metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bipyrid­yl)(di­chloro­acetato)copper(II) di­chloro­acetate dihydrate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 25 December 2009; accepted 29 December 2009; online 13 January 2010)

In the title compound, [Cu(C2HCl2O2)(C10H8N2)2](C2HCl2O2)·2H2O, the CuII ion is bonded to two N,N′-bidentate 2,2′-bipyridyl ligands and one O-monodentate 2,2-dichloro­acetate anion in a distorted CuON4 trigonal-bipyramidal geometry, with the O atom occupying an equatorial site. In the crystal, the components are linked by O—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For a related structure, see: Barszcz et al. (2004[Barszcz, B., Glowiak, T., Jezierska, J. & Tomkiewicz, A. (2004). Polyhedron, 23, 1308-1316]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2HCl2O2)(C10H8N2)2](C2HCl2O2)·2H2O

  • Mr = 667.80

  • Triclinic, [P \overline 1]

  • a = 9.9710 (7) Å

  • b = 11.7307 (9) Å

  • c = 12.4736 (9) Å

  • α = 105.407 (1)°

  • β = 101.499 (1)°

  • γ = 95.513 (1)°

  • V = 1361.07 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.24 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 7789 measured reflections

  • 5280 independent reflections

  • 4592 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.06

  • 5280 reflections

  • 365 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.9879 (18)
Cu1—N4 1.9889 (18)
Cu1—O1 2.0121 (16)
Cu1—N3 2.0711 (18)
Cu1—N2 2.1201 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯Cl2 0.84 (2) 2.79 (2) 3.571 (3) 155 (4)
O1W—H1B⋯O4 0.86 (2) 1.93 (2) 2.787 (4) 171 (4)
O2W—H2A⋯Cl1 0.88 (2) 2.76 (2) 3.511 (3) 144 (3)
O2W—H2B⋯O3i 0.87 (2) 1.89 (2) 2.757 (3) 172 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Barszcz et al. (2004).

Experimental top

Copper(II) 2,2-dicholoracetate, 0.32 g (1 mmol) and 2,2'-bipyridine 0.31 g (2 mmol) were added to 65 ml anhydrous alcohol under stirring. The mixture was refluxed for 7 h. The blue solution was filtered and the filtrate was left to stand undisturbed. Upon slow evaporation at room temperature, blue blocks of (I) appeared three days later and were separated by filtration.

Refinement top

The water H atoms were located in a difference map and freely refined. The C-bonded H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

For a related structure, see: Barszcz et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure for (I), with displacement ellipsoids drawn at the 30% probability level.
Bis(2,2'-bipyridyl)(dichloroacetato)copper(II) dichloroacetate dihydrate top
Crystal data top
[Cu(C2HCl2O2)(C10H8N2)2](C2HCl2O2)·2H2OZ = 2
Mr = 667.80F(000) = 678
Triclinic, P1Dx = 1.629 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9710 (7) ÅCell parameters from 2240 reflections
b = 11.7307 (9) Åθ = 2.2–28.3°
c = 12.4736 (9) ŵ = 1.24 mm1
α = 105.407 (1)°T = 293 K
β = 101.499 (1)°Block, blue
γ = 95.513 (1)°0.22 × 0.20 × 0.18 mm
V = 1361.07 (17) Å3
Data collection top
Bruker SMART CCD
diffractometer
4592 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
phi and ω scansh = 1112
7789 measured reflectionsk = 1314
5280 independent reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3598P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5280 reflectionsΔρmax = 0.65 e Å3
365 parametersΔρmin = 0.64 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0256 (15)
Crystal data top
[Cu(C2HCl2O2)(C10H8N2)2](C2HCl2O2)·2H2Oγ = 95.513 (1)°
Mr = 667.80V = 1361.07 (17) Å3
Triclinic, P1Z = 2
a = 9.9710 (7) ÅMo Kα radiation
b = 11.7307 (9) ŵ = 1.24 mm1
c = 12.4736 (9) ÅT = 293 K
α = 105.407 (1)°0.22 × 0.20 × 0.18 mm
β = 101.499 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4592 reflections with I > 2σ(I)
7789 measured reflectionsRint = 0.033
5280 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0347 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.65 e Å3
5280 reflectionsΔρmin = 0.64 e Å3
365 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.02070 (3)0.28505 (2)0.24318 (2)0.03074 (11)
Cl10.45242 (8)0.39464 (9)0.06435 (8)0.0741 (3)
Cl20.50350 (6)0.30032 (6)0.25678 (6)0.04867 (17)
O10.21727 (16)0.36582 (14)0.27220 (14)0.0396 (4)
O20.17501 (17)0.31459 (16)0.08196 (15)0.0459 (4)
N10.06224 (19)0.43199 (16)0.24029 (15)0.0318 (4)
N20.05985 (19)0.31277 (16)0.39146 (15)0.0326 (4)
N30.13923 (19)0.17107 (16)0.11654 (15)0.0328 (4)
N40.08416 (19)0.12907 (17)0.24147 (16)0.0347 (4)
C10.0573 (3)0.4885 (2)0.1606 (2)0.0406 (5)
H10.00070.46590.11030.049*
C20.1329 (3)0.5790 (2)0.1503 (2)0.0465 (6)
H20.12800.61620.09360.056*
C30.2157 (3)0.6134 (2)0.2255 (2)0.0467 (6)
H30.26910.67320.21930.056*
C40.2185 (2)0.5581 (2)0.3104 (2)0.0415 (5)
H40.27220.58160.36290.050*
C50.1403 (2)0.46721 (18)0.31641 (18)0.0303 (4)
C60.1365 (2)0.40123 (18)0.40308 (17)0.0299 (4)
C70.2055 (2)0.4282 (2)0.4908 (2)0.0404 (5)
H60.25720.49050.49820.049*
C80.1960 (3)0.3608 (2)0.5670 (2)0.0460 (6)
H80.24150.37710.62630.055*
C90.1187 (3)0.2699 (2)0.5541 (2)0.0472 (6)
H90.11140.22330.60410.057*
C100.0515 (3)0.2483 (2)0.4653 (2)0.0411 (5)
H100.00130.18680.45690.049*
C110.2514 (2)0.1998 (2)0.0568 (2)0.0405 (5)
H110.26050.28020.07020.049*
C120.3538 (3)0.1155 (3)0.0237 (2)0.0495 (6)
H120.43000.13830.06440.059*
C130.3404 (3)0.0027 (3)0.0422 (2)0.0525 (7)
H130.40820.06140.09600.063*
C140.2268 (3)0.0348 (2)0.0188 (2)0.0457 (6)
H140.21750.11500.00720.055*
C150.1260 (2)0.05451 (19)0.09785 (18)0.0334 (5)
C160.0007 (2)0.0309 (2)0.16703 (19)0.0351 (5)
C170.0356 (3)0.0829 (2)0.1571 (2)0.0478 (6)
H170.02220.15000.10510.057*
C180.1576 (3)0.0946 (3)0.2256 (3)0.0571 (8)
H180.18310.16980.21990.069*
C190.2412 (3)0.0060 (3)0.3024 (2)0.0528 (7)
H190.32320.00050.34950.063*
C200.2015 (3)0.1165 (2)0.3086 (2)0.0450 (6)
H200.25770.18430.36070.054*
C210.2517 (2)0.35388 (19)0.1777 (2)0.0341 (5)
C220.4076 (2)0.3961 (2)0.1938 (2)0.0402 (5)
H220.43240.47780.24560.048*
Cl30.17481 (9)0.06640 (8)0.59492 (10)0.0833 (3)
Cl40.36379 (9)0.04850 (8)0.72163 (7)0.0722 (2)
O30.4801 (3)0.2075 (2)0.7501 (2)0.0807 (7)
O40.4943 (3)0.1598 (2)0.5687 (3)0.0971 (9)
C230.3436 (3)0.0293 (2)0.6185 (2)0.0466 (6)
H23A0.35450.02400.54660.056*
C240.4501 (3)0.1442 (3)0.6506 (3)0.0550 (7)
O1W0.4574 (3)0.3842 (2)0.5424 (2)0.0744 (7)
H1A0.455 (4)0.384 (4)0.4747 (19)0.089*
H1B0.467 (4)0.312 (2)0.543 (3)0.089*
O2W0.2759 (3)0.6333 (2)0.1579 (3)0.0885 (8)
H2A0.299 (3)0.579 (2)0.104 (2)0.106*
H2B0.349 (3)0.686 (3)0.192 (3)0.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03054 (16)0.02735 (16)0.03555 (17)0.00635 (10)0.00873 (11)0.00987 (11)
Cl10.0572 (4)0.1167 (7)0.0791 (5)0.0245 (5)0.0366 (4)0.0615 (5)
Cl20.0370 (3)0.0532 (4)0.0565 (4)0.0097 (3)0.0046 (3)0.0210 (3)
O10.0362 (8)0.0390 (9)0.0408 (9)0.0010 (7)0.0126 (7)0.0062 (7)
O20.0399 (9)0.0490 (10)0.0437 (10)0.0044 (8)0.0057 (8)0.0091 (8)
N10.0333 (9)0.0273 (9)0.0355 (9)0.0062 (7)0.0103 (8)0.0083 (7)
N20.0341 (9)0.0306 (9)0.0314 (9)0.0031 (7)0.0070 (8)0.0073 (7)
N30.0332 (9)0.0300 (9)0.0337 (9)0.0034 (7)0.0085 (8)0.0070 (7)
N40.0354 (10)0.0352 (10)0.0375 (10)0.0100 (8)0.0118 (8)0.0130 (8)
C10.0478 (14)0.0352 (12)0.0423 (13)0.0085 (10)0.0143 (11)0.0140 (10)
C20.0562 (16)0.0365 (13)0.0501 (14)0.0084 (11)0.0097 (12)0.0199 (11)
C30.0469 (14)0.0349 (13)0.0582 (16)0.0147 (11)0.0073 (12)0.0140 (11)
C40.0384 (12)0.0368 (13)0.0480 (14)0.0108 (10)0.0112 (11)0.0076 (10)
C50.0250 (10)0.0268 (10)0.0339 (11)0.0008 (8)0.0038 (8)0.0040 (8)
C60.0251 (10)0.0287 (10)0.0300 (10)0.0027 (8)0.0036 (8)0.0031 (8)
C70.0343 (12)0.0429 (13)0.0396 (12)0.0027 (10)0.0116 (10)0.0034 (10)
C80.0433 (14)0.0579 (16)0.0347 (12)0.0009 (12)0.0162 (11)0.0078 (11)
C90.0540 (15)0.0526 (15)0.0374 (13)0.0002 (12)0.0121 (11)0.0191 (11)
C100.0464 (14)0.0402 (13)0.0401 (13)0.0074 (10)0.0115 (11)0.0160 (10)
C110.0361 (12)0.0399 (13)0.0423 (13)0.0057 (10)0.0047 (10)0.0100 (10)
C120.0372 (13)0.0603 (17)0.0445 (14)0.0023 (12)0.0023 (11)0.0119 (12)
C130.0465 (15)0.0520 (16)0.0445 (14)0.0091 (12)0.0039 (12)0.0008 (12)
C140.0526 (15)0.0332 (12)0.0450 (14)0.0018 (11)0.0142 (12)0.0018 (10)
C150.0377 (12)0.0306 (11)0.0328 (11)0.0034 (9)0.0149 (9)0.0068 (9)
C160.0426 (12)0.0314 (11)0.0382 (12)0.0084 (10)0.0209 (10)0.0123 (9)
C170.0645 (17)0.0339 (13)0.0553 (15)0.0157 (12)0.0273 (13)0.0179 (11)
C180.081 (2)0.0492 (16)0.0656 (18)0.0368 (15)0.0391 (17)0.0323 (14)
C190.0521 (16)0.0683 (19)0.0564 (16)0.0319 (14)0.0212 (13)0.0349 (15)
C200.0412 (13)0.0545 (15)0.0449 (13)0.0157 (12)0.0108 (11)0.0207 (12)
C210.0345 (11)0.0244 (10)0.0450 (13)0.0052 (9)0.0116 (10)0.0110 (9)
C220.0361 (12)0.0368 (12)0.0500 (14)0.0044 (10)0.0134 (11)0.0148 (11)
Cl30.0527 (4)0.0712 (5)0.1169 (8)0.0183 (4)0.0088 (5)0.0304 (5)
Cl40.0675 (5)0.0819 (6)0.0722 (5)0.0014 (4)0.0030 (4)0.0485 (4)
O30.0808 (17)0.0708 (16)0.0752 (16)0.0105 (13)0.0049 (13)0.0133 (13)
O40.139 (3)0.0615 (15)0.108 (2)0.0046 (15)0.068 (2)0.0287 (14)
C230.0518 (15)0.0491 (15)0.0428 (13)0.0156 (12)0.0092 (12)0.0187 (11)
C240.0577 (17)0.0466 (16)0.0661 (19)0.0142 (13)0.0198 (15)0.0196 (14)
O1W0.0842 (16)0.0731 (16)0.0853 (17)0.0306 (13)0.0462 (15)0.0298 (14)
O2W0.0756 (17)0.0565 (15)0.130 (2)0.0066 (12)0.0219 (17)0.0243 (15)
Geometric parameters (Å, º) top
Cu1—N11.9879 (18)C9—H90.9300
Cu1—N41.9889 (18)C10—H100.9300
Cu1—O12.0121 (16)C11—C121.378 (3)
Cu1—N32.0711 (18)C11—H110.9300
Cu1—N22.1201 (18)C12—C131.368 (4)
Cl1—C221.755 (3)C12—H120.9300
Cl2—C221.780 (2)C13—C141.377 (4)
O1—C211.268 (3)C13—H130.9300
O2—C211.225 (3)C14—C151.390 (3)
N1—C11.340 (3)C14—H140.9300
N1—C51.352 (3)C15—C161.476 (3)
N2—C101.333 (3)C16—C171.391 (3)
N2—C61.341 (3)C17—C181.382 (4)
N3—C111.339 (3)C17—H170.9300
N3—C151.349 (3)C18—C191.377 (4)
N4—C201.341 (3)C18—H180.9300
N4—C161.350 (3)C19—C201.379 (4)
C1—C21.378 (3)C19—H190.9300
C1—H10.9300C20—H200.9300
C2—C31.377 (4)C21—C221.542 (3)
C2—H20.9300C22—H220.9800
C3—C41.385 (4)Cl3—C231.766 (3)
C3—H30.9300Cl4—C231.757 (3)
C4—C51.388 (3)O3—C241.225 (4)
C4—H40.9300O4—C241.239 (4)
C5—C61.484 (3)C23—C241.540 (4)
C6—C71.388 (3)C23—H23A0.9800
C7—C81.384 (4)O1W—H1A0.839 (18)
C7—H60.9300O1W—H1B0.861 (19)
C8—C91.369 (4)O2W—H2A0.884 (16)
C8—H80.9300O2W—H2B0.867 (18)
C9—C101.385 (3)
N1—Cu1—N4174.19 (8)C9—C10—H10118.8
N1—Cu1—O194.77 (7)N3—C11—C12122.9 (2)
N4—Cu1—O191.01 (7)N3—C11—H11118.5
N1—Cu1—N394.63 (7)C12—C11—H11118.5
N4—Cu1—N380.37 (7)C13—C12—C11118.3 (3)
O1—Cu1—N3142.56 (7)C13—C12—H12120.9
N1—Cu1—N279.44 (7)C11—C12—H12120.9
N4—Cu1—N298.73 (7)C12—C13—C14120.0 (2)
O1—Cu1—N2114.17 (7)C12—C13—H13120.0
N3—Cu1—N2103.17 (7)C14—C13—H13120.0
C21—O1—Cu1109.56 (14)C13—C14—C15119.0 (2)
C1—N1—C5119.18 (19)C13—C14—H14120.5
C1—N1—Cu1123.79 (15)C15—C14—H14120.5
C5—N1—Cu1116.62 (15)N3—C15—C14121.1 (2)
C10—N2—C6118.93 (19)N3—C15—C16115.17 (19)
C10—N2—Cu1127.95 (16)C14—C15—C16123.8 (2)
C6—N2—Cu1112.90 (14)N4—C16—C17121.1 (2)
C11—N3—C15118.69 (19)N4—C16—C15115.04 (19)
C11—N3—Cu1127.97 (16)C17—C16—C15123.8 (2)
C15—N3—Cu1113.30 (14)C18—C17—C16119.0 (3)
C20—N4—C16119.4 (2)C18—C17—H17120.5
C20—N4—Cu1124.53 (17)C16—C17—H17120.5
C16—N4—Cu1116.08 (15)C19—C18—C17119.5 (2)
N1—C1—C2122.5 (2)C19—C18—H18120.3
N1—C1—H1118.7C17—C18—H18120.3
C2—C1—H1118.7C18—C19—C20119.1 (3)
C3—C2—C1118.8 (2)C18—C19—H19120.5
C3—C2—H2120.6C20—C19—H19120.5
C1—C2—H2120.6N4—C20—C19121.9 (3)
C2—C3—C4119.2 (2)N4—C20—H20119.0
C2—C3—H3120.4C19—C20—H20119.0
C4—C3—H3120.4O2—C21—O1126.7 (2)
C3—C4—C5119.4 (2)O2—C21—C22120.8 (2)
C3—C4—H4120.3O1—C21—C22112.5 (2)
C5—C4—H4120.3C21—C22—Cl1112.61 (17)
N1—C5—C4120.8 (2)C21—C22—Cl2108.80 (16)
N1—C5—C6115.24 (18)Cl1—C22—Cl2108.94 (13)
C4—C5—C6123.9 (2)C21—C22—H22108.8
N2—C6—C7121.7 (2)Cl1—C22—H22108.8
N2—C6—C5114.97 (18)Cl2—C22—H22108.8
C7—C6—C5123.4 (2)C24—C23—Cl4113.67 (19)
C8—C7—C6118.9 (2)C24—C23—Cl3109.08 (18)
C8—C7—H6120.6Cl4—C23—Cl3109.69 (15)
C6—C7—H6120.6C24—C23—H23A108.1
C9—C8—C7119.2 (2)Cl4—C23—H23A108.1
C9—C8—H8120.4Cl3—C23—H23A108.1
C7—C8—H8120.4O3—C24—O4128.5 (3)
C8—C9—C10119.0 (2)O3—C24—C23118.1 (3)
C8—C9—H9120.5O4—C24—C23113.4 (3)
C10—C9—H9120.5H1A—O1W—H1B104 (4)
N2—C10—C9122.3 (2)H2A—O2W—H2B107 (2)
N2—C10—H10118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl20.84 (2)2.79 (2)3.571 (3)155 (4)
O1W—H1B···O40.86 (2)1.93 (2)2.787 (4)171 (4)
O2W—H2A···Cl10.88 (2)2.76 (2)3.511 (3)144 (3)
O2W—H2B···O3i0.87 (2)1.89 (2)2.757 (3)172 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2HCl2O2)(C10H8N2)2](C2HCl2O2)·2H2O
Mr667.80
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.9710 (7), 11.7307 (9), 12.4736 (9)
α, β, γ (°)105.407 (1), 101.499 (1), 95.513 (1)
V3)1361.07 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7789, 5280, 4592
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.06
No. of reflections5280
No. of parameters365
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.64

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.9879 (18)Cu1—N32.0711 (18)
Cu1—N41.9889 (18)Cu1—N22.1201 (18)
Cu1—O12.0121 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl20.839 (18)2.79 (2)3.571 (3)155 (4)
O1W—H1B···O40.861 (19)1.93 (2)2.787 (4)171 (4)
O2W—H2A···Cl10.884 (16)2.756 (17)3.511 (3)144 (3)
O2W—H2B···O3i0.867 (18)1.89 (2)2.757 (3)172 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to thank the Science Foundation of Weifang University (No. 2009Z24) and the Natural Science Foundation of Shandong Province (No. ZR2009BM041)

References

First citationBarszcz, B., Glowiak, T., Jezierska, J. & Tomkiewicz, A. (2004). Polyhedron, 23, 1308–1316  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds