metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-benzoato-κ4O:O′;κ3O:O,O′;κ3O,O′:O′-bis­­[(benzoato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)neodymium(III)]

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 11 January 2010; accepted 25 January 2010; online 30 January 2010)

The complete mol­ecule of the title compound, [Nd2(C7H5O2)6(C12H8N2)2], is generated by a crystallographic inversion center. The two NdIII ions are linked by four bridging benzoate ions, with an Nd⋯Nd separation of 4.0360 (2) Å. As well as the bridging ligands, each NdIII ion is coordinated by one N,N′-bidentate phenanthroline ligand and an O,O′-bidentate benzoate ion. The resulting irregular nine-coordinated geometry of the NdIII ion is completed by seven O and two N atoms. The mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds. In the crystal structure, mol­ecules are linked into infinite chains along the c axis by inter­molecular C—H⋯O hydrogen bonds. The crystal structure is consolidated by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to and applications of NdIII complexes, see: Swavey & Swavey (2009[Swavey, S. & Swavey, R. (2009). Coord. Chem. Rev. 253, 2627-2638.]). For related Ln–benzoato complexes, see: Niu et al. (1999[Niu, S. Y., Jin, J., Bu, W. M., Yang, G. D., Cao, J. Q. & Yang, B. (1999). Chin. J. Struct. Chem. 18, 245-248.]); Niu et al. (2002[Niu, S. Y., Jin, J., Jin, X. L. & Yang, Z. Z. (2002). Solid State Sci. 4, 1103-1106.]); Shi et al. (2001[Shi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122-m123.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd2(C7H5O2)6(C12H8N2)2]

  • Mr = 1375.55

  • Triclinic, [P \overline 1]

  • a = 10.7954 (3) Å

  • b = 11.8702 (4) Å

  • c = 12.2660 (7) Å

  • α = 104.925 (1)°

  • β = 93.831 (1)°

  • γ = 112.877 (1)°

  • V = 1374.49 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 100 K

  • 0.69 × 0.41 × 0.13 mm

Data collection
  • Bruker SMART APEX DUO CCD diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.347, Tmax = 0.784

  • 46897 measured reflections

  • 11933 independent reflections

  • 11529 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.071

  • S = 1.39

  • 11933 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.51 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O4i 2.3856 (10)
Nd1—O6 2.4060 (10)
Nd1—O5i 2.4230 (10)
Nd1—O2 2.4600 (10)
Nd1—O3 2.4810 (10)
Nd1—O1 2.5475 (10)
Nd1—N1 2.6288 (12)
Nd1—N2 2.6870 (11)
Nd1—O4 2.8039 (10)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg5 are the centroids of the C28–C33, C21–C26 and C14–C19 phenyl rings, respectively. Cg3 and Cg4 are the centroids of the N2/C8–C12 and N1/C1–C15 pyridine rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1ii 0.93 2.57 3.4729 (19) 163
C11—H11A⋯O6 0.93 2.50 3.1239 (19) 125
C26—H26A⋯O2i 0.93 2.56 3.4393 (19) 158
C7—H7ACg1iii 0.93 2.89 3.4554 (18) 121
C16—H16ACg2iv 0.93 2.98 3.7544 (18) 141
C17—H17ACg3v 0.93 2.94 3.7287 (19) 143
C24—H24ACg4vi 0.93 2.81 3.6620 (17) 153
C30—H30ACg5vii 0.93 2.73 3.6435 (18) 167
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z+1; (v) -x+1, -y+2, -z+2; (vi) -x, -y, -z+1; (vii) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Lanthanide complexes with organic ligands, especially NdIII complexes, are often used in magnetic resonance imaging (MRI) because NdIII complexes emit in the near infrared region (NIR) (Swavey & Swavey, 2009). The crystal structure obtained from this complex are slightly different from the other Ln-benzoato complexes, such as LaIII (Shi et al., 2001), SmIII (Niu et al., 1999), and GdIII (Niu et al., 2002) due to the lanthanide contraction.

The asymmetric unit of the title complex (Fig. 1) lies on a crystallographic inversion center and comprises of one-half molecule [symmetry code of atoms labelled with suffix A: -x, -y+1, -z+1]. The two NdIII ions are linked by four benzoate ions, with an Nd—Nd distance of 4.0360 (2) Å. Among the four benzoate ions, two of them also behave as chelating ligands to the NdIII ions. Each NdIII ion is coordinated by one phenanthroline heterocycle and a bidentate benzoate ion. The irregular nine-coordinated geometry of the NdIII ion is completed by seven benzoate O atoms and two phenanthroline N atoms. Intramolecular C11—H11A···O6 and C26—H26A···O2 hydrogen bonds (Table 2) stabilize the molecular structure. Bond lengths of Nd—O and Nd—N are listed in Table 1. All other bond lengths and angles are comparable to a closely La-benzoato complex (Shi et al., 2001).

In the crystal structure, intermolecular C3—H3A···O1 hydrogen bonds (Table 2) link the molecules into infinite chains along the c axis (Fig. 2). The crystal structure is further stabilized by weak intermolecular C7A—H7A···Cg1, C16—H16A···Cg2, C17—H17A···Cg3, C24—H24A···Cg4 and C30—H30A···Cg5 interactions (Table 2).

Related literature top

For general background to and applications of NdIII complexes, see: Swavey & Swavey (2009). For related Ln–benzoato complexes, see: Niu et al. (1999); Niu et al. (2002); Shi et al. (2001). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

NdCl3.6H2O was prepared by dissolving neodymium oxide in hydrochloric acid and then dried. Metal salt (0.5 mmol) in methanol was added into a solution (methanol-H2O, 1:1) of 1,10-phenanthroline (0.5 mmol) and benzoic acid (1.5 mmol). The mixture was refluxed for 24 h to give a pink solution. The solution was filtered at room temperature and purple plates of (I) were obtained after 10 days.

Refinement top

All aromatic hydrogen atoms were placed in their calculated positions, with C—H = 0.93 Å, and refined using a riding model with Uiso = 1.2 Ueq(C). The highest residual electron density peak is located at 1.25 Å from O4 and the deepest hole is located at 1.51 Å from Nd1.

Structure description top

Lanthanide complexes with organic ligands, especially NdIII complexes, are often used in magnetic resonance imaging (MRI) because NdIII complexes emit in the near infrared region (NIR) (Swavey & Swavey, 2009). The crystal structure obtained from this complex are slightly different from the other Ln-benzoato complexes, such as LaIII (Shi et al., 2001), SmIII (Niu et al., 1999), and GdIII (Niu et al., 2002) due to the lanthanide contraction.

The asymmetric unit of the title complex (Fig. 1) lies on a crystallographic inversion center and comprises of one-half molecule [symmetry code of atoms labelled with suffix A: -x, -y+1, -z+1]. The two NdIII ions are linked by four benzoate ions, with an Nd—Nd distance of 4.0360 (2) Å. Among the four benzoate ions, two of them also behave as chelating ligands to the NdIII ions. Each NdIII ion is coordinated by one phenanthroline heterocycle and a bidentate benzoate ion. The irregular nine-coordinated geometry of the NdIII ion is completed by seven benzoate O atoms and two phenanthroline N atoms. Intramolecular C11—H11A···O6 and C26—H26A···O2 hydrogen bonds (Table 2) stabilize the molecular structure. Bond lengths of Nd—O and Nd—N are listed in Table 1. All other bond lengths and angles are comparable to a closely La-benzoato complex (Shi et al., 2001).

In the crystal structure, intermolecular C3—H3A···O1 hydrogen bonds (Table 2) link the molecules into infinite chains along the c axis (Fig. 2). The crystal structure is further stabilized by weak intermolecular C7A—H7A···Cg1, C16—H16A···Cg2, C17—H17A···Cg3, C24—H24A···Cg4 and C30—H30A···Cg5 interactions (Table 2).

For general background to and applications of NdIII complexes, see: Swavey & Swavey (2009). For related Ln–benzoato complexes, see: Niu et al. (1999); Niu et al. (2002); Shi et al. (2001). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 20% probability displacement ellipsoids for non-H atoms. The suffix A corresponds to the symmetry code [-x, -y+1, -z+1].
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the a axis, showing one-dimensional infinite chains along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
Tetra-µ-benzoato-κ4O:O';κ3O:O,O'; κ3O,O':O'-bis[(benzoato-κ2O,O')(1,10- phenanthroline-κ2N,N')neodymium(III)] top
Crystal data top
[Nd2(C7H5O2)6(C12H8N2)2]Z = 1
Mr = 1375.55F(000) = 686
Triclinic, P1Dx = 1.662 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7954 (3) ÅCell parameters from 9761 reflections
b = 11.8702 (4) Åθ = 3.0–37.6°
c = 12.2660 (7) ŵ = 1.94 mm1
α = 104.925 (1)°T = 100 K
β = 93.831 (1)°Plate, purple
γ = 112.877 (1)°0.69 × 0.41 × 0.13 mm
V = 1374.49 (10) Å3
Data collection top
Bruker SMART APEX DUO CCD
diffractometer
11933 independent reflections
Radiation source: fine-focus sealed tube11529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 35.0°, θmin = 2.7°
Absorption correction: multi-scan
SADABS (Bruker, 2009)
h = 1717
Tmin = 0.347, Tmax = 0.784k = 1819
46897 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.39 w = 1/[σ2(Fo2) + (0.039P)2 + 0.2397P]
where P = (Fo2 + 2Fc2)/3
11933 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 1.26 e Å3
0 restraintsΔρmin = 1.51 e Å3
Crystal data top
[Nd2(C7H5O2)6(C12H8N2)2]γ = 112.877 (1)°
Mr = 1375.55V = 1374.49 (10) Å3
Triclinic, P1Z = 1
a = 10.7954 (3) ÅMo Kα radiation
b = 11.8702 (4) ŵ = 1.94 mm1
c = 12.2660 (7) ÅT = 100 K
α = 104.925 (1)°0.69 × 0.41 × 0.13 mm
β = 93.831 (1)°
Data collection top
Bruker SMART APEX DUO CCD
diffractometer
11933 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2009)
11529 reflections with I > 2σ(I)
Tmin = 0.347, Tmax = 0.784Rint = 0.020
46897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.39Δρmax = 1.26 e Å3
11933 reflectionsΔρmin = 1.51 e Å3
379 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.135991 (5)0.561522 (5)0.646953 (5)0.01014 (3)
O10.07381 (10)0.68363 (9)0.82160 (9)0.01641 (16)
O20.27604 (10)0.77974 (10)0.77735 (9)0.01605 (16)
O30.15987 (11)0.35844 (10)0.56526 (9)0.01848 (18)
O40.00549 (10)0.36146 (9)0.44049 (9)0.01530 (16)
O50.08829 (10)0.59147 (10)0.34526 (9)0.01613 (16)
O60.24489 (10)0.63755 (10)0.49909 (9)0.01578 (16)
N10.19179 (12)0.48650 (11)0.82052 (10)0.01452 (17)
N20.38701 (11)0.57086 (11)0.69470 (10)0.01398 (17)
C10.30009 (13)0.45576 (12)0.82829 (11)0.01378 (19)
C20.10022 (15)0.45161 (13)0.88670 (12)0.0171 (2)
H2A0.02660.47350.88220.021*
C30.10869 (16)0.38359 (14)0.96296 (12)0.0192 (2)
H3A0.04400.36361.00960.023*
C40.21506 (16)0.34718 (14)0.96717 (12)0.0195 (2)
H4A0.22110.29921.01480.023*
C50.31456 (14)0.38298 (13)0.89895 (12)0.0166 (2)
C60.42959 (16)0.35029 (14)0.90061 (13)0.0202 (2)
H6A0.43710.29930.94460.024*
C70.52686 (16)0.39300 (15)0.83879 (13)0.0203 (2)
H7A0.60070.37120.84120.024*
C80.51832 (13)0.47134 (13)0.76955 (12)0.0163 (2)
C90.61982 (14)0.52029 (14)0.70660 (13)0.0191 (2)
H9A0.69820.50550.71140.023*
C100.60218 (14)0.59012 (14)0.63790 (13)0.0192 (2)
H10A0.66730.62180.59460.023*
C110.48338 (14)0.61251 (13)0.63463 (12)0.0169 (2)
H11A0.47180.65920.58760.020*
C120.40383 (13)0.50067 (12)0.76196 (11)0.01365 (19)
C130.18596 (13)0.78037 (12)0.83975 (11)0.01332 (19)
C140.21680 (13)0.89994 (12)0.93665 (10)0.01395 (19)
C150.11566 (16)0.91061 (14)0.99806 (12)0.0187 (2)
H15A0.02760.84490.97680.022*
C160.14606 (19)1.01942 (16)1.09120 (13)0.0238 (3)
H16A0.07831.02681.13170.029*
C170.2775 (2)1.11663 (16)1.12335 (13)0.0259 (3)
H17A0.29831.18831.18660.031*
C180.37869 (17)1.10783 (14)1.06176 (13)0.0231 (3)
H18A0.46671.17361.08320.028*
C190.34719 (15)0.99948 (13)0.96739 (12)0.0176 (2)
H19A0.41400.99400.92490.021*
C200.06862 (12)0.30308 (12)0.47633 (11)0.01305 (18)
C210.03417 (13)0.16578 (11)0.41377 (11)0.01327 (18)
C220.12719 (14)0.11477 (13)0.43391 (12)0.0163 (2)
H22A0.21120.16740.48260.020*
C230.09434 (16)0.01436 (14)0.38135 (13)0.0196 (2)
H23A0.15700.04780.39390.023*
C240.03202 (17)0.09346 (14)0.31012 (13)0.0214 (2)
H24A0.05440.18020.27580.026*
C250.12551 (16)0.04316 (13)0.28996 (13)0.0208 (2)
H25A0.21020.09630.24240.025*
C260.09184 (14)0.08677 (13)0.34117 (12)0.0163 (2)
H26A0.15350.12070.32690.020*
C270.20609 (13)0.65426 (12)0.40696 (11)0.01327 (19)
C280.30895 (12)0.75547 (12)0.36677 (11)0.01323 (18)
C290.26872 (14)0.78761 (13)0.27284 (12)0.0171 (2)
H29A0.17820.74530.23420.020*
C300.36372 (16)0.88293 (15)0.23681 (14)0.0211 (2)
H30A0.33620.90500.17500.025*
C310.49950 (16)0.94497 (14)0.29314 (14)0.0218 (2)
H31A0.56281.00870.26920.026*
C320.54037 (15)0.91166 (15)0.38495 (14)0.0230 (3)
H32A0.63160.95190.42170.028*
C330.44521 (14)0.81793 (14)0.42247 (12)0.0192 (2)
H33A0.47290.79700.48500.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01005 (3)0.00866 (3)0.01053 (3)0.00329 (2)0.00192 (2)0.00210 (2)
O10.0166 (4)0.0123 (4)0.0174 (4)0.0039 (3)0.0051 (3)0.0028 (3)
O20.0153 (4)0.0136 (4)0.0154 (4)0.0041 (3)0.0038 (3)0.0012 (3)
O30.0172 (4)0.0130 (4)0.0209 (4)0.0069 (3)0.0032 (3)0.0010 (3)
O40.0173 (4)0.0138 (4)0.0179 (4)0.0090 (3)0.0041 (3)0.0057 (3)
O50.0132 (4)0.0154 (4)0.0163 (4)0.0025 (3)0.0025 (3)0.0049 (3)
O60.0148 (4)0.0176 (4)0.0156 (4)0.0058 (3)0.0044 (3)0.0074 (3)
N10.0149 (4)0.0144 (4)0.0145 (4)0.0065 (3)0.0031 (3)0.0042 (3)
N20.0132 (4)0.0125 (4)0.0138 (4)0.0044 (3)0.0016 (3)0.0021 (3)
C10.0148 (5)0.0123 (4)0.0127 (4)0.0058 (4)0.0007 (4)0.0017 (4)
C20.0194 (5)0.0165 (5)0.0168 (5)0.0079 (4)0.0058 (4)0.0060 (4)
C30.0229 (6)0.0189 (6)0.0176 (5)0.0087 (5)0.0066 (5)0.0078 (4)
C40.0241 (6)0.0177 (5)0.0174 (5)0.0084 (5)0.0032 (4)0.0072 (4)
C50.0185 (5)0.0147 (5)0.0157 (5)0.0073 (4)0.0000 (4)0.0037 (4)
C60.0236 (6)0.0174 (5)0.0209 (6)0.0109 (5)0.0003 (5)0.0054 (4)
C70.0210 (6)0.0189 (6)0.0219 (6)0.0125 (5)0.0003 (5)0.0023 (5)
C80.0154 (5)0.0145 (5)0.0172 (5)0.0078 (4)0.0007 (4)0.0004 (4)
C90.0161 (5)0.0173 (5)0.0221 (6)0.0087 (4)0.0036 (4)0.0005 (4)
C100.0153 (5)0.0185 (5)0.0215 (6)0.0067 (4)0.0057 (4)0.0023 (4)
C110.0146 (5)0.0162 (5)0.0178 (5)0.0050 (4)0.0037 (4)0.0040 (4)
C120.0131 (4)0.0120 (4)0.0135 (5)0.0053 (4)0.0005 (4)0.0005 (4)
C130.0151 (5)0.0119 (4)0.0124 (4)0.0057 (4)0.0020 (4)0.0031 (4)
C140.0177 (5)0.0122 (4)0.0114 (4)0.0067 (4)0.0013 (4)0.0026 (4)
C150.0237 (6)0.0174 (5)0.0171 (5)0.0105 (5)0.0060 (4)0.0051 (4)
C160.0362 (8)0.0233 (6)0.0171 (6)0.0191 (6)0.0069 (5)0.0037 (5)
C170.0409 (9)0.0196 (6)0.0164 (6)0.0175 (6)0.0023 (5)0.0014 (5)
C180.0286 (7)0.0146 (5)0.0190 (6)0.0065 (5)0.0049 (5)0.0002 (4)
C190.0204 (5)0.0142 (5)0.0150 (5)0.0058 (4)0.0009 (4)0.0025 (4)
C200.0128 (4)0.0101 (4)0.0160 (5)0.0053 (4)0.0034 (4)0.0027 (4)
C210.0143 (5)0.0105 (4)0.0146 (5)0.0056 (4)0.0024 (4)0.0026 (4)
C220.0175 (5)0.0141 (5)0.0179 (5)0.0087 (4)0.0025 (4)0.0030 (4)
C230.0259 (6)0.0153 (5)0.0200 (6)0.0125 (5)0.0047 (5)0.0033 (4)
C240.0308 (7)0.0131 (5)0.0185 (5)0.0099 (5)0.0026 (5)0.0011 (4)
C250.0235 (6)0.0131 (5)0.0192 (6)0.0045 (4)0.0017 (5)0.0008 (4)
C260.0173 (5)0.0126 (5)0.0165 (5)0.0051 (4)0.0003 (4)0.0033 (4)
C270.0137 (5)0.0115 (4)0.0145 (5)0.0050 (4)0.0047 (4)0.0037 (4)
C280.0132 (4)0.0116 (4)0.0148 (5)0.0045 (4)0.0048 (4)0.0044 (4)
C290.0158 (5)0.0173 (5)0.0211 (5)0.0076 (4)0.0048 (4)0.0096 (4)
C300.0224 (6)0.0202 (6)0.0251 (6)0.0089 (5)0.0073 (5)0.0136 (5)
C310.0216 (6)0.0178 (6)0.0246 (6)0.0039 (5)0.0084 (5)0.0104 (5)
C320.0170 (5)0.0219 (6)0.0228 (6)0.0005 (5)0.0024 (5)0.0093 (5)
C330.0153 (5)0.0191 (5)0.0189 (5)0.0016 (4)0.0020 (4)0.0082 (4)
Geometric parameters (Å, º) top
Nd1—O4i2.3856 (10)C10—H10A0.9300
Nd1—O62.4060 (10)C11—H11A0.9300
Nd1—O5i2.4230 (10)C13—C141.4996 (18)
Nd1—O22.4600 (10)C14—C191.3879 (19)
Nd1—O32.4810 (10)C14—C151.3942 (19)
Nd1—O12.5475 (10)C15—C161.393 (2)
Nd1—N12.6288 (12)C15—H15A0.9300
Nd1—N22.6870 (11)C16—C171.385 (3)
Nd1—O42.8039 (10)C16—H16A0.9300
O1—C131.2591 (16)C17—C181.390 (3)
O2—C131.2781 (16)C17—H17A0.9300
O3—C201.2553 (16)C18—C191.396 (2)
O4—C201.2736 (15)C18—H18A0.9300
O4—Nd1i2.3855 (10)C19—H19A0.9300
O5—C271.2607 (16)C20—C211.4932 (17)
O5—Nd1i2.4230 (10)C21—C261.3925 (18)
O6—C271.2684 (16)C21—C221.3974 (18)
N1—C21.3304 (17)C22—C231.3887 (19)
N1—C11.3579 (17)C22—H22A0.9300
N2—C111.3266 (17)C23—C241.389 (2)
N2—C121.3636 (17)C23—H23A0.9300
C1—C51.4122 (19)C24—C251.395 (2)
C1—C121.4427 (18)C24—H24A0.9300
C2—C31.404 (2)C25—C261.3929 (19)
C2—H2A0.9300C25—H25A0.9300
C3—C41.378 (2)C26—H26A0.9300
C3—H3A0.9300C27—C281.5034 (17)
C4—C51.408 (2)C28—C331.3918 (19)
C4—H4A0.9300C28—C291.3965 (19)
C5—C61.438 (2)C29—C301.3939 (19)
C6—C71.351 (2)C29—H29A0.9300
C6—H6A0.9300C30—C311.390 (2)
C7—C81.435 (2)C30—H30A0.9300
C7—H7A0.9300C31—C321.385 (2)
C8—C91.408 (2)C31—H31A0.9300
C8—C121.4118 (18)C32—C331.394 (2)
C9—C101.376 (2)C32—H32A0.9300
C9—H9A0.9300C33—H33A0.9300
C10—C111.407 (2)
O4i—Nd1—O673.10 (3)C9—C10—H10A120.7
O4i—Nd1—O5i79.74 (3)C11—C10—H10A120.7
O6—Nd1—O5i135.40 (3)N2—C11—C10123.81 (13)
O4i—Nd1—O290.44 (4)N2—C11—H11A118.1
O6—Nd1—O286.17 (3)C10—C11—H11A118.1
O5i—Nd1—O2129.27 (3)N2—C12—C8122.72 (12)
O4i—Nd1—O3126.97 (3)N2—C12—C1118.10 (11)
O6—Nd1—O388.34 (4)C8—C12—C1119.17 (12)
O5i—Nd1—O380.45 (4)O1—C13—O2121.55 (12)
O2—Nd1—O3138.41 (3)O1—C13—C14120.10 (11)
O4i—Nd1—O178.44 (3)O2—C13—C14118.35 (11)
O6—Nd1—O1129.08 (3)O1—C13—Nd162.75 (7)
O5i—Nd1—O176.84 (3)O2—C13—Nd158.84 (7)
O2—Nd1—O152.45 (3)C14—C13—Nd1176.57 (9)
O3—Nd1—O1141.78 (4)C19—C14—C15119.60 (12)
O4i—Nd1—N1146.80 (3)C19—C14—C13120.12 (12)
O6—Nd1—N1138.90 (3)C15—C14—C13120.26 (12)
O5i—Nd1—N178.15 (3)C16—C15—C14120.19 (14)
O2—Nd1—N184.74 (4)C16—C15—H15A119.9
O3—Nd1—N172.90 (4)C14—C15—H15A119.9
O1—Nd1—N172.63 (3)C17—C16—C15119.79 (15)
O4i—Nd1—N2147.67 (3)C17—C16—H16A120.1
O6—Nd1—N277.31 (3)C15—C16—H16A120.1
O5i—Nd1—N2131.81 (3)C16—C17—C18120.50 (14)
O2—Nd1—N274.72 (3)C16—C17—H17A119.8
O3—Nd1—N263.86 (3)C18—C17—H17A119.8
O1—Nd1—N2111.81 (3)C17—C18—C19119.49 (15)
N1—Nd1—N261.62 (3)C17—C18—H18A120.3
O4i—Nd1—O478.19 (3)C19—C18—H18A120.3
O6—Nd1—O473.81 (3)C14—C19—C18120.38 (14)
O5i—Nd1—O466.35 (3)C14—C19—H19A119.8
O2—Nd1—O4159.09 (3)C18—C19—H19A119.8
O3—Nd1—O448.81 (3)O3—C20—O4121.21 (12)
O1—Nd1—O4139.16 (3)O3—C20—C21118.34 (11)
N1—Nd1—O4114.30 (3)O4—C20—C21120.45 (11)
N2—Nd1—O4105.85 (3)O3—C20—Nd153.53 (6)
C13—O1—Nd191.18 (8)O4—C20—Nd168.32 (7)
C13—O2—Nd194.76 (8)C21—C20—Nd1167.86 (9)
C20—O3—Nd1102.46 (8)C26—C21—C22119.87 (12)
C20—O4—Nd1i171.01 (9)C26—C21—C20120.95 (11)
C20—O4—Nd186.72 (7)C22—C21—C20119.08 (11)
Nd1i—O4—Nd1101.81 (3)C23—C22—C21120.12 (13)
C27—O5—Nd1i139.15 (9)C23—C22—H22A119.9
C27—O6—Nd1135.75 (8)C21—C22—H22A119.9
C2—N1—C1118.06 (12)C24—C23—C22119.98 (13)
C2—N1—Nd1120.55 (9)C24—C23—H23A120.0
C1—N1—Nd1119.81 (8)C22—C23—H23A120.0
C11—N2—C12117.69 (12)C23—C24—C25120.16 (13)
C11—N2—Nd1122.51 (9)C23—C24—H24A119.9
C12—N2—Nd1117.62 (8)C25—C24—H24A119.9
N1—C1—C5122.46 (12)C26—C25—C24119.92 (13)
N1—C1—C12118.03 (11)C26—C25—H25A120.0
C5—C1—C12119.51 (12)C24—C25—H25A120.0
N1—C2—C3123.59 (13)C25—C26—C21119.94 (13)
N1—C2—H2A118.2C25—C26—H26A120.0
C3—C2—H2A118.2C21—C26—H26A120.0
C4—C3—C2118.44 (13)O5—C27—O6125.19 (12)
C4—C3—H3A120.8O5—C27—C28117.15 (11)
C2—C3—H3A120.8O6—C27—C28117.66 (11)
C3—C4—C5119.63 (13)C33—C28—C29119.27 (12)
C3—C4—H4A120.2C33—C28—C27120.46 (12)
C5—C4—H4A120.2C29—C28—C27120.27 (11)
C4—C5—C1117.69 (12)C30—C29—C28120.22 (13)
C4—C5—C6122.59 (13)C30—C29—H29A119.9
C1—C5—C6119.70 (13)C28—C29—H29A119.9
C7—C6—C5120.58 (13)C31—C30—C29120.09 (13)
C7—C6—H6A119.7C31—C30—H30A120.0
C5—C6—H6A119.7C29—C30—H30A120.0
C6—C7—C8121.22 (13)C32—C31—C30119.87 (13)
C6—C7—H7A119.4C32—C31—H31A120.1
C8—C7—H7A119.4C30—C31—H31A120.1
C9—C8—C12117.66 (13)C31—C32—C33120.20 (14)
C9—C8—C7122.62 (13)C31—C32—H32A119.9
C12—C8—C7119.71 (13)C33—C32—H32A119.9
C10—C9—C8119.56 (13)C28—C33—C32120.33 (13)
C10—C9—H9A120.2C28—C33—H33A119.8
C8—C9—H9A120.2C32—C33—H33A119.8
C9—C10—C11118.52 (13)
O4i—Nd1—O1—C1398.30 (8)O1—Nd1—N2—C1272.08 (9)
O6—Nd1—O1—C1341.56 (9)N1—Nd1—N2—C1217.66 (8)
O5i—Nd1—O1—C13179.68 (8)O4—Nd1—N2—C1291.79 (9)
O2—Nd1—O1—C131.33 (7)C13—Nd1—N2—C1291.68 (9)
O3—Nd1—O1—C13124.60 (8)C20—Nd1—N2—C1277.39 (9)
N1—Nd1—O1—C1398.18 (8)Nd1i—Nd1—N2—C12117.61 (8)
N2—Nd1—O1—C1349.60 (8)C2—N1—C1—C53.41 (19)
O4—Nd1—O1—C13154.52 (7)Nd1—N1—C1—C5162.33 (10)
C20—Nd1—O1—C13165.30 (8)C2—N1—C1—C12176.14 (12)
Nd1i—Nd1—O1—C13122.72 (7)Nd1—N1—C1—C1218.12 (15)
O4i—Nd1—O2—C1373.69 (8)C1—N1—C2—C30.8 (2)
O6—Nd1—O2—C13146.72 (8)Nd1—N1—C2—C3164.86 (11)
O5i—Nd1—O2—C133.38 (10)N1—C2—C3—C42.1 (2)
O3—Nd1—O2—C13130.13 (8)C2—C3—C4—C52.4 (2)
O1—Nd1—O2—C131.31 (7)C3—C4—C5—C10.0 (2)
N1—Nd1—O2—C1373.41 (8)C3—C4—C5—C6178.85 (14)
N2—Nd1—O2—C13135.39 (8)N1—C1—C5—C43.0 (2)
O4—Nd1—O2—C13130.12 (9)C12—C1—C5—C4176.50 (12)
C20—Nd1—O2—C13155.92 (10)N1—C1—C5—C6178.08 (12)
Nd1i—Nd1—O2—C1389.53 (8)C12—C1—C5—C62.39 (19)
O4i—Nd1—O3—C207.61 (10)C4—C5—C6—C7176.12 (14)
O6—Nd1—O3—C2074.92 (9)C1—C5—C6—C72.7 (2)
O5i—Nd1—O3—C2061.73 (9)C5—C6—C7—C80.3 (2)
O2—Nd1—O3—C20157.25 (8)C6—C7—C8—C9178.22 (14)
O1—Nd1—O3—C20115.79 (9)C6—C7—C8—C122.5 (2)
N1—Nd1—O3—C20142.18 (9)C12—C8—C9—C102.2 (2)
N2—Nd1—O3—C20151.59 (10)C7—C8—C9—C10177.14 (14)
O4—Nd1—O3—C205.11 (7)C8—C9—C10—C111.2 (2)
C13—Nd1—O3—C20160.95 (8)C12—N2—C11—C101.04 (19)
Nd1i—Nd1—O3—C206.30 (8)Nd1—N2—C11—C10163.83 (10)
O4i—Nd1—O4—C20177.11 (9)C9—C10—C11—N20.5 (2)
O6—Nd1—O4—C20107.28 (8)C11—N2—C12—C80.05 (18)
O5i—Nd1—O4—C2093.26 (8)Nd1—N2—C12—C8163.59 (9)
O2—Nd1—O4—C20124.56 (10)C11—N2—C12—C1179.54 (11)
O3—Nd1—O4—C204.93 (7)Nd1—N2—C12—C116.82 (14)
O1—Nd1—O4—C20120.82 (8)C9—C8—C12—N21.64 (19)
N1—Nd1—O4—C2029.59 (8)C7—C8—C12—N2177.71 (12)
N2—Nd1—O4—C2035.95 (8)C9—C8—C12—C1177.94 (12)
C13—Nd1—O4—C20154.15 (10)C7—C8—C12—C12.71 (18)
Nd1i—Nd1—O4—C20177.11 (9)N1—C1—C12—N20.35 (17)
O4i—Nd1—O4—Nd1i0.0C5—C1—C12—N2179.91 (12)
O6—Nd1—O4—Nd1i75.61 (4)N1—C1—C12—C8179.25 (11)
O5i—Nd1—O4—Nd1i83.85 (4)C5—C1—C12—C80.30 (18)
O2—Nd1—O4—Nd1i58.33 (10)Nd1—O1—C13—O22.37 (13)
O3—Nd1—O4—Nd1i177.96 (6)Nd1—O1—C13—C14177.83 (10)
O1—Nd1—O4—Nd1i56.29 (6)Nd1—O2—C13—O12.47 (14)
N1—Nd1—O4—Nd1i147.52 (3)Nd1—O2—C13—C14177.74 (10)
N2—Nd1—O4—Nd1i146.94 (3)O1—C13—C14—C19170.57 (13)
C13—Nd1—O4—Nd1i22.96 (11)O2—C13—C14—C199.23 (19)
C20—Nd1—O4—Nd1i177.11 (9)Nd1—C13—C14—C1943.6 (16)
O4i—Nd1—O6—C2724.01 (12)O1—C13—C14—C157.96 (19)
O5i—Nd1—O6—C2731.03 (14)O2—C13—C14—C15172.24 (12)
O2—Nd1—O6—C27115.64 (13)Nd1—C13—C14—C15137.8 (15)
O3—Nd1—O6—C27105.61 (12)C19—C14—C15—C161.3 (2)
O1—Nd1—O6—C2782.91 (13)C13—C14—C15—C16177.23 (13)
N1—Nd1—O6—C27166.87 (11)C14—C15—C16—C170.6 (2)
N2—Nd1—O6—C27169.17 (13)C15—C16—C17—C181.5 (2)
O4—Nd1—O6—C2758.26 (12)C16—C17—C18—C190.5 (2)
C13—Nd1—O6—C27100.77 (12)C15—C14—C19—C182.3 (2)
C20—Nd1—O6—C2782.26 (12)C13—C14—C19—C18176.25 (13)
Nd1i—Nd1—O6—C2721.25 (12)C17—C18—C19—C141.4 (2)
O4i—Nd1—N1—C218.15 (14)Nd1—O3—C20—O49.94 (14)
O6—Nd1—N1—C2178.90 (9)Nd1—O3—C20—C21169.30 (9)
O5i—Nd1—N1—C231.09 (10)Nd1i—O4—C20—O3170.2 (5)
O2—Nd1—N1—C2100.88 (10)Nd1—O4—C20—O38.59 (12)
O3—Nd1—N1—C2114.61 (11)Nd1i—O4—C20—C219.0 (6)
O1—Nd1—N1—C248.65 (10)Nd1—O4—C20—C21170.64 (11)
N2—Nd1—N1—C2176.34 (11)Nd1i—O4—C20—Nd1161.6 (6)
O4—Nd1—N1—C288.11 (10)O3—C20—C21—C26157.87 (13)
C13—Nd1—N1—C275.05 (10)O4—C20—C21—C2621.38 (19)
C20—Nd1—N1—C2100.15 (10)Nd1—C20—C21—C26112.6 (4)
Nd1i—Nd1—N1—C258.31 (12)O3—C20—C21—C2218.49 (18)
O4i—Nd1—N1—C1176.47 (8)O4—C20—C21—C22162.26 (12)
O6—Nd1—N1—C115.72 (12)Nd1—C20—C21—C2263.7 (4)
O5i—Nd1—N1—C1134.29 (10)C26—C21—C22—C230.2 (2)
O2—Nd1—N1—C193.74 (10)C20—C21—C22—C23176.63 (12)
O3—Nd1—N1—C150.77 (9)C21—C22—C23—C241.0 (2)
O1—Nd1—N1—C1145.97 (10)C22—C23—C24—C250.9 (2)
N2—Nd1—N1—C118.27 (9)C23—C24—C25—C260.2 (2)
O4—Nd1—N1—C177.27 (10)C24—C25—C26—C211.0 (2)
C13—Nd1—N1—C1119.57 (10)C22—C21—C26—C250.8 (2)
C20—Nd1—N1—C165.23 (10)C20—C21—C26—C25175.54 (13)
Nd1i—Nd1—N1—C1107.07 (9)Nd1i—O5—C27—O610.3 (2)
O4i—Nd1—N2—C1121.91 (13)Nd1i—O5—C27—C28170.72 (9)
O6—Nd1—N2—C112.17 (10)Nd1—O6—C27—O528.0 (2)
O5i—Nd1—N2—C11143.22 (9)Nd1—O6—C27—C28152.96 (9)
O2—Nd1—N2—C1187.28 (10)O5—C27—C28—C33172.26 (13)
O3—Nd1—N2—C1196.61 (11)O6—C27—C28—C336.83 (18)
O1—Nd1—N2—C11125.12 (10)O5—C27—C28—C297.60 (18)
N1—Nd1—N2—C11179.55 (11)O6—C27—C28—C29173.31 (12)
O4—Nd1—N2—C1171.01 (10)C33—C28—C29—C301.2 (2)
C13—Nd1—N2—C11105.52 (10)C27—C28—C29—C30178.96 (13)
C20—Nd1—N2—C1185.41 (10)C28—C29—C30—C311.0 (2)
Nd1i—Nd1—N2—C1145.18 (11)C29—C30—C31—C320.2 (2)
O4i—Nd1—N2—C12175.30 (8)C30—C31—C32—C331.3 (3)
O6—Nd1—N2—C12160.63 (9)C29—C28—C33—C320.1 (2)
O5i—Nd1—N2—C1219.57 (11)C27—C28—C33—C32179.95 (14)
O2—Nd1—N2—C12109.92 (9)C31—C32—C33—C281.1 (2)
O3—Nd1—N2—C1266.19 (9)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg5 are the centroids of the C28–C33, C21–C26 and C14–C19 phenyl rings, respectively. Cg3 and Cg4 are the centroids of the N2/C8–C12 and N1/C1–C15 pyridine rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1ii0.932.573.4729 (19)163
C11—H11A···O60.932.503.1239 (19)125
C26—H26A···O2i0.932.563.4393 (19)158
C7—H7A···Cg1iii0.932.893.4554 (18)121
C16—H16A···Cg2iv0.932.983.7544 (18)141
C17—H17A···Cg3v0.932.943.7287 (19)143
C24—H24A···Cg4vi0.932.813.6620 (17)153
C30—H30A···Cg5vii0.932.733.6435 (18)167
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y+2, z+2; (vi) x, y, z+1; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Nd2(C7H5O2)6(C12H8N2)2]
Mr1375.55
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.7954 (3), 11.8702 (4), 12.2660 (7)
α, β, γ (°)104.925 (1), 93.831 (1), 112.877 (1)
V3)1374.49 (10)
Z1
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.69 × 0.41 × 0.13
Data collection
DiffractometerBruker SMART APEX DUO CCD
Absorption correctionMulti-scan
SADABS (Bruker, 2009)
Tmin, Tmax0.347, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
46897, 11933, 11529
Rint0.020
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.071, 1.39
No. of reflections11933
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 1.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Nd1—O4i2.3856 (10)Nd1—O12.5475 (10)
Nd1—O62.4060 (10)Nd1—N12.6288 (12)
Nd1—O5i2.4230 (10)Nd1—N22.6870 (11)
Nd1—O22.4600 (10)Nd1—O42.8039 (10)
Nd1—O32.4810 (10)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg5 are the centroids of the C28–C33, C21–C26 and C14–C19 phenyl rings, respectively. Cg3 and Cg4 are the centroids of the N2/C8–C12 and N1/C1–C15 pyridine rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1ii0.932.573.4729 (19)163
C11—H11A···O60.932.503.1239 (19)125
C26—H26A···O2i0.932.563.4393 (19)158
C7—H7A···Cg1iii0.932.893.4554 (18)121
C16—H16A···Cg2iv0.932.983.7544 (18)141
C17—H17A···Cg3v0.932.943.7287 (19)143
C24—H24A···Cg4vi0.932.813.6620 (17)153
C30—H30A···Cg5vii0.932.733.6435 (18)167
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y+2, z+2; (vi) x, y, z+1; (vii) x, y, z1.
 

Footnotes

Additional corresponding author: howieooi83@gmail.com.

§Thomson Reuters ResearcherID: C-7576-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SGT and PHO thank Universiti Sains Malaysia (USM) for the University Grant (No. 1001/229/PKIMIA/815002) for this research. HKF and JHG thank USM for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNiu, S. Y., Jin, J., Bu, W. M., Yang, G. D., Cao, J. Q. & Yang, B. (1999). Chin. J. Struct. Chem. 18, 245–248.  CAS Google Scholar
First citationNiu, S. Y., Jin, J., Jin, X. L. & Yang, Z. Z. (2002). Solid State Sci. 4, 1103–1106.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Q., Hu, M., Cao, R., Liang, Y. & Hong, M. (2001). Acta Cryst. E57, m122–m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwavey, S. & Swavey, R. (2009). Coord. Chem. Rev. 253, 2627–2638.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds