organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Methyl­sulfon­yl)piperazin-1-ium chloride

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 January 2010; accepted 10 January 2010; online 16 January 2010)

In the title mol­ecular salt, C5H13N2O2S+·Cl, the complete cation is generated by crystallographic mirror symmetry, with both N atoms, the S atom and one C atom lying on the reflecting plane. The chloride ion also lies on the mirror plane. The piperazinium ring adopts a chair conformation and the N—S bond adopts an equatorial orientation. In the crystal structure, the component ions are linked into a three-dimensional framework by inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds.

Related literature

For medicinal background to piperazine derivatives, see: Dinsmore & Beshore (2002[Dinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297-3312.]); Berkheij et al. (2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369-2371.]); Humle & Cherrier (1999[Humle, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295-5299.]). For related structures, see: Bart et al. (1978[Bart, J. C. J., Bassi, I. W. & Scordamaglia, R. (1978). Acta Cryst. B34, 2760-2764.]); Girisha et al. (2008[Girisha, H. R., Naveen, S., Vinaya, K., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2008). Acta Cryst. E64, o358.]); Homrighausen & Krause Bauer (2002[Homrighausen, C. L. & Krause Bauer, J. A. (2002). Acta Cryst. E58, o1395-o1396.]); Jin et al. (2007[Jin, H.-M., Li, P.-F., Li, C.-Y. & Liu, B. (2007). Acta Cryst. E63, o3689.]); Kubo et al. (2007[Kubo, K., Yamamoto, E., Hayakawa, A., Sakurai, T. & Mori, A. (2007). Acta Cryst. E63, o1347-o1348.]); Parkin et al. (2004[Parkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219-227.]); Shen et al. (2006[Shen, L., Wang, F.-W., Cheng, A.-B. & Yang, S. (2006). Acta Cryst. E62, o2242-o2244.]), Wang et al. (2006[Wang, J., Zeng, T., Li, M.-L., Duan, E.-H. & Li, J.-S. (2006). Acta Cryst. E62, o2912-o2913.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H13N2O2S+·Cl

  • Mr = 200.68

  • Monoclinic, P 21 /m

  • a = 6.0231 (1) Å

  • b = 9.1097 (2) Å

  • c = 7.9852 (2) Å

  • β = 100.700 (1)°

  • V = 430.52 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 100 K

  • 0.36 × 0.32 × 0.05 mm

Data collection
  • Bruker APEX Duo CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.801, Tmax = 0.968

  • 10626 measured reflections

  • 2790 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.072

  • S = 1.10

  • 2790 reflections

  • 87 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯Cl1i 0.92 (2) 2.40 (2) 3.1341 (8) 137 (1)
N1—H2N1⋯Cl1ii 0.93 (2) 2.19 (2) 3.0966 (8) 164 (1)
C1—H1A⋯Cl1iii 0.953 (12) 2.700 (12) 3.5251 (6) 145.2 (9)
C3—H3A⋯Cl1 0.94 (2) 2.65 (2) 3.5487 (10) 160 (2)
Symmetry codes: (i) x+1, y, z-1; (ii) x, y, z-1; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperazines are among the most important building blocks in today's drug discovery. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore & Beshore, 2002). They are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle & Cherrier, 1999). The piperazines are a broad class of chemical compounds, many with important pharmacological properties, which contain a core piperazine functional group. 1-(Methylsulfonyl)piperazine is an important intermediate in synthetic organic chemistry, mainly used as a pharmaceutical intermediate.

The crystal structures of trans-2,5-dimethylpiperazine dihydrochloride (Bart et al., 1978), 1-(3-chlorophenyl)-4-(3-chloropropyl)piperazinium chloride (Homrighausen & Krause Bauer, 2002), piperazine (Parkin et al., 2004), 2,2'-(piperazine-1,4-diium-1,4-diyl)diacetate dehydrate (Shen et al., 2006), 1,4-bis(chloroacetyl)piperazine (Wang et al., 2006), 1,4-bis(1-naphthylmethyl) piperazine (Kubo et al., 2007), 1,4-bis(4-chlorobenzo-yl)piperazine (Jin et al., 2007) and 1-benzhydryl-4-(4-chlorophenylsulfonyl) piperazine (Girisha et al., 2008) have been reported. In view of the importance of the title compound, this paper reports its crystal structure.

The asymmetric unit of the title compound contains one-half of a cation and half of a cloride anion (Fig. 1). The Cl1, S1, N1, N2, and C3 atoms are lying on a mirror plane. The piperazinium ring adopts a chair conformation with puckering amplitude Q = 0.5680 (7) Å, θ = 179.90 (7)°, φ = 180 (7)° (Cremer & Pople, 1975). In the crystal structure (Fig. 2), the molecules are linked into a three-dimensional framework by intermolecular hydrogen bonds (Table 1).

Related literature top

For medicinal background to piperazine derivatives, see: Dinsmore & Beshore (2002); Berkheij et al. (2005); Humle & Cherrier (1999). For related structures, see: Bart et al. (1978); Girisha et al. (2008); Homrighausen & Krause Bauer (2002); Jin et al. (2007); Kubo et al. (2007); Parkin et al. (2004); Shen et al. (2006), Wang et al. (2006). For ring conformations, see: Cremer & Pople (1975). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem., Bangalore, India. The compound was used without further purification. Colourless plates of (I) were obtained from slow evaporation of a methanol solution (m.p.: 489–492 K).

Refinement top

All H atoms were located in a difference Fourier map and refined freely.

Structure description top

Piperazines are among the most important building blocks in today's drug discovery. The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore & Beshore, 2002). They are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle & Cherrier, 1999). The piperazines are a broad class of chemical compounds, many with important pharmacological properties, which contain a core piperazine functional group. 1-(Methylsulfonyl)piperazine is an important intermediate in synthetic organic chemistry, mainly used as a pharmaceutical intermediate.

The crystal structures of trans-2,5-dimethylpiperazine dihydrochloride (Bart et al., 1978), 1-(3-chlorophenyl)-4-(3-chloropropyl)piperazinium chloride (Homrighausen & Krause Bauer, 2002), piperazine (Parkin et al., 2004), 2,2'-(piperazine-1,4-diium-1,4-diyl)diacetate dehydrate (Shen et al., 2006), 1,4-bis(chloroacetyl)piperazine (Wang et al., 2006), 1,4-bis(1-naphthylmethyl) piperazine (Kubo et al., 2007), 1,4-bis(4-chlorobenzo-yl)piperazine (Jin et al., 2007) and 1-benzhydryl-4-(4-chlorophenylsulfonyl) piperazine (Girisha et al., 2008) have been reported. In view of the importance of the title compound, this paper reports its crystal structure.

The asymmetric unit of the title compound contains one-half of a cation and half of a cloride anion (Fig. 1). The Cl1, S1, N1, N2, and C3 atoms are lying on a mirror plane. The piperazinium ring adopts a chair conformation with puckering amplitude Q = 0.5680 (7) Å, θ = 179.90 (7)°, φ = 180 (7)° (Cremer & Pople, 1975). In the crystal structure (Fig. 2), the molecules are linked into a three-dimensional framework by intermolecular hydrogen bonds (Table 1).

For medicinal background to piperazine derivatives, see: Dinsmore & Beshore (2002); Berkheij et al. (2005); Humle & Cherrier (1999). For related structures, see: Bart et al. (1978); Girisha et al. (2008); Homrighausen & Krause Bauer (2002); Jin et al. (2007); Kubo et al. (2007); Parkin et al. (2004); Shen et al. (2006), Wang et al. (2006). For ring conformations, see: Cremer & Pople (1975). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability ellipsoids for the non-H atoms. Atoms with suffix A are generated by the symmetry operation (x, 1/2 - y, z).
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis, showing the hydrogen-bonded (dashed lines) three-dimensional framework.
4-(Methylsulfonyl)piperazin-1-ium chloride top
Crystal data top
C5H13N2O2S+·ClF(000) = 212
Mr = 200.68Dx = 1.548 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 4890 reflections
a = 6.0231 (1) Åθ = 3.4–40.1°
b = 9.1097 (2) ŵ = 0.64 mm1
c = 7.9852 (2) ÅT = 100 K
β = 100.700 (1)°Plate, colourless
V = 430.52 (2) Å30.36 × 0.32 × 0.05 mm
Z = 2
Data collection top
Bruker APEX Duo CCD
diffractometer
2790 independent reflections
Radiation source: fine-focus sealed tube2419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 40.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.801, Tmax = 0.968k = 1416
10626 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.0922P]
where P = (Fo2 + 2Fc2)/3
2790 reflections(Δ/σ)max = 0.001
87 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C5H13N2O2S+·ClV = 430.52 (2) Å3
Mr = 200.68Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.0231 (1) ŵ = 0.64 mm1
b = 9.1097 (2) ÅT = 100 K
c = 7.9852 (2) Å0.36 × 0.32 × 0.05 mm
β = 100.700 (1)°
Data collection top
Bruker APEX Duo CCD
diffractometer
2790 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2419 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.968Rint = 0.022
10626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.49 e Å3
2790 reflectionsΔρmin = 0.40 e Å3
87 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30674 (3)0.25000.93448 (3)0.01195 (5)
S10.69091 (3)0.25000.56598 (2)0.00951 (5)
N10.82854 (12)0.25000.03611 (9)0.01007 (11)
N20.79320 (12)0.25000.38830 (9)0.00974 (11)
O10.75935 (9)0.11396 (6)0.65235 (6)0.01498 (9)
C10.87784 (10)0.11522 (7)0.14202 (8)0.01165 (9)
C20.74465 (10)0.11465 (7)0.28537 (8)0.01168 (9)
C30.39411 (15)0.25000.50705 (12)0.01332 (13)
H1A0.8351 (18)0.0315 (13)0.0719 (14)0.012 (2)*
H1B1.040 (2)0.1186 (13)0.1845 (16)0.016 (3)*
H2A0.583 (2)0.1017 (14)0.2371 (15)0.018 (3)*
H2B0.789 (2)0.0335 (16)0.3554 (17)0.027 (3)*
H3A0.331 (3)0.25000.606 (2)0.019 (4)*
H3B0.350 (2)0.3381 (15)0.4460 (16)0.025 (3)*
H1N10.914 (3)0.25000.048 (2)0.019 (4)*
H2N10.677 (3)0.25000.017 (2)0.021 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.00886 (7)0.01261 (8)0.01485 (9)0.0000.00346 (6)0.000
S10.01110 (8)0.01033 (8)0.00696 (8)0.0000.00128 (6)0.000
N10.0098 (2)0.0115 (3)0.0095 (3)0.0000.00316 (19)0.000
N20.0126 (2)0.0084 (2)0.0087 (2)0.0000.0032 (2)0.000
O10.01874 (19)0.01499 (19)0.01109 (18)0.00356 (16)0.00245 (15)0.00480 (15)
C10.0148 (2)0.00900 (19)0.0122 (2)0.00097 (17)0.00547 (17)0.00041 (17)
C20.0162 (2)0.0083 (2)0.0117 (2)0.00109 (16)0.00571 (17)0.00060 (16)
C30.0115 (3)0.0166 (3)0.0121 (3)0.0000.0027 (2)0.000
Geometric parameters (Å, º) top
S1—O1i1.4408 (5)N2—C2i1.4806 (7)
S1—O11.4408 (5)C1—C21.5148 (8)
S1—N21.6484 (7)C1—H1A0.953 (11)
S1—C31.7621 (9)C1—H1B0.976 (12)
N1—C11.4892 (7)C2—H2A0.983 (13)
N1—C1i1.4892 (7)C2—H2B0.935 (14)
N1—H1N10.920 (17)C3—H3A0.941 (18)
N1—H2N10.933 (19)C3—H3B0.951 (14)
N2—C21.4806 (7)
O1i—S1—O1118.67 (4)N1—C1—C2110.75 (5)
O1i—S1—N2107.01 (2)N1—C1—H1A108.8 (7)
O1—S1—N2107.01 (2)C2—C1—H1A108.5 (6)
O1i—S1—C3108.28 (3)N1—C1—H1B104.6 (7)
O1—S1—C3108.29 (3)C2—C1—H1B112.1 (7)
N2—S1—C3107.03 (4)H1A—C1—H1B112.0 (9)
C1—N1—C1i111.07 (7)N2—C2—C1109.81 (5)
C1—N1—H1N1109.7 (5)N2—C2—H2A113.4 (7)
C1i—N1—H1N1109.7 (5)C1—C2—H2A109.1 (7)
C1—N1—H2N1109.5 (5)N2—C2—H2B108.7 (8)
C1i—N1—H2N1109.5 (5)C1—C2—H2B108.7 (7)
H1N1—N1—H2N1107.3 (15)H2A—C2—H2B107.1 (10)
C2—N2—C2i112.77 (7)S1—C3—H3A108.9 (11)
C2—N2—S1114.27 (4)S1—C3—H3B108.1 (8)
C2i—N2—S1114.27 (4)H3A—C3—H3B108.3 (9)
O1i—S1—N2—C2178.10 (5)C3—S1—N2—C2i66.00 (5)
O1—S1—N2—C249.91 (6)C1i—N1—C1—C256.95 (8)
C3—S1—N2—C265.99 (5)C2i—N2—C2—C156.73 (8)
O1i—S1—N2—C2i49.91 (6)S1—N2—C2—C1170.56 (4)
O1—S1—N2—C2i178.10 (5)N1—C1—C2—N255.89 (7)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl1ii0.92 (2)2.40 (2)3.1341 (8)137 (1)
N1—H2N1···Cl1iii0.93 (2)2.19 (2)3.0966 (8)164 (1)
C1—H1A···Cl1iv0.953 (12)2.700 (12)3.5251 (6)145.2 (9)
C3—H3A···Cl10.94 (2)2.65 (2)3.5487 (10)160 (2)
Symmetry codes: (ii) x+1, y, z1; (iii) x, y, z1; (iv) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC5H13N2O2S+·Cl
Mr200.68
Crystal system, space groupMonoclinic, P21/m
Temperature (K)100
a, b, c (Å)6.0231 (1), 9.1097 (2), 7.9852 (2)
β (°) 100.700 (1)
V3)430.52 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.36 × 0.32 × 0.05
Data collection
DiffractometerBruker APEX Duo CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.801, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
10626, 2790, 2419
Rint0.022
(sin θ/λ)max1)0.906
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.072, 1.10
No. of reflections2790
No. of parameters87
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl1i0.919 (17)2.395 (18)3.1341 (8)137.4 (14)
N1—H2N1···Cl1ii0.932 (18)2.192 (18)3.0966 (8)163.5 (14)
C1—H1A···Cl1iii0.953 (12)2.700 (12)3.5251 (6)145.2 (9)
C3—H3A···Cl10.938 (17)2.654 (16)3.5487 (10)159.6 (15)
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z1; (iii) x+1, y1/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship. CSC thanks University of Mysore for research facilities.

References

First citationBart, J. C. J., Bassi, I. W. & Scordamaglia, R. (1978). Acta Cryst. B34, 2760–2764.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369–2371.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297–3312.  Web of Science CrossRef CAS Google Scholar
First citationGirisha, H. R., Naveen, S., Vinaya, K., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2008). Acta Cryst. E64, o358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHomrighausen, C. L. & Krause Bauer, J. A. (2002). Acta Cryst. E58, o1395–o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHumle, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295–5299.  Google Scholar
First citationJin, H.-M., Li, P.-F., Li, C.-Y. & Liu, B. (2007). Acta Cryst. E63, o3689.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubo, K., Yamamoto, E., Hayakawa, A., Sakurai, T. & Mori, A. (2007). Acta Cryst. E63, o1347–o1348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParkin, A., Oswald, I. D. H. & Parsons, S. (2004). Acta Cryst. B60, 219–227.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, L., Wang, F.-W., Cheng, A.-B. & Yang, S. (2006). Acta Cryst. E62, o2242–o2244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Zeng, T., Li, M.-L., Duan, E.-H. & Li, J.-S. (2006). Acta Cryst. E62, o2912–o2913.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds