organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-3-[5-(4-fluoro­phen­yl)-1-phenyl-4,5-di­hydro-1H-pyrazol-3-yl]-2-methyl-4-phenyl­quinoline

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 4 January 2010; accepted 4 January 2010; online 9 January 2010)

In the title compound, C31H23ClFN3, the pyrazole ring forms dihedral angles of 72.75 (7), 18.08 (9) and 86.26 (9)° with the quinoline ring system, the phenyl ring and the fluoro­phenyl ring, respectively. In the crystal, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains propagating along the c axis. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For a related structure and background to quinolines and pyrazolines, see: Loh et al. (2009[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144-o3145.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C31H23ClFN3

  • Mr = 491.97

  • Monoclinic, P 21 /c

  • a = 9.4303 (2) Å

  • b = 28.2155 (6) Å

  • c = 9.6028 (2) Å

  • β = 106.636 (1)°

  • V = 2448.17 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.49 × 0.23 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.973

  • 38888 measured reflections

  • 8947 independent reflections

  • 6981 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.171

  • S = 1.08

  • 8947 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1/C2/C7–C9 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N1i 0.93 2.57 3.493 (2) 173
C17—H17ACg1 0.97 2.86 3.6307 (19) 137
C31—H31BCg2ii 0.96 2.86 3.584 (2) 133
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our onging studies of substituted pyrazoline derivatives (Loh et al., 2009), we now report the synthesis and structure of the title compound, (I).

The pyrazole ring (C16–C18/N2/N3) in (I) forms dihedral angles of 72.75 (7), 18.08 (9) and 86.26 (9) ° with the quinoline ring system (C1–C9/N1), phenyl (C25–C30) and fluorophenyl (C19–C24) rings, respectively. The quinoline ring system is approximately planar with a maximum deviation of 0.025 (2) Å at atom C9. Bond lengths and angles observed are comparable to a related structure (Loh et al., 2009).

In the crystal packing, intermolecular C15—H15A···N1 hydrogen bonds link the molecules into extended one-dimensional chains along c axis. The crystal structure is further stabilized by C—H···π interactions.

Related literature top

For a related structure and background to quinolines and pyrazolines, see: Loh et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(4-flourophenyl) prop-2-en-1-one (0.001 M) and phenyl hydrazine in (0.007 M) in distilled methanol was refluxed for about 8 h. The resulting mixture was concentrated to remove methanol then poured on to ice and neutralized with diluted HCl. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of chloroform and petroleum ether. The compound was recrystallized from methanol to yield yellow blocks of (I). M. p.: 433–435 K, yield: 60%.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

As part of our onging studies of substituted pyrazoline derivatives (Loh et al., 2009), we now report the synthesis and structure of the title compound, (I).

The pyrazole ring (C16–C18/N2/N3) in (I) forms dihedral angles of 72.75 (7), 18.08 (9) and 86.26 (9) ° with the quinoline ring system (C1–C9/N1), phenyl (C25–C30) and fluorophenyl (C19–C24) rings, respectively. The quinoline ring system is approximately planar with a maximum deviation of 0.025 (2) Å at atom C9. Bond lengths and angles observed are comparable to a related structure (Loh et al., 2009).

In the crystal packing, intermolecular C15—H15A···N1 hydrogen bonds link the molecules into extended one-dimensional chains along c axis. The crystal structure is further stabilized by C—H···π interactions.

For a related structure and background to quinolines and pyrazolines, see: Loh et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), showing extended one-dimensional chains along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
6-Chloro-3-[5-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]- 2-methyl-4-phenylquinoline top
Crystal data top
C31H23ClFN3F(000) = 1024
Mr = 491.97Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9957 reflections
a = 9.4303 (2) Åθ = 2.3–31.9°
b = 28.2155 (6) ŵ = 0.19 mm1
c = 9.6028 (2) ÅT = 100 K
β = 106.636 (1)°Block, yellow
V = 2448.17 (9) Å30.49 × 0.23 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
8947 independent reflections
Radiation source: fine-focus sealed tube6981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 32.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.914, Tmax = 0.973k = 4233
38888 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0749P)2 + 1.6204P]
where P = (Fo2 + 2Fc2)/3
8947 reflections(Δ/σ)max < 0.001
326 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C31H23ClFN3V = 2448.17 (9) Å3
Mr = 491.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4303 (2) ŵ = 0.19 mm1
b = 28.2155 (6) ÅT = 100 K
c = 9.6028 (2) Å0.49 × 0.23 × 0.15 mm
β = 106.636 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
8947 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6981 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.973Rint = 0.031
38888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.08Δρmax = 0.78 e Å3
8947 reflectionsΔρmin = 0.25 e Å3
326 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17020 (5)0.245611 (18)0.84092 (5)0.03203 (12)
F10.83364 (15)0.06367 (4)0.85393 (14)0.0396 (3)
N10.30003 (16)0.28484 (5)0.56387 (15)0.0211 (3)
N20.48193 (15)0.15134 (5)0.42869 (15)0.0202 (3)
N30.59506 (15)0.11718 (5)0.45432 (14)0.0206 (3)
C10.38175 (18)0.25044 (6)0.53450 (17)0.0197 (3)
C20.19192 (18)0.27355 (5)0.62820 (18)0.0198 (3)
C30.1078 (2)0.31116 (6)0.6618 (2)0.0263 (3)
H3A0.12690.34220.63960.032*
C40.0011 (2)0.30245 (6)0.7265 (2)0.0278 (4)
H4A0.05510.32730.74940.033*
C50.03054 (19)0.25528 (6)0.75826 (19)0.0235 (3)
C60.04711 (18)0.21773 (6)0.72696 (18)0.0211 (3)
H6A0.02480.18700.74840.025*
C70.16176 (16)0.22620 (5)0.66153 (16)0.0174 (3)
C80.25181 (16)0.18942 (5)0.62996 (16)0.0170 (3)
C90.36189 (17)0.20185 (5)0.56766 (16)0.0173 (3)
C100.23459 (16)0.13863 (5)0.66548 (17)0.0175 (3)
C110.20683 (18)0.10451 (6)0.55481 (18)0.0218 (3)
H11A0.18740.11390.45840.026*
C120.20828 (19)0.05650 (6)0.5891 (2)0.0263 (3)
H12A0.18700.03400.51540.032*
C130.2413 (2)0.04223 (6)0.7329 (2)0.0274 (4)
H13A0.24700.01010.75580.033*
C140.26595 (19)0.07580 (6)0.8428 (2)0.0244 (3)
H14A0.28630.06610.93910.029*
C150.26037 (17)0.12397 (6)0.80953 (18)0.0201 (3)
H15A0.27380.14640.88330.024*
C160.47176 (17)0.16606 (5)0.55166 (17)0.0179 (3)
C170.58110 (18)0.14337 (6)0.68073 (17)0.0230 (3)
H17A0.53260.12150.73010.028*
H17B0.63420.16700.74940.028*
C180.68460 (17)0.11731 (6)0.60858 (17)0.0193 (3)
H18A0.77470.13600.61950.023*
C190.72498 (17)0.06821 (6)0.67002 (17)0.0194 (3)
C200.86967 (18)0.05790 (6)0.74894 (17)0.0206 (3)
H20A0.94260.08090.75960.025*
C210.90692 (19)0.01333 (6)0.81253 (18)0.0235 (3)
H21A1.00370.00640.86560.028*
C220.7969 (2)0.01989 (6)0.7946 (2)0.0268 (4)
C230.6518 (2)0.01129 (7)0.7168 (2)0.0320 (4)
H23A0.57970.03460.70620.038*
C240.61669 (19)0.03317 (7)0.6547 (2)0.0276 (4)
H24A0.51950.03980.60210.033*
C250.65853 (18)0.10922 (6)0.34114 (17)0.0192 (3)
C260.5758 (2)0.11696 (7)0.19626 (19)0.0267 (3)
H26A0.48050.12930.17510.032*
C270.6368 (2)0.10606 (7)0.0851 (2)0.0304 (4)
H27A0.58120.11100.01070.037*
C280.7796 (2)0.08782 (6)0.1134 (2)0.0269 (4)
H28A0.81910.08050.03770.032*
C290.86119 (19)0.08080 (6)0.25647 (18)0.0216 (3)
H29A0.95710.06910.27680.026*
C300.80235 (17)0.09098 (5)0.37050 (18)0.0193 (3)
H30A0.85830.08570.46600.023*
C310.5017 (2)0.26415 (6)0.4675 (2)0.0254 (3)
H31A0.50070.29790.45390.038*
H31B0.48510.24860.37530.038*
H31C0.59610.25470.53070.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0240 (2)0.0383 (3)0.0390 (3)0.00459 (17)0.01745 (18)0.00127 (19)
F10.0510 (8)0.0263 (6)0.0492 (7)0.0099 (5)0.0267 (6)0.0157 (5)
N10.0244 (6)0.0182 (6)0.0218 (6)0.0019 (5)0.0085 (5)0.0027 (5)
N20.0189 (6)0.0219 (6)0.0206 (6)0.0059 (5)0.0070 (5)0.0023 (5)
N30.0203 (6)0.0259 (7)0.0159 (6)0.0081 (5)0.0057 (5)0.0012 (5)
C10.0216 (7)0.0195 (7)0.0187 (7)0.0014 (5)0.0072 (6)0.0028 (5)
C20.0222 (7)0.0161 (7)0.0218 (7)0.0020 (5)0.0075 (6)0.0007 (5)
C30.0319 (9)0.0167 (7)0.0335 (9)0.0054 (6)0.0145 (7)0.0009 (6)
C40.0307 (9)0.0219 (8)0.0334 (9)0.0078 (7)0.0134 (7)0.0018 (7)
C50.0207 (7)0.0267 (8)0.0252 (8)0.0046 (6)0.0097 (6)0.0012 (6)
C60.0200 (7)0.0202 (7)0.0244 (7)0.0023 (6)0.0085 (6)0.0005 (6)
C70.0175 (6)0.0156 (6)0.0196 (7)0.0026 (5)0.0061 (5)0.0004 (5)
C80.0170 (6)0.0159 (6)0.0181 (6)0.0012 (5)0.0048 (5)0.0009 (5)
C90.0180 (6)0.0176 (6)0.0166 (6)0.0037 (5)0.0054 (5)0.0014 (5)
C100.0160 (6)0.0142 (6)0.0231 (7)0.0003 (5)0.0070 (5)0.0025 (5)
C110.0202 (7)0.0220 (7)0.0231 (7)0.0013 (6)0.0058 (6)0.0048 (6)
C120.0242 (8)0.0200 (7)0.0365 (9)0.0059 (6)0.0117 (7)0.0105 (7)
C130.0268 (8)0.0172 (7)0.0422 (10)0.0036 (6)0.0162 (8)0.0012 (7)
C140.0259 (8)0.0209 (7)0.0288 (8)0.0012 (6)0.0115 (7)0.0039 (6)
C150.0211 (7)0.0181 (7)0.0229 (7)0.0018 (6)0.0091 (6)0.0020 (6)
C160.0171 (6)0.0179 (7)0.0196 (7)0.0021 (5)0.0065 (5)0.0009 (5)
C170.0227 (7)0.0287 (8)0.0171 (7)0.0083 (6)0.0051 (6)0.0009 (6)
C180.0174 (6)0.0227 (7)0.0175 (7)0.0032 (5)0.0043 (5)0.0001 (6)
C190.0188 (7)0.0231 (7)0.0176 (7)0.0027 (6)0.0072 (5)0.0009 (5)
C200.0200 (7)0.0234 (7)0.0184 (7)0.0021 (6)0.0053 (6)0.0001 (6)
C210.0247 (8)0.0261 (8)0.0199 (7)0.0054 (6)0.0064 (6)0.0030 (6)
C220.0352 (9)0.0229 (8)0.0267 (8)0.0055 (7)0.0157 (7)0.0071 (6)
C230.0297 (9)0.0296 (9)0.0397 (10)0.0053 (7)0.0146 (8)0.0029 (8)
C240.0199 (7)0.0304 (9)0.0320 (9)0.0005 (7)0.0066 (7)0.0016 (7)
C250.0217 (7)0.0191 (7)0.0185 (7)0.0020 (5)0.0086 (6)0.0007 (5)
C260.0256 (8)0.0335 (9)0.0216 (8)0.0065 (7)0.0076 (6)0.0012 (7)
C270.0329 (9)0.0391 (10)0.0201 (8)0.0052 (8)0.0088 (7)0.0013 (7)
C280.0338 (9)0.0268 (8)0.0256 (8)0.0018 (7)0.0170 (7)0.0025 (7)
C290.0239 (7)0.0179 (7)0.0261 (8)0.0006 (6)0.0122 (6)0.0013 (6)
C300.0193 (7)0.0179 (7)0.0219 (7)0.0010 (5)0.0082 (6)0.0009 (5)
C310.0261 (8)0.0247 (8)0.0291 (8)0.0012 (6)0.0137 (7)0.0054 (7)
Geometric parameters (Å, º) top
Cl1—C51.7429 (17)C14—H14A0.9300
F1—C221.363 (2)C15—H15A0.9300
N1—C11.319 (2)C16—C171.509 (2)
N1—C21.372 (2)C17—C181.536 (2)
N2—C161.281 (2)C17—H17A0.9700
N2—N31.4062 (18)C17—H17B0.9700
N3—C251.4009 (19)C18—C191.511 (2)
N3—C181.480 (2)C18—H18A0.9800
C1—C91.432 (2)C19—C201.389 (2)
C1—C311.503 (2)C19—C241.399 (2)
C2—C31.417 (2)C20—C211.398 (2)
C2—C71.421 (2)C20—H20A0.9300
C3—C41.366 (2)C21—C221.372 (3)
C3—H3A0.9300C21—H21A0.9300
C4—C51.411 (3)C22—C231.380 (3)
C4—H4A0.9300C23—C241.387 (3)
C5—C61.369 (2)C23—H23A0.9300
C6—C71.418 (2)C24—H24A0.9300
C6—H6A0.9300C25—C301.402 (2)
C7—C81.427 (2)C25—C261.404 (2)
C8—C91.384 (2)C26—C271.385 (2)
C8—C101.493 (2)C26—H26A0.9300
C9—C161.486 (2)C27—C281.393 (3)
C10—C151.397 (2)C27—H27A0.9300
C10—C111.402 (2)C28—C291.384 (3)
C11—C121.393 (2)C28—H28A0.9300
C11—H11A0.9300C29—C301.392 (2)
C12—C131.386 (3)C29—H29A0.9300
C12—H12A0.9300C30—H30A0.9300
C13—C141.387 (3)C31—H31A0.9600
C13—H13A0.9300C31—H31B0.9600
C14—C151.393 (2)C31—H31C0.9600
C1—N1—C2118.69 (14)C16—C17—H17A111.4
C16—N2—N3108.31 (13)C18—C17—H17A111.4
C25—N3—N2116.45 (12)C16—C17—H17B111.4
C25—N3—C18121.92 (13)C18—C17—H17B111.4
N2—N3—C18111.12 (12)H17A—C17—H17B109.3
N1—C1—C9122.37 (14)N3—C18—C19113.35 (13)
N1—C1—C31117.34 (14)N3—C18—C17101.44 (12)
C9—C1—C31120.26 (14)C19—C18—C17112.60 (13)
N1—C2—C3117.73 (14)N3—C18—H18A109.7
N1—C2—C7122.82 (14)C19—C18—H18A109.7
C3—C2—C7119.45 (15)C17—C18—H18A109.7
C4—C3—C2120.78 (16)C20—C19—C24118.88 (16)
C4—C3—H3A119.6C20—C19—C18120.24 (14)
C2—C3—H3A119.6C24—C19—C18120.81 (14)
C3—C4—C5119.22 (15)C19—C20—C21120.77 (16)
C3—C4—H4A120.4C19—C20—H20A119.6
C5—C4—H4A120.4C21—C20—H20A119.6
C6—C5—C4122.13 (15)C22—C21—C20118.24 (16)
C6—C5—Cl1120.01 (14)C22—C21—H21A120.9
C4—C5—Cl1117.86 (12)C20—C21—H21A120.9
C5—C6—C7119.37 (15)F1—C22—C21118.29 (17)
C5—C6—H6A120.3F1—C22—C23118.68 (17)
C7—C6—H6A120.3C21—C22—C23123.02 (17)
C6—C7—C2119.04 (14)C22—C23—C24117.98 (17)
C6—C7—C8123.17 (14)C22—C23—H23A121.0
C2—C7—C8117.77 (13)C24—C23—H23A121.0
C9—C8—C7118.24 (14)C23—C24—C19121.11 (17)
C9—C8—C10119.10 (13)C23—C24—H24A119.4
C7—C8—C10122.63 (13)C19—C24—H24A119.4
C8—C9—C1120.07 (14)N3—C25—C30120.43 (14)
C8—C9—C16120.27 (14)N3—C25—C26120.27 (14)
C1—C9—C16119.23 (13)C30—C25—C26119.21 (14)
C15—C10—C11119.28 (14)C27—C26—C25119.55 (16)
C15—C10—C8120.74 (13)C27—C26—H26A120.2
C11—C10—C8119.67 (14)C25—C26—H26A120.2
C12—C11—C10120.08 (16)C26—C27—C28121.60 (17)
C12—C11—H11A120.0C26—C27—H27A119.2
C10—C11—H11A120.0C28—C27—H27A119.2
C13—C12—C11120.18 (16)C29—C28—C27118.55 (15)
C13—C12—H12A119.9C29—C28—H28A120.7
C11—C12—H12A119.9C27—C28—H28A120.7
C12—C13—C14120.02 (16)C28—C29—C30121.20 (16)
C12—C13—H13A120.0C28—C29—H29A119.4
C14—C13—H13A120.0C30—C29—H29A119.4
C13—C14—C15120.30 (16)C29—C30—C25119.88 (15)
C13—C14—H14A119.8C29—C30—H30A120.1
C15—C14—H14A119.8C25—C30—H30A120.1
C14—C15—C10120.02 (15)C1—C31—H31A109.5
C14—C15—H15A120.0C1—C31—H31B109.5
C10—C15—H15A120.0H31A—C31—H31B109.5
N2—C16—C9123.64 (14)C1—C31—H31C109.5
N2—C16—C17113.94 (13)H31A—C31—H31C109.5
C9—C16—C17122.42 (13)H31B—C31—H31C109.5
C16—C17—C18101.86 (12)
C16—N2—N3—C25158.10 (14)C8—C10—C15—C14170.26 (14)
C16—N2—N3—C1812.48 (18)N3—N2—C16—C9178.89 (14)
C2—N1—C1—C90.2 (2)N3—N2—C16—C170.53 (19)
C2—N1—C1—C31178.48 (15)C8—C9—C16—N2114.72 (18)
C1—N1—C2—C3178.56 (16)C1—C9—C16—N272.8 (2)
C1—N1—C2—C71.5 (2)C8—C9—C16—C1764.7 (2)
N1—C2—C3—C4179.70 (17)C1—C9—C16—C17107.78 (18)
C7—C2—C3—C40.4 (3)N2—C16—C17—C1810.63 (19)
C2—C3—C4—C50.8 (3)C9—C16—C17—C18169.94 (14)
C3—C4—C5—C60.3 (3)C25—N3—C18—C1977.43 (18)
C3—C4—C5—Cl1179.96 (15)N2—N3—C18—C19139.13 (13)
C4—C5—C6—C70.5 (3)C25—N3—C18—C17161.61 (15)
Cl1—C5—C6—C7179.14 (13)N2—N3—C18—C1718.17 (17)
C5—C6—C7—C20.8 (2)C16—C17—C18—N316.11 (16)
C5—C6—C7—C8177.67 (15)C16—C17—C18—C19137.59 (14)
N1—C2—C7—C6179.49 (15)N3—C18—C19—C20132.50 (15)
C3—C2—C7—C60.4 (2)C17—C18—C19—C20113.06 (16)
N1—C2—C7—C81.9 (2)N3—C18—C19—C2450.6 (2)
C3—C2—C7—C8178.16 (15)C17—C18—C19—C2463.8 (2)
C6—C7—C8—C9179.16 (15)C24—C19—C20—C210.2 (2)
C2—C7—C8—C90.6 (2)C18—C19—C20—C21176.76 (14)
C6—C7—C8—C101.0 (2)C19—C20—C21—C220.1 (2)
C2—C7—C8—C10177.52 (14)C20—C21—C22—F1178.66 (14)
C7—C8—C9—C10.9 (2)C20—C21—C22—C230.0 (3)
C10—C8—C9—C1179.15 (14)F1—C22—C23—C24178.82 (16)
C7—C8—C9—C16171.44 (14)C21—C22—C23—C240.2 (3)
C10—C8—C9—C166.8 (2)C22—C23—C24—C190.2 (3)
N1—C1—C9—C81.4 (2)C20—C19—C24—C230.0 (3)
C31—C1—C9—C8179.67 (15)C18—C19—C24—C23176.91 (16)
N1—C1—C9—C16171.04 (15)N2—N3—C25—C30155.63 (15)
C31—C1—C9—C167.2 (2)C18—N3—C25—C3014.0 (2)
C9—C8—C10—C15114.82 (17)N2—N3—C25—C2627.9 (2)
C7—C8—C10—C1563.3 (2)C18—N3—C25—C26169.55 (16)
C9—C8—C10—C1158.7 (2)N3—C25—C26—C27175.89 (17)
C7—C8—C10—C11123.13 (16)C30—C25—C26—C270.6 (3)
C15—C10—C11—C121.4 (2)C25—C26—C27—C280.5 (3)
C8—C10—C11—C12172.27 (14)C26—C27—C28—C290.3 (3)
C10—C11—C12—C131.8 (2)C27—C28—C29—C300.9 (3)
C11—C12—C13—C143.1 (3)C28—C29—C30—C250.8 (2)
C12—C13—C14—C151.2 (3)N3—C25—C30—C29176.51 (15)
C13—C14—C15—C102.1 (2)C26—C25—C30—C290.0 (2)
C11—C10—C15—C143.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C2/C7–C9 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···N1i0.932.573.493 (2)173
C17—H17A···Cg10.972.863.6307 (19)137
C31—H31B···Cg2ii0.962.863.584 (2)133
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC31H23ClFN3
Mr491.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.4303 (2), 28.2155 (6), 9.6028 (2)
β (°) 106.636 (1)
V3)2448.17 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.49 × 0.23 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.914, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
38888, 8947, 6981
Rint0.031
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.171, 1.08
No. of reflections8947
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1/C2/C7–C9 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15A···N1i0.932.573.493 (2)173
C17—H17A···Cg10.972.863.6307 (19)137
C31—H31B···Cg2ii0.962.863.584 (2)133
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks Malaysian government and USM for the award of the post of Assistant Research Officer under Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144–o3145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds