36—H36B107.6
C13—C14—C9119.8 (7)C38—C37—C42118.7 (5)
C13—C14—H14120.1C38—C37—C36120.9 (5)
C9—C14—H14120.1C42—C37—C36120.2 (5)
N1—C15—C16112.6 (4)C37—C38—C39119.6 (7)
N1—C15—H15A109.1C37—C38—H38120.2
C16—C15—H15A109.1C39—C38—H38120.2
N1—C15—H15B109.1C40—C39—C38121.3 (7)
C16—C15—H15B109.1C40—C39—H39119.3
H15A—C15—H15B107.8C38—C39—H39119.3
C17—C16—C21118.8 (5)C39—C40—C41119.8 (7)
C17—C16—C15122.0 (5)C39—C40—H40120.1
C21—C16—C15119.2 (5)C41—C40—H40120.1
C18—C17—C16120.3 (6)C40—C41—C42120.5 (7)
C18—C17—H17119.8C40—C41—H41119.8
C16—C17—H17119.8C42—C41—H41119.8
C17—C18—C19120.7 (6)C41—C42—C37120.0 (6)
C17—C18—H18119.6C41—C42—H42120.0
C19—C18—H18119.6C37—C42—H42120.0
C20—C19—C18118.9 (7)C15—N1—C8113.5 (4)
C20—C19—H19120.5C15—N1—C1111.6 (4)
C18—C19—H19120.5C8—N1—C1108.9 (4)
C19—C20—C21121.8 (7)C15—N1—H1C107.5
C19—C20—H20119.1C8—N1—H1C107.5
C21—C20—H20119.1C1—N1—H1C107.5
C20—C21—C16119.5 (6)C36—N2—C22111.4 (4)
C20—C21—H21120.3C36—N2—C29111.1 (4)
C16—C21—H21120.3C22—N2—C29111.0 (4)
C23—C22—N2114.7 (4)C36—N2—H2107.7
C23—C22—H22A108.6C22—N2—H2107.7
N2—C22—H22A108.6C29—N2—H2107.7
C23—C22—H22B108.6Cl3—Au1—Cl1177.75 (11)
N2—C22—H22B108.6Cl3—Au1—Cl489.38 (7)
H22A—C22—H22B107.6Cl1—Au1—Cl490.02 (8)
C28—C23—C24118.5 (5)Cl3—Au1—Cl290.38 (6)
C28—C23—C22120.7 (5)Cl1—Au1—Cl290.25 (8)
C24—C23—C22120.8 (5)Cl4—Au1—Cl2179.20 (6)
N1—C1—C2—C790.4 (6)C25—C26—C27—C281.3 (11)
N1—C1—C2—C391.2 (5)C24—C23—C28—C270.7 (9)
C7—C2—C3—C41.2 (8)C22—C23—C28—C27179.9 (6)
C1—C2—C3—C4179.6 (5)C26—C27—C28—C230.8 (10)
C2—C3—C4—C51.0 (9)N2—C29—C30—C3572.7 (7)
C3—C4—C5—C60.4 (11)N2—C29—C30—C31111.4 (6)
C4—C5—C6—C70.1 (11)C35—C30—C31—C320.5 (11)
C3—C2—C7—C60.7 (8)C29—C30—C31—C32176.4 (7)
C1—C2—C7—C6179.1 (5)C30—C31—C32—C330.0 (15)
C5—C6—C7—C20.1 (10)C31—C32—C33—C340.8 (17)
N1—C8—C9—C1095.6 (7)C32—C33—C34—C351.0 (16)
N1—C8—C9—C1491.0 (6)C31—C30—C35—C340.3 (10)
C14—C9—C10—C112.8 (10)C29—C30—C35—C34176.1 (6)
C8—C9—C10—C11176.2 (7)C33—C34—C35—C300.5 (13)
C9—C10—C11—C123.0 (14)N2—C36—C37—C3894.3 (6)
C10—C11—C12—C132.3 (15)N2—C36—C37—C4290.9 (6)
C11—C12—C13—C141.5 (13)C42—C37—C38—C392.8 (9)
C12—C13—C14—C91.3 (10)C36—C37—C38—C39177.8 (6)
C10—C9—C14—C131.9 (9)C37—C38—C39—C401.5 (11)
C8—C9—C14—C13175.4 (5)C38—C39—C40—C411.0 (12)
N1—C15—C16—C17103.9 (6)C39—C40—C41—C422.1 (11)
N1—C15—C16—C2175.1 (6)C40—C41—C42—C370.6 (9)
C21—C16—C17—C181.6 (8)C38—C37—C42—C411.8 (8)
C15—C16—C17—C18177.5 (5)C36—C37—C42—C41176.8 (5)
C16—C17—C18—C190.7 (10)C16—C15—N1—C8175.1 (4)
C17—C18—C19—C200.1 (12)C16—C15—N1—C161.4 (5)
C18—C19—C20—C210.1 (13)C9—C8—N1—C1554.6 (6)
C19—C20—C21—C161.0 (11)C9—C8—N1—C1179.6 (5)
C17—C16—C21—C201.7 (9)C2—C1—N1—C15129.7 (5)
C15—C16—C21—C20177.3 (6)C2—C1—N1—C8104.2 (5)
N2—C22—C23—C2885.7 (6)C37—C36—N2—C2263.1 (5)
N2—C22—C23—C2494.9 (6)C37—C36—N2—C29172.6 (4)
C28—C23—C24—C251.9 (8)C23—C22—N2—C36175.0 (4)
C22—C23—C24—C25178.7 (5)C23—C22—N2—C2950.7 (6)
C23—C24—C25—C261.5 (9)C30—C29—N2—C3654.2 (6)
C24—C25—C26—C270.1 (10)C30—C29—N2—C22178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl50.912.193.089 (5)168
N2—H2···Cl5i0.912.163.066 (4)172
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C21H22N)2[AuCl4]Cl
Mr951.01
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.135 (1), 13.7920 (11), 13.8417 (12)
α, β, γ (°)95.894 (7), 100.300 (7), 95.222 (7)
V3)2067.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.91
Crystal size (mm)0.35 × 0.32 × 0.27
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-RED; Stoe & Cie, 2005)
Tmin, Tmax0.280, 0.350
No. of measured, independent and
observed [I > 2σ(I)] reflections
28425, 12513, 10542
Rint0.075
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.144, 1.11
No. of reflections12513
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.82, 2.10

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Au1—Cl12.259 (2)Au1—Cl32.2574 (17)
Au1—Cl22.2891 (15)Au1—Cl42.2703 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl50.912.193.089 (5)168
N2—H2···Cl5i0.912.163.066 (4)172
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We are grateful to Shahid Beheshti University for financial support.

References

First citationCalleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978–4985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem. 38, 5637–5641.  Web of Science CSD CrossRef CAS Google Scholar
First citationHojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJarvinen, G. D., Larson, E. M., Wasserman, H. J., Burns, C. J. & Ryan, R. R. (1988). Acta Cryst. C44, 1701–1703.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJohnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.  Web of Science CSD CrossRef Google Scholar
First citationSafari, N., Amani, V., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem. 34, 3474–3476.  CSD CrossRef CAS Web of Science Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Abedi, A., Amani, V. & McKee, V. (2009a). Acta Cryst. E65, m479–m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V. & McKee, V. (2009b). Acta Cryst. E65, m491–m492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2748–m2749.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, G.-F., Qin, M., Lin, Y.-H. & Xi, S.-Q. (1994). Acta Cryst. C50, 200–202.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds