metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[μ2-8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-di­hydro­pyrido[2,3-d]pyrimidine-6-carboxyl­ato]nickel(II)]

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: anzhe6409@sina.com

(Received 22 December 2009; accepted 24 December 2009; online 9 January 2010)

The title compound, [Ni(C14H16N5O3)2]n or [Ni(ppa)2]n, where ppa is 8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydro­pyrido[2,3-d]pyrimidine-6-carboxyl­ate, was synthesized under hydro­thermal conditions. The NiII atom (site symmetry [\overline{1}]) exhibits a distorted trans-NiN2O4 octa­hedral geometry defined by two monodentate N-bonded and two bidentate O,O′-bonded ppa monoanions. The extended two-dimensional structure is a square grid. An inter­molecular N—H⋯O hydrogen bond occurs.

Related literature

For manganese, cobalt and zinc complexes of the ppa anion, see: Huang et al. (2008[Huang, J., Hu, W.-P. & An, Z. (2008). Acta Cryst. E64, m547.]); Xu et al. (2009[Xu, W., Zhu, D.-S., Song, X.-D. & An, Z. (2009). Acta Cryst. E65, m1223.]); Qi et al. (2009[Qi, X., Shao, M. & Li, C.-X. (2009). Acta Cryst. E65, m1334.]), respectively. For background to the medicinal uses of pipemidic acid, see: Mizuki et al. (1996[Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 (Suppl. A), 41-45.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H16N5O3)2]

  • Mr = 663.35

  • Monoclinic, P 21 /c

  • a = 6.1249 (6) Å

  • b = 21.250 (2) Å

  • c = 12.5511 (12) Å

  • β = 101.846 (2)°

  • V = 1598.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 296 K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.764, Tmax = 0.868

  • 7593 measured reflections

  • 2762 independent reflections

  • 2389 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.199

  • S = 1.00

  • 2762 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters not refined

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O2 2.013 (3)
Ni1—O1 2.051 (3)
Ni1—N5i 2.207 (3)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯O3ii 0.90 (4) 2.29 (4) 3.161 (5) 163 (5)
Symmetry code: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pipemidic acid (Hppa, C14H16N5O3, 8-Ethyl-5,8-dihydro-5-oxo-2- (1-piperazinyl)-pyrido(2,3-d)-pyrimidine-6-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki et al., 1996). The manganese, cobalt and zinc complexes of the ppa anion have been reported (Huang et al., 2008; Xu et al. 2009; Qi Xu et al.2009). The title nickel(II) complex, (I), is reported here (Fig. 1).

The nickel(II) atom is coordinated by four oxygen atoms and two N atoms from four ppa ligands (two monodentate-N and two O,O-bidentate) to form a square grid propagating in (Fig. 2).

Related literature top

For manganese, cobalt and zinc complexes of the ppa anion, see: Huang et al. (2008); Xu et al. (2009); Qi et al. (2009), respectively. For background to the medicinal uses of pipemidic acid, see: Mizuki et al. (1996).

Experimental top

A mixture of Ni(CH3COO)2.4H2O (0.063 g, 0.25 mmol), Hppa (0.15 g, 0.5 mmol), sodium hydroxide (0.04 g, 1 mmol) and water (15 ml) was stirred for 30 min in air. The mixture was then transferred to a 25 ml Teflon-lined hydrothermal bomb. The bomb was kept at 443 K for 72 h under autogenous pressure. Upon cooling, green prisms of (I) were obtained from the reaction mixture.

Refinement top

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) = 1.2Ueq(C). The H on Nitrogen atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.86 (1) /%A and with Uiso(H) = 1.2Ueq(N).

Structure description top

Pipemidic acid (Hppa, C14H16N5O3, 8-Ethyl-5,8-dihydro-5-oxo-2- (1-piperazinyl)-pyrido(2,3-d)-pyrimidine-6-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki et al., 1996). The manganese, cobalt and zinc complexes of the ppa anion have been reported (Huang et al., 2008; Xu et al. 2009; Qi Xu et al.2009). The title nickel(II) complex, (I), is reported here (Fig. 1).

The nickel(II) atom is coordinated by four oxygen atoms and two N atoms from four ppa ligands (two monodentate-N and two O,O-bidentate) to form a square grid propagating in (Fig. 2).

For manganese, cobalt and zinc complexes of the ppa anion, see: Huang et al. (2008); Xu et al. (2009); Qi et al. (2009), respectively. For background to the medicinal uses of pipemidic acid, see: Mizuki et al. (1996).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), expanded to show the metal atom coordination showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. A view of part of a two-dimensional polymeric sheet in (I) showing the square-grid connectivity.
Poly[bis[µ2-8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8- dihydropyrido[2,3-d]pyrimidine-6-carboxylato]nickel(II)] top
Crystal data top
[Ni(C14H16N5O3)2]F(000) = 692
Mr = 663.35Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3258 reflections
a = 6.1249 (6) Åθ = 2.5–28.3°
b = 21.250 (2) ŵ = 0.66 mm1
c = 12.5511 (12) ÅT = 296 K
β = 101.846 (2)°Prism, green
V = 1598.8 (3) Å30.43 × 0.28 × 0.22 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2762 independent reflections
Radiation source: fine-focus sealed tube2389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.764, Tmax = 0.868k = 2523
7593 measured reflectionsl = 149
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.122P)2 + 2.8827P]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max = 0.007
209 parametersΔρmax = 0.89 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
[Ni(C14H16N5O3)2]V = 1598.8 (3) Å3
Mr = 663.35Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.1249 (6) ŵ = 0.66 mm1
b = 21.250 (2) ÅT = 296 K
c = 12.5511 (12) Å0.43 × 0.28 × 0.22 mm
β = 101.846 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2762 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2389 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.868Rint = 0.034
7593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0661 restraint
wR(F2) = 0.199H-atom parameters not refined
S = 1.00Δρmax = 0.89 e Å3
2762 reflectionsΔρmin = 0.39 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.0219 (3)
C10.7141 (7)0.47283 (19)0.3080 (4)0.0293 (9)
C20.5607 (7)0.41749 (19)0.2771 (3)0.0310 (9)
C30.3908 (6)0.39745 (18)0.3348 (3)0.0250 (8)
C40.2685 (7)0.34232 (19)0.2900 (3)0.0287 (9)
C50.0880 (8)0.3175 (2)0.3310 (4)0.0380 (11)
H50.04160.33970.38630.046*
C60.0596 (7)0.2340 (2)0.2186 (4)0.0310 (9)
C70.3168 (7)0.3083 (2)0.2024 (4)0.0333 (10)
C80.5934 (9)0.3829 (2)0.1908 (4)0.0448 (12)
H80.70170.39720.15440.054*
C90.5451 (11)0.2956 (3)0.0587 (6)0.0655 (18)
H9A0.70270.30140.05990.079*
H9B0.51790.25100.06520.079*
C100.4140 (17)0.3190 (6)0.0446 (8)0.0426 (8)
H10A0.26010.30800.05010.168*
H10B0.46810.30050.10390.168*
H10C0.42780.36400.04730.168*
C110.1716 (9)0.1431 (2)0.2519 (4)0.0462 (13)
H11A0.24570.17310.29080.055*
H11B0.07780.11640.30510.055*
C120.3438 (8)0.1034 (2)0.1784 (4)0.0375 (10)
H12A0.42240.07850.22330.045*
H12B0.45170.13110.13430.045*
C130.0646 (7)0.1360 (2)0.1181 (4)0.0330 (10)
H13A0.17110.10800.16220.040*
H13B0.14350.16110.07350.040*
C140.1164 (7)0.0976 (2)0.0452 (4)0.0297 (9)
H14A0.21290.12590.00390.036*
H14B0.04690.06940.00130.036*
H5N0.163 (7)0.035 (2)0.152 (3)0.044*
N10.4839 (7)0.3299 (2)0.1527 (3)0.0454 (11)
N20.2161 (6)0.25401 (17)0.1666 (3)0.0354 (9)
N30.0183 (7)0.26577 (19)0.2969 (4)0.0427 (10)
N40.0326 (6)0.17705 (17)0.1881 (3)0.0327 (8)
N50.2530 (5)0.06053 (15)0.1053 (3)0.0262 (7)
O10.3477 (5)0.42282 (13)0.4188 (2)0.0288 (7)
O20.6982 (5)0.50474 (11)0.3906 (2)0.0270 (7)
O30.8546 (7)0.4840 (2)0.2525 (3)0.0579 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0256 (4)0.0139 (4)0.0257 (4)0.0008 (2)0.0040 (3)0.0028 (3)
C10.032 (2)0.022 (2)0.034 (2)0.0029 (17)0.0055 (18)0.0007 (17)
C20.041 (2)0.022 (2)0.031 (2)0.0069 (17)0.0088 (18)0.0052 (17)
C30.0291 (19)0.0178 (18)0.026 (2)0.0008 (15)0.0020 (16)0.0002 (16)
C40.034 (2)0.023 (2)0.030 (2)0.0027 (17)0.0072 (17)0.0047 (17)
C50.040 (2)0.032 (2)0.046 (3)0.0112 (19)0.019 (2)0.019 (2)
C60.032 (2)0.024 (2)0.038 (2)0.0061 (17)0.0082 (18)0.0090 (18)
C70.041 (2)0.028 (2)0.034 (2)0.0039 (18)0.0117 (19)0.0074 (18)
C80.059 (3)0.037 (3)0.043 (3)0.017 (2)0.022 (2)0.012 (2)
C90.077 (4)0.060 (4)0.068 (4)0.025 (3)0.034 (3)0.018 (3)
C100.0396 (18)0.047 (2)0.0409 (17)0.0122 (15)0.0083 (14)0.0059 (15)
C110.052 (3)0.041 (3)0.053 (3)0.025 (2)0.028 (2)0.021 (2)
C120.039 (2)0.031 (2)0.045 (3)0.0097 (19)0.015 (2)0.011 (2)
C130.029 (2)0.029 (2)0.045 (2)0.0055 (17)0.0152 (19)0.0153 (19)
C140.032 (2)0.0219 (19)0.037 (2)0.0034 (16)0.0120 (18)0.0042 (17)
N10.061 (3)0.040 (2)0.042 (2)0.025 (2)0.026 (2)0.0145 (18)
N20.047 (2)0.0271 (18)0.035 (2)0.0156 (16)0.0169 (17)0.0112 (16)
N30.044 (2)0.030 (2)0.057 (3)0.0140 (17)0.0198 (19)0.0192 (19)
N40.0348 (18)0.0239 (18)0.042 (2)0.0081 (15)0.0143 (16)0.0121 (16)
N50.0275 (17)0.0193 (16)0.0303 (18)0.0026 (13)0.0020 (14)0.0004 (14)
O10.0317 (15)0.0215 (14)0.0351 (16)0.0043 (11)0.0111 (12)0.0069 (12)
O20.0329 (16)0.0184 (14)0.0298 (16)0.0003 (11)0.0066 (12)0.0026 (11)
O30.069 (3)0.061 (2)0.055 (2)0.037 (2)0.040 (2)0.026 (2)
Geometric parameters (Å, º) top
Ni1—O2i2.013 (3)C9—C101.464 (12)
Ni1—O22.013 (3)C9—N11.498 (7)
Ni1—O1i2.051 (3)C9—H9A0.9700
Ni1—O12.051 (3)C9—H9B0.9700
Ni1—N5ii2.207 (3)C10—H10A0.9600
Ni1—N5iii2.207 (3)C10—H10B0.9600
C1—O31.236 (6)C10—H10C0.9600
C1—O21.260 (5)C11—N41.472 (6)
C1—C21.505 (6)C11—C121.509 (6)
C2—C81.358 (6)C11—H11A0.9700
C2—C31.448 (6)C11—H11B0.9700
C3—O11.260 (5)C12—N51.480 (6)
C3—C41.441 (6)C12—H12A0.9700
C4—C71.398 (6)C12—H12B0.9700
C4—C51.413 (6)C13—N41.450 (5)
C5—N31.305 (6)C13—C141.522 (6)
C5—H50.9300C13—H13A0.9700
C6—N21.334 (6)C13—H13B0.9700
C6—N41.357 (5)C14—N51.467 (5)
C6—N31.357 (6)C14—H14A0.9700
C7—N21.341 (6)C14—H14B0.9700
C7—N11.382 (6)N5—Ni1iv2.207 (3)
C8—N11.348 (6)N5—H5N0.90 (4)
C8—H80.9300
O2i—Ni1—O2180.0C9—C10—H10B109.5
O2i—Ni1—O1i88.73 (11)H10A—C10—H10B109.5
O2—Ni1—O1i91.27 (11)C9—C10—H10C109.5
O2i—Ni1—O191.27 (11)H10A—C10—H10C109.5
O2—Ni1—O188.73 (11)H10B—C10—H10C109.5
O1i—Ni1—O1180.0N4—C11—C12110.6 (4)
O2i—Ni1—N5ii90.14 (12)N4—C11—H11A109.5
O2—Ni1—N5ii89.86 (12)C12—C11—H11A109.5
O1i—Ni1—N5ii91.00 (11)N4—C11—H11B109.5
O1—Ni1—N5ii89.00 (11)C12—C11—H11B109.5
O2i—Ni1—N5iii89.86 (12)H11A—C11—H11B108.1
O2—Ni1—N5iii90.14 (12)N5—C12—C11114.8 (4)
O1i—Ni1—N5iii89.00 (11)N5—C12—H12A108.6
O1—Ni1—N5iii91.00 (11)C11—C12—H12A108.6
N5ii—Ni1—N5iii180.0N5—C12—H12B108.6
O3—C1—O2122.8 (4)C11—C12—H12B108.6
O3—C1—C2118.4 (4)H12A—C12—H12B107.6
O2—C1—C2118.9 (4)N4—C13—C14110.4 (3)
C8—C2—C3118.6 (4)N4—C13—H13A109.6
C8—C2—C1116.2 (4)C14—C13—H13A109.6
C3—C2—C1125.1 (4)N4—C13—H13B109.6
O1—C3—C4119.5 (4)C14—C13—H13B109.6
O1—C3—C2126.1 (4)H13A—C13—H13B108.1
C4—C3—C2114.4 (4)N5—C14—C13113.6 (4)
C7—C4—C5113.6 (4)N5—C14—H14A108.8
C7—C4—C3123.4 (4)C13—C14—H14A108.8
C5—C4—C3122.9 (4)N5—C14—H14B108.8
N3—C5—C4124.7 (4)C13—C14—H14B108.8
N3—C5—H5117.6H14A—C14—H14B107.7
C4—C5—H5117.6C8—N1—C7118.6 (4)
N2—C6—N4116.5 (4)C8—N1—C9119.9 (4)
N2—C6—N3126.2 (4)C7—N1—C9121.5 (4)
N4—C6—N3117.4 (4)C6—N2—C7115.9 (4)
N2—C7—N1117.8 (4)C5—N3—C6115.5 (4)
N2—C7—C4123.5 (4)C6—N4—C13120.5 (4)
N1—C7—C4118.6 (4)C6—N4—C11122.5 (4)
N1—C8—C2126.3 (5)C13—N4—C11113.0 (3)
N1—C8—H8116.9C14—N5—C12108.4 (3)
C2—C8—H8116.9C14—N5—Ni1iv113.5 (2)
C10—C9—N1110.6 (7)C12—N5—Ni1iv115.6 (2)
C10—C9—H9A109.5C14—N5—H5N109 (3)
N1—C9—H9A109.5C12—N5—H5N103 (4)
C10—C9—H9B109.5Ni1iv—N5—H5N107 (3)
N1—C9—H9B109.5C3—O1—Ni1127.3 (3)
H9A—C9—H9B108.1C1—O2—Ni1134.0 (3)
C9—C10—H10A109.5
O3—C1—C2—C81.5 (7)N3—C6—N2—C75.9 (7)
O2—C1—C2—C8176.7 (4)N1—C7—N2—C6178.4 (4)
O3—C1—C2—C3178.7 (4)C4—C7—N2—C61.4 (7)
O2—C1—C2—C30.6 (6)C4—C5—N3—C62.0 (8)
C8—C2—C3—O1176.7 (4)N2—C6—N3—C57.5 (8)
C1—C2—C3—O10.5 (7)N4—C6—N3—C5174.0 (4)
C8—C2—C3—C41.8 (6)N2—C6—N4—C1311.1 (6)
C1—C2—C3—C4178.9 (4)N3—C6—N4—C13170.2 (4)
O1—C3—C4—C7174.8 (4)N2—C6—N4—C11167.2 (4)
C2—C3—C4—C73.8 (6)N3—C6—N4—C1114.2 (7)
O1—C3—C4—C55.1 (6)C14—C13—N4—C6147.5 (4)
C2—C3—C4—C5176.4 (4)C14—C13—N4—C1154.4 (5)
C7—C4—C5—N34.1 (7)C12—C11—N4—C6149.6 (4)
C3—C4—C5—N3175.8 (5)C12—C11—N4—C1352.7 (6)
C5—C4—C7—N25.8 (7)C13—C14—N5—C1254.2 (5)
C3—C4—C7—N2174.0 (4)C13—C14—N5—Ni1iv176.1 (3)
C5—C4—C7—N1177.2 (4)C11—C12—N5—C1453.0 (5)
C3—C4—C7—N12.9 (7)C11—C12—N5—Ni1iv178.4 (3)
C3—C2—C8—N11.0 (8)C4—C3—O1—Ni1178.8 (3)
C1—C2—C8—N1176.4 (5)C2—C3—O1—Ni10.4 (6)
N4—C11—C12—N552.7 (6)O2i—Ni1—O1—C3179.7 (3)
N4—C13—C14—N556.3 (5)O2—Ni1—O1—C30.3 (3)
C2—C8—N1—C72.0 (8)N5ii—Ni1—O1—C389.6 (3)
C2—C8—N1—C9177.7 (6)N5iii—Ni1—O1—C390.4 (3)
N2—C7—N1—C8177.2 (5)O3—C1—O2—Ni1178.7 (4)
C4—C7—N1—C80.0 (7)C2—C1—O2—Ni10.7 (6)
N2—C7—N1—C92.6 (8)O1i—Ni1—O2—C1179.5 (4)
C4—C7—N1—C9179.8 (5)O1—Ni1—O2—C10.5 (4)
C10—C9—N1—C889.8 (8)N5ii—Ni1—O2—C188.5 (4)
C10—C9—N1—C790.4 (7)N5iii—Ni1—O2—C191.5 (4)
N4—C6—N2—C7175.6 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···O3v0.90 (4)2.29 (4)3.161 (5)163 (5)
Symmetry code: (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C14H16N5O3)2]
Mr663.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.1249 (6), 21.250 (2), 12.5511 (12)
β (°) 101.846 (2)
V3)1598.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.764, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
7593, 2762, 2389
Rint0.034
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.199, 1.00
No. of reflections2762
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.89, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O22.013 (3)Ni1—N5i2.207 (3)
Ni1—O12.051 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···O3ii0.90 (4)2.29 (4)3.161 (5)163 (5)
Symmetry code: (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the program for talent introduction in Guangdong Higher Education Institutions (grant No. 201191) and the scientific research start-up funds for talent introduction in Maoming University (grant No. 208058).

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, J., Hu, W.-P. & An, Z. (2008). Acta Cryst. E64, m547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 (Suppl. A), 41–45.  Google Scholar
First citationQi, X., Shao, M. & Li, C.-X. (2009). Acta Cryst. E65, m1334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, W., Zhu, D.-S., Song, X.-D. & An, Z. (2009). Acta Cryst. E65, m1223.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds