organic compounds
4,6-Dichloro-5-methoxypyrimidine
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: hkfun@usm.my
The molecule of the title compound, C5H4Cl2N2O, is close to being planar (r.m.s. deviation = 0.013 Å), apart from the C atom of the methoxy group, which deviates by 1.082 (2) Å from the mean plane of the other atoms. In the crystal, short Cl⋯N contacts [3.0940 (15) and 3.1006 (17) Å] generate a three-dimensional framework.
Related literature
For background to the importance of pyrimidines and analogous compounds in pharmaceutical and biological fields, see: Townsend & Drach (2002a,b). For related structures, see: Bukhari et al. (2008, 2009); Fun et al. (2006, 2008)); Yathirajan et al. (2007); Zhao et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810001637/hb5305sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810001637/hb5305Isup2.hkl
The title compound was obtained as a gift sample from R. L. Fine Chem., Bangalore, India. The compound was used without further purification. Colourless blocks of (I) were obtained from the slow evaporation of an acetonitrile solution (m.p.: 313–315 K).
All hydrogen atoms were positioned geometrically with a riding model with C–H = 0.93–0.96 Å and Uiso(H) = 1.2 and 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.
The importance of pyrimidines and analogous compounds in pharmaceutical and biological fields is well known (Townsend et al., 2002a,b)). The crystal structures of 4-(4-bromophenyl)-6-(4-chlorophenyl)pyrimidin-2-ylamine (Bukhari et al., 2009), 4-(4-fluorophenyl)-6-(2-furyl)pyrimidin-2-amine (Bukhari et al., 2008), 2-amino-4,6-dichloropyrimidine (Fun et al., 2008), 4,6-diphenylpyrimidin-2-ylamine (Fun et al., 2006), 5-bromopyrimidin-2(1H)-one (Yathirajan et al., 2007) and 4-(4-chlorophenyl)-6-(methylsulfanyl)pyrimidin-2-amine (Zhao et al., 2009) have been reported. We now report the structure of the title compound, (I).
The geometrical parameters of the title compound (Fig. 1) are comparable to those related structures. In the
(Fig. 2), molecules are linked into chains by short Cl1···N2 interaction of 3.0940 (15) Å, symmetry code: -1/2 + x, 1/2 - y, z, along the a axis. The short Cl2···N1 interaction of 3.1006 (17) Å, symmetry code: 3/2 - x, 1/2 + y, -1/2 + z linked these chains into a three-dimensional framework.For background to the importance of pyrimidines and analogous compounds in pharmaceutical and biological fields, see: Townsend & Drach (2002a,b). For related structures, see: Bukhari et al. (2008, 2009); Fun et al. (2006, 2008)); Yathirajan et al. (2007); Zhao et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C5H4Cl2N2O | F(000) = 360 |
Mr = 179.00 | Dx = 1.701 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 1997 reflections |
a = 13.6545 (19) Å | θ = 3.0–32.2° |
b = 3.9290 (6) Å | µ = 0.85 mm−1 |
c = 13.0275 (18) Å | T = 100 K |
V = 698.91 (17) Å3 | Block, colourless |
Z = 4 | 0.29 × 0.20 × 0.09 mm |
Bruker APEX Duo CCD diffractometer | 1520 independent reflections |
Radiation source: fine-focus sealed tube | 1415 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 30.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −19→17 |
Tmin = 0.787, Tmax = 0.926 | k = −5→4 |
4505 measured reflections | l = −18→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0274P)2 + 0.0046P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
1520 reflections | Δρmax = 0.27 e Å−3 |
92 parameters | Δρmin = −0.19 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 459 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.02 (6) |
C5H4Cl2N2O | V = 698.91 (17) Å3 |
Mr = 179.00 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 13.6545 (19) Å | µ = 0.85 mm−1 |
b = 3.9290 (6) Å | T = 100 K |
c = 13.0275 (18) Å | 0.29 × 0.20 × 0.09 mm |
Bruker APEX Duo CCD diffractometer | 1520 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1415 reflections with I > 2σ(I) |
Tmin = 0.787, Tmax = 0.926 | Rint = 0.024 |
4505 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.054 | Δρmax = 0.27 e Å−3 |
S = 1.08 | Δρmin = −0.19 e Å−3 |
1520 reflections | Absolute structure: Flack (1983), 459 Friedel pairs |
92 parameters | Absolute structure parameter: −0.02 (6) |
1 restraint |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.00227 (3) | 0.39313 (10) | 0.31491 (4) | 0.01880 (10) | |
Cl2 | 0.68657 (3) | −0.13063 (10) | 0.50590 (3) | 0.01823 (10) | |
O1 | 0.87265 (8) | 0.2620 (3) | 0.49779 (10) | 0.0158 (2) | |
N1 | 0.85636 (12) | 0.0895 (4) | 0.22384 (12) | 0.0173 (3) | |
N2 | 0.71682 (10) | −0.1454 (3) | 0.30807 (13) | 0.0164 (3) | |
C1 | 0.89051 (11) | 0.1878 (4) | 0.31413 (16) | 0.0146 (3) | |
C2 | 0.77002 (14) | −0.0714 (5) | 0.22517 (14) | 0.0176 (4) | |
H2A | 0.7446 | −0.1382 | 0.1621 | 0.021* | |
C3 | 0.75310 (13) | −0.0416 (4) | 0.39696 (13) | 0.0134 (3) | |
C4 | 0.84177 (14) | 0.1346 (4) | 0.40704 (14) | 0.0136 (3) | |
C5 | 0.94496 (15) | 0.0608 (5) | 0.55200 (16) | 0.0225 (4) | |
H5A | 0.9966 | −0.0013 | 0.5057 | 0.034* | |
H5B | 0.9147 | −0.1413 | 0.5786 | 0.034* | |
H5C | 0.9715 | 0.1917 | 0.6077 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01301 (17) | 0.02330 (19) | 0.02010 (18) | −0.00290 (14) | 0.00081 (16) | 0.0021 (2) |
Cl2 | 0.01565 (17) | 0.02443 (19) | 0.01463 (17) | −0.00177 (15) | 0.00211 (17) | 0.00248 (19) |
O1 | 0.0159 (5) | 0.0185 (5) | 0.0130 (5) | 0.0029 (4) | −0.0029 (6) | −0.0044 (6) |
N1 | 0.0148 (7) | 0.0222 (8) | 0.0150 (7) | 0.0019 (6) | −0.0012 (6) | −0.0009 (6) |
N2 | 0.0152 (6) | 0.0182 (7) | 0.0159 (7) | 0.0014 (5) | −0.0030 (7) | −0.0010 (6) |
C1 | 0.0114 (6) | 0.0150 (7) | 0.0174 (7) | 0.0020 (5) | 0.0012 (8) | 0.0010 (7) |
C2 | 0.0172 (9) | 0.0213 (10) | 0.0145 (8) | 0.0015 (7) | −0.0028 (7) | −0.0019 (7) |
C3 | 0.0127 (8) | 0.0144 (8) | 0.0130 (7) | 0.0017 (6) | 0.0005 (7) | 0.0016 (6) |
C4 | 0.0133 (8) | 0.0133 (7) | 0.0142 (8) | 0.0030 (5) | −0.0015 (6) | −0.0003 (6) |
C5 | 0.0261 (10) | 0.0243 (9) | 0.0170 (8) | 0.0052 (7) | −0.0097 (8) | −0.0013 (8) |
Cl1—C1 | 1.7262 (16) | N2—C2 | 1.334 (2) |
Cl2—C3 | 1.7210 (19) | C1—C4 | 1.397 (3) |
O1—C4 | 1.351 (2) | C2—H2A | 0.9300 |
O1—C5 | 1.449 (2) | C3—C4 | 1.401 (3) |
N1—C1 | 1.323 (2) | C5—H5A | 0.9600 |
N1—C2 | 1.338 (2) | C5—H5B | 0.9600 |
N2—C3 | 1.324 (2) | C5—H5C | 0.9600 |
C4—O1—C5 | 115.92 (13) | C4—C3—Cl2 | 118.65 (14) |
C1—N1—C2 | 115.91 (16) | O1—C4—C1 | 123.64 (16) |
C3—N2—C2 | 115.93 (14) | O1—C4—C3 | 122.32 (16) |
N1—C1—C4 | 123.97 (15) | C1—C4—C3 | 113.86 (16) |
N1—C1—Cl1 | 116.95 (14) | O1—C5—H5A | 109.5 |
C4—C1—Cl1 | 119.08 (14) | O1—C5—H5B | 109.5 |
N2—C2—N1 | 126.41 (17) | H5A—C5—H5B | 109.5 |
N2—C2—H2A | 116.8 | O1—C5—H5C | 109.5 |
N1—C2—H2A | 116.8 | H5A—C5—H5C | 109.5 |
N2—C3—C4 | 123.89 (16) | H5B—C5—H5C | 109.5 |
N2—C3—Cl2 | 117.46 (14) | ||
C2—N1—C1—C4 | −0.4 (2) | N1—C1—C4—O1 | −173.85 (16) |
C2—N1—C1—Cl1 | 179.51 (12) | Cl1—C1—C4—O1 | 6.2 (2) |
C3—N2—C2—N1 | 1.5 (2) | N1—C1—C4—C3 | 1.4 (2) |
C1—N1—C2—N2 | −1.1 (3) | Cl1—C1—C4—C3 | −178.53 (12) |
C2—N2—C3—C4 | −0.3 (2) | N2—C3—C4—O1 | 174.29 (15) |
C2—N2—C3—Cl2 | 179.80 (13) | Cl2—C3—C4—O1 | −5.8 (2) |
C5—O1—C4—C1 | −85.2 (2) | N2—C3—C4—C1 | −1.0 (2) |
C5—O1—C4—C3 | 99.96 (19) | Cl2—C3—C4—C1 | 178.89 (12) |
Experimental details
Crystal data | |
Chemical formula | C5H4Cl2N2O |
Mr | 179.00 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 100 |
a, b, c (Å) | 13.6545 (19), 3.9290 (6), 13.0275 (18) |
V (Å3) | 698.91 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.85 |
Crystal size (mm) | 0.29 × 0.20 × 0.09 |
Data collection | |
Diffractometer | Bruker APEX Duo CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.787, 0.926 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4505, 1520, 1415 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.054, 1.08 |
No. of reflections | 1520 |
No. of parameters | 92 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.19 |
Absolute structure | Flack (1983), 459 Friedel pairs |
Absolute structure parameter | −0.02 (6) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Acknowledgements
HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship. CSC thanks the University of Mysore for research facilities.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bukhari, M. H., Siddiqui, H. L., Ahmad, N., Siddiqui, W. A. & Parvez, M. (2009). Acta Cryst. E65, o390. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bukhari, M. H., Siddiqui, H. L., Chaudhary, M. A., Hussain, T. & Parvez, M. (2008). Acta Cryst. E64, o963. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Chantrapromma, S., Jana, S., Chakrabarty, R. & Goswami, S. (2008). Acta Cryst. E64, o1659–o1660. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Townsend, L. B. & Drach, J. C. (2002a). Chem. Abstr. 136, 134778. Google Scholar
Townsend, L. B. & Drach, J. C. (2002b). US Patent 6 342 501. Google Scholar
Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o923–o924. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, Q.-H., Li, L.-N. & Wang, K.-M. (2009). Acta Cryst. E65, o1793. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The importance of pyrimidines and analogous compounds in pharmaceutical and biological fields is well known (Townsend et al., 2002a,b)). The crystal structures of 4-(4-bromophenyl)-6-(4-chlorophenyl)pyrimidin-2-ylamine (Bukhari et al., 2009), 4-(4-fluorophenyl)-6-(2-furyl)pyrimidin-2-amine (Bukhari et al., 2008), 2-amino-4,6-dichloropyrimidine (Fun et al., 2008), 4,6-diphenylpyrimidin-2-ylamine (Fun et al., 2006), 5-bromopyrimidin-2(1H)-one (Yathirajan et al., 2007) and 4-(4-chlorophenyl)-6-(methylsulfanyl)pyrimidin-2-amine (Zhao et al., 2009) have been reported. We now report the structure of the title compound, (I).
The geometrical parameters of the title compound (Fig. 1) are comparable to those related structures. In the crystal structure (Fig. 2), molecules are linked into chains by short Cl1···N2 interaction of 3.0940 (15) Å, symmetry code: -1/2 + x, 1/2 - y, z, along the a axis. The short Cl2···N1 interaction of 3.1006 (17) Å, symmetry code: 3/2 - x, 1/2 + y, -1/2 + z linked these chains into a three-dimensional framework.