metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N′-(5-Bromo-2-oxido­benzyl­­idene-κO)-3-hydr­­oxy-2-naphthohydrazidato-κ2N′,O]di­cyclo­hexyl­tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 19 November 2009; accepted 9 January 2010; online 16 January 2010)

The environment at the SnIV atom in the title compound, [Sn(C6H11)2(C18H11BrN2O3)], is distorted trigonal-bipyramidal, with the two cyclo­hexyl groups and the imino N atom forming the equatorial plane. The axial O—Sn—O angle is 155.97 (9)°. The presence of an intra­molecular O—H⋯N hydrogen bond in the Schiff base ligand helps to stabilize the overall structure.

Related literature

For related structures, see Lee et al. (2009a[Lee, S. M., Lo, K. M., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, m816.],b[Lee, S. M., Lo, K. M., Ali, H. M. & Ng, S. W. (2009b). Acta Cryst. E65, m862.]). For related dianions of similar hydrazone O,N,O′-chelates to tin in organotin compounds, see: Labib et al. (1996[Labib, L., Khalil, T. E., Iskander, M. F. & Refaat, L. S. (1996). Polyhedron, 21, 3697-3707.]); Samanta et al. (2007[Samanta, B., Chakraborty, J., Dey, D. K. & Mitra, S. (2007). Struct. Chem. 18, 287-297.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H11)2(C18H11BrN2O3)]

  • Mr = 668.18

  • Monoclinic, P 21 /c

  • a = 9.2442 (2) Å

  • b = 9.9949 (2) Å

  • c = 29.6493 (5) Å

  • β = 94.874 (1)°

  • V = 2729.54 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.43 mm−1

  • T = 140 K

  • 0.33 × 0.30 × 0.14 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.501, Tmax = 0.727

  • 20482 measured reflections

  • 4787 independent reflections

  • 4103 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.079

  • S = 1.09

  • 4787 reflections

  • 335 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.60 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.84 1.86 2.600 (4) 146

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For related structures, see Lee et al. (2009a,b). For related dianions of similar hydrazone O,N,O'-chelate to tin in organotin compounds, see: Labib et al. (1996); Samanta et al. (2007).

Experimental top

The Schiff base ligand was prepared by the condensation reaction of 3-hydroxy-2-naphthoyl hydrazide with 5-bromosalicylaldehyde. The title compound was prepared from the equimolar reaction of the prepared Schiff base (0.74 g, 2.0 mmol) and dicyclohexyltin oxide (0.60 g, 2.0 mmol) in toluene. The solution was left for recrystallization for a week during which yellow crystals were obtained.

Refinement top

Hydrogen atoms were placed at calculated positions (C–H 0.95 to 0.98 Å) and were treated as riding on their parent carbon atoms, with U(H) set to 1.2–1.5 times Ueq(C). The hydroxy-H was refined with a restraint of 0.84 ± 0.01 Å. There is a high peak near the tin atom.

Structure description top

For related structures, see Lee et al. (2009a,b). For related dianions of similar hydrazone O,N,O'-chelate to tin in organotin compounds, see: Labib et al. (1996); Samanta et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of [N'-(5-bromo-2-oxidobenzylidene-κO)-3-hydroxy-2- naphthohydrazidato-κ2N',O]dicyclohexyltin(IV) showing 50% probability displacement ellipsoids and the atom numbering. Hydrogen atoms are drawn as spheres of arbitrary radius.
[N'-(5-Bromo-2-oxidobenzylidene-κO)-3-hydroxy-2- naphthohydrazidato-κ2N',O]dicyclohexyltin(IV) top
Crystal data top
[Sn(C6H11)2(C18H11BrN2O3)]F(000) = 1344
Mr = 668.18Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9975 reflections
a = 9.2442 (2) Åθ = 2.2–30.4°
b = 9.9949 (2) ŵ = 2.43 mm1
c = 29.6493 (5) ÅT = 140 K
β = 94.874 (1)°Block, yellow
V = 2729.54 (9) Å30.33 × 0.30 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4787 independent reflections
Radiation source: fine-focus sealed tube4103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.501, Tmax = 0.727k = 1111
20482 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.030P)2 + 5.7701P]
where P = (Fo2 + 2Fc2)/3
4787 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 1.60 e Å3
1 restraintΔρmin = 0.49 e Å3
Crystal data top
[Sn(C6H11)2(C18H11BrN2O3)]V = 2729.54 (9) Å3
Mr = 668.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2442 (2) ŵ = 2.43 mm1
b = 9.9949 (2) ÅT = 140 K
c = 29.6493 (5) Å0.33 × 0.30 × 0.14 mm
β = 94.874 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4787 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4103 reflections with I > 2σ(I)
Tmin = 0.501, Tmax = 0.727Rint = 0.027
20482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.079H-atom parameters constrained
S = 1.09Δρmax = 1.60 e Å3
4787 reflectionsΔρmin = 0.49 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.59441 (3)0.67684 (3)0.089632 (8)0.02876 (9)
Br11.11466 (6)0.10654 (5)0.162837 (16)0.04959 (14)
N10.7471 (3)0.6588 (3)0.14945 (9)0.0258 (7)
N20.7616 (3)0.7713 (3)0.17740 (10)0.0285 (7)
O10.6597 (3)0.4803 (3)0.07780 (9)0.0414 (7)
O20.5924 (3)0.8642 (3)0.12543 (8)0.0324 (6)
O30.8900 (3)0.9235 (3)0.23968 (9)0.0402 (7)
H30.87030.85190.22560.060*
C10.8416 (4)0.4343 (4)0.13884 (12)0.0268 (8)
C20.7606 (4)0.4016 (4)0.09761 (12)0.0318 (9)
C30.7907 (5)0.2795 (4)0.07729 (14)0.0426 (11)
H3A0.73780.25550.04960.051*
C40.8943 (5)0.1934 (4)0.09617 (14)0.0414 (10)
H40.91330.11140.08160.050*
C50.9709 (5)0.2270 (4)0.13655 (13)0.0345 (9)
C60.9463 (4)0.3444 (4)0.15792 (12)0.0291 (9)
H61.00010.36550.18580.035*
C70.8270 (4)0.5570 (4)0.16245 (12)0.0267 (8)
H70.88190.56520.19090.032*
C90.6882 (4)0.9979 (4)0.18743 (11)0.0252 (8)
C100.7946 (4)1.0198 (4)0.22456 (11)0.0286 (8)
C110.8030 (4)1.1420 (4)0.24509 (13)0.0343 (9)
H110.87731.15730.26870.041*
C120.7055 (4)1.2460 (4)0.23257 (12)0.0301 (9)
C130.7133 (5)1.3727 (4)0.25347 (13)0.0382 (10)
H130.78821.38990.27670.046*
C140.6160 (5)1.4713 (4)0.24113 (14)0.0405 (10)
H140.62351.55610.25560.049*
C150.5039 (5)1.4469 (4)0.20675 (14)0.0415 (10)
H150.43421.51460.19880.050*
C160.4952 (5)1.3271 (4)0.18494 (14)0.0374 (9)
H160.42031.31280.16140.045*
C170.5959 (4)1.2233 (4)0.19668 (12)0.0280 (8)
C180.5929 (4)1.0984 (4)0.17489 (12)0.0283 (8)
H180.52161.08320.15040.034*
C80.6791 (4)0.8710 (4)0.16197 (11)0.0251 (8)
C190.3711 (4)0.6283 (4)0.09615 (13)0.0349 (9)
H190.36890.53900.11130.042*
C200.2916 (6)0.6136 (7)0.04918 (17)0.0764 (19)
H20A0.33900.54320.03210.092*
H20B0.29730.69880.03240.092*
C210.1328 (6)0.5768 (9)0.0527 (2)0.103 (3)
H21A0.08160.57380.02200.124*
H21B0.12700.48680.06630.124*
C220.0608 (6)0.6752 (7)0.0806 (2)0.085 (2)
H22A0.04080.64680.08320.102*
H22B0.05850.76330.06530.102*
C230.1366 (5)0.6897 (6)0.12744 (19)0.0605 (14)
H23A0.12970.60460.14420.073*
H23B0.08810.76030.14410.073*
C240.2960 (5)0.7263 (5)0.12488 (17)0.0487 (12)
H24A0.30270.81720.11190.058*
H24B0.34580.72740.15580.058*
C250.6808 (5)0.7552 (4)0.03016 (13)0.0371 (10)
H250.76200.69460.02320.044*
C260.5679 (6)0.7490 (6)0.01051 (16)0.0626 (14)
H26A0.48440.80690.00490.075*
H26B0.53200.65610.01460.075*
C270.6336 (8)0.7955 (7)0.05379 (17)0.084 (2)
H27A0.71070.73230.06110.101*
H27B0.55740.79520.07940.101*
C280.6953 (7)0.9312 (7)0.0481 (2)0.082 (2)
H28A0.61610.99580.04420.098*
H28B0.74170.95640.07580.098*
C290.8062 (7)0.9396 (6)0.0077 (2)0.0762 (18)
H29A0.83971.03330.00380.091*
H29B0.89130.88380.01330.091*
C300.7439 (6)0.8921 (5)0.03616 (16)0.0553 (13)
H30A0.82190.89130.06120.066*
H30B0.66780.95520.04430.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03298 (16)0.02502 (15)0.02577 (14)0.00002 (11)0.01213 (10)0.00182 (11)
Br10.0606 (3)0.0376 (3)0.0485 (3)0.0177 (2)0.0080 (2)0.0070 (2)
N10.0310 (17)0.0238 (17)0.0212 (15)0.0046 (13)0.0053 (13)0.0007 (13)
N20.0329 (18)0.0245 (17)0.0263 (16)0.0037 (14)0.0078 (14)0.0043 (13)
O10.0531 (19)0.0277 (15)0.0383 (15)0.0068 (13)0.0254 (14)0.0072 (12)
O20.0363 (16)0.0266 (14)0.0315 (14)0.0019 (11)0.0141 (12)0.0044 (11)
O30.0490 (18)0.0305 (16)0.0369 (16)0.0056 (13)0.0208 (13)0.0051 (12)
C10.031 (2)0.024 (2)0.0247 (18)0.0032 (16)0.0020 (16)0.0026 (15)
C20.039 (2)0.027 (2)0.027 (2)0.0021 (17)0.0060 (17)0.0013 (16)
C30.062 (3)0.029 (2)0.033 (2)0.002 (2)0.018 (2)0.0063 (18)
C40.061 (3)0.024 (2)0.037 (2)0.006 (2)0.007 (2)0.0030 (18)
C50.045 (2)0.026 (2)0.031 (2)0.0057 (18)0.0014 (18)0.0083 (17)
C60.036 (2)0.023 (2)0.0270 (19)0.0029 (16)0.0042 (16)0.0045 (15)
C70.027 (2)0.029 (2)0.0230 (18)0.0057 (16)0.0052 (15)0.0025 (15)
C90.026 (2)0.029 (2)0.0208 (17)0.0051 (16)0.0018 (14)0.0009 (15)
C100.033 (2)0.031 (2)0.0209 (18)0.0002 (17)0.0036 (15)0.0003 (16)
C110.037 (2)0.037 (2)0.028 (2)0.0048 (18)0.0068 (17)0.0050 (17)
C120.036 (2)0.030 (2)0.0255 (19)0.0042 (17)0.0067 (16)0.0026 (16)
C130.050 (3)0.036 (2)0.027 (2)0.005 (2)0.0008 (19)0.0052 (18)
C140.058 (3)0.031 (2)0.035 (2)0.001 (2)0.014 (2)0.0080 (18)
C150.047 (3)0.037 (2)0.041 (2)0.010 (2)0.009 (2)0.002 (2)
C160.036 (2)0.036 (2)0.039 (2)0.0025 (19)0.0006 (18)0.0014 (19)
C170.030 (2)0.029 (2)0.0263 (19)0.0028 (16)0.0071 (16)0.0012 (16)
C180.027 (2)0.032 (2)0.0254 (19)0.0038 (16)0.0007 (15)0.0006 (16)
C80.0224 (19)0.032 (2)0.0208 (18)0.0048 (16)0.0011 (15)0.0014 (15)
C190.034 (2)0.033 (2)0.036 (2)0.0056 (18)0.0085 (18)0.0028 (18)
C200.048 (3)0.138 (6)0.041 (3)0.035 (3)0.008 (2)0.012 (3)
C210.054 (4)0.203 (9)0.050 (3)0.063 (5)0.011 (3)0.016 (4)
C220.032 (3)0.128 (6)0.092 (5)0.011 (3)0.012 (3)0.070 (4)
C230.044 (3)0.056 (3)0.082 (4)0.002 (2)0.004 (3)0.006 (3)
C240.041 (3)0.041 (3)0.064 (3)0.007 (2)0.005 (2)0.002 (2)
C250.043 (3)0.039 (2)0.028 (2)0.005 (2)0.0009 (18)0.0019 (18)
C260.072 (4)0.072 (4)0.042 (3)0.009 (3)0.010 (3)0.004 (3)
C270.100 (5)0.117 (6)0.033 (3)0.009 (4)0.002 (3)0.006 (3)
C280.083 (4)0.095 (5)0.069 (4)0.006 (4)0.010 (3)0.042 (4)
C290.095 (5)0.061 (4)0.076 (4)0.017 (3)0.026 (4)0.003 (3)
C300.066 (3)0.050 (3)0.050 (3)0.010 (3)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
Sn1—O12.094 (3)C16—C171.418 (6)
Sn1—C252.145 (4)C16—H160.9500
Sn1—C192.145 (4)C17—C181.405 (5)
Sn1—O22.153 (3)C18—H180.9500
Sn1—N12.178 (3)C19—C241.506 (6)
Br1—C51.910 (4)C19—C201.525 (6)
N1—C71.296 (5)C19—H191.0000
N1—N21.397 (4)C20—C211.525 (7)
N2—C81.313 (5)C20—H20A0.9900
O1—C21.319 (5)C20—H20B0.9900
O2—C81.294 (4)C21—C221.480 (10)
O3—C101.356 (4)C21—H21A0.9900
O3—H30.8400C21—H21B0.9900
C1—C61.404 (5)C22—C231.507 (8)
C1—C21.416 (5)C22—H22A0.9900
C1—C71.425 (5)C22—H22B0.9900
C2—C31.399 (6)C23—C241.527 (6)
C3—C41.371 (6)C23—H23A0.9900
C3—H3A0.9500C23—H23B0.9900
C4—C51.380 (6)C24—H24A0.9900
C4—H40.9500C24—H24B0.9900
C5—C61.362 (5)C25—C301.492 (6)
C6—H60.9500C25—C261.527 (6)
C7—H70.9500C25—H251.0000
C9—C181.367 (5)C26—C271.537 (7)
C9—C101.429 (5)C26—H26A0.9900
C9—C81.475 (5)C26—H26B0.9900
C10—C111.364 (5)C27—C281.476 (9)
C11—C121.404 (6)C27—H27A0.9900
C11—H110.9500C27—H27B0.9900
C12—C131.409 (6)C28—C291.513 (8)
C12—C171.424 (5)C28—H28A0.9900
C13—C141.363 (6)C28—H28B0.9900
C13—H130.9500C29—C301.540 (7)
C14—C151.411 (6)C29—H29A0.9900
C14—H140.9500C29—H29B0.9900
C15—C161.360 (6)C30—H30A0.9900
C15—H150.9500C30—H30B0.9900
O1—Sn1—C2594.14 (15)C24—C19—Sn1113.4 (3)
O1—Sn1—C1995.51 (14)C20—C19—Sn1109.4 (3)
C25—Sn1—C19125.81 (15)C24—C19—H19107.4
O1—Sn1—O2155.97 (9)C20—C19—H19107.4
C25—Sn1—O296.14 (14)Sn1—C19—H19107.4
C19—Sn1—O295.96 (13)C19—C20—C21110.7 (4)
O1—Sn1—N183.25 (10)C19—C20—H20A109.5
C25—Sn1—N1116.02 (14)C21—C20—H20A109.5
C19—Sn1—N1118.03 (13)C19—C20—H20B109.5
O2—Sn1—N172.71 (10)C21—C20—H20B109.5
C7—N1—N2115.6 (3)H20A—C20—H20B108.1
C7—N1—Sn1128.4 (2)C22—C21—C20111.0 (6)
N2—N1—Sn1116.1 (2)C22—C21—H21A109.4
C8—N2—N1112.4 (3)C20—C21—H21A109.4
C2—O1—Sn1133.4 (2)C22—C21—H21B109.4
C8—O2—Sn1115.3 (2)C20—C21—H21B109.4
C10—O3—H3109.5H21A—C21—H21B108.0
C6—C1—C2119.7 (3)C21—C22—C23112.6 (5)
C6—C1—C7116.4 (3)C21—C22—H22A109.1
C2—C1—C7123.9 (3)C23—C22—H22A109.1
O1—C2—C3119.1 (3)C21—C22—H22B109.1
O1—C2—C1123.3 (3)C23—C22—H22B109.1
C3—C2—C1117.6 (3)H22A—C22—H22B107.8
C4—C3—C2121.9 (4)C22—C23—C24110.6 (4)
C4—C3—H3A119.0C22—C23—H23A109.5
C2—C3—H3A119.0C24—C23—H23A109.5
C3—C4—C5119.4 (4)C22—C23—H23B109.5
C3—C4—H4120.3C24—C23—H23B109.5
C5—C4—H4120.3H23A—C23—H23B108.1
C6—C5—C4121.3 (4)C19—C24—C23111.5 (4)
C6—C5—Br1119.4 (3)C19—C24—H24A109.3
C4—C5—Br1119.3 (3)C23—C24—H24A109.3
C5—C6—C1120.0 (3)C19—C24—H24B109.3
C5—C6—H6120.0C23—C24—H24B109.3
C1—C6—H6120.0H24A—C24—H24B108.0
N1—C7—C1127.2 (3)C30—C25—C26111.4 (4)
N1—C7—H7116.4C30—C25—Sn1114.0 (3)
C1—C7—H7116.4C26—C25—Sn1110.9 (3)
C18—C9—C10118.8 (3)C30—C25—H25106.7
C18—C9—C8119.1 (3)C26—C25—H25106.7
C10—C9—C8122.1 (3)Sn1—C25—H25106.7
O3—C10—C11118.5 (3)C25—C26—C27110.8 (4)
O3—C10—C9122.1 (3)C25—C26—H26A109.5
C11—C10—C9119.3 (3)C27—C26—H26A109.5
C10—C11—C12122.3 (3)C25—C26—H26B109.5
C10—C11—H11118.9C27—C26—H26B109.5
C12—C11—H11118.9H26A—C26—H26B108.1
C11—C12—C13122.8 (4)C28—C27—C26111.0 (5)
C11—C12—C17118.6 (3)C28—C27—H27A109.4
C13—C12—C17118.6 (4)C26—C27—H27A109.4
C14—C13—C12121.6 (4)C28—C27—H27B109.4
C14—C13—H13119.2C26—C27—H27B109.4
C12—C13—H13119.2H27A—C27—H27B108.0
C13—C14—C15119.8 (4)C27—C28—C29111.8 (5)
C13—C14—H14120.1C27—C28—H28A109.3
C15—C14—H14120.1C29—C28—H28A109.3
C16—C15—C14120.4 (4)C27—C28—H28B109.3
C16—C15—H15119.8C29—C28—H28B109.3
C14—C15—H15119.8H28A—C28—H28B107.9
C15—C16—C17121.1 (4)C28—C29—C30112.0 (5)
C15—C16—H16119.5C28—C29—H29A109.2
C17—C16—H16119.5C30—C29—H29A109.2
C18—C17—C16123.4 (4)C28—C29—H29B109.2
C18—C17—C12118.1 (3)C30—C29—H29B109.2
C16—C17—C12118.5 (4)H29A—C29—H29B107.9
C9—C18—C17122.8 (3)C25—C30—C29110.6 (4)
C9—C18—H18118.6C25—C30—H30A109.5
C17—C18—H18118.6C29—C30—H30A109.5
O2—C8—N2123.5 (3)C25—C30—H30B109.5
O2—C8—C9118.6 (3)C29—C30—H30B109.5
N2—C8—C9117.9 (3)H30A—C30—H30B108.1
C24—C19—C20111.7 (4)
O1—Sn1—N1—C70.0 (3)C15—C16—C17—C18179.2 (4)
C25—Sn1—N1—C791.3 (3)C15—C16—C17—C121.2 (6)
C19—Sn1—N1—C792.7 (3)C11—C12—C17—C181.4 (5)
O2—Sn1—N1—C7179.8 (3)C13—C12—C17—C18177.5 (4)
O1—Sn1—N1—N2179.7 (3)C11—C12—C17—C16178.3 (4)
C25—Sn1—N1—N288.4 (3)C13—C12—C17—C162.9 (5)
C19—Sn1—N1—N287.6 (3)C10—C9—C18—C170.7 (6)
O2—Sn1—N1—N20.0 (2)C8—C9—C18—C17178.6 (3)
C7—N1—N2—C8179.2 (3)C16—C17—C18—C9178.1 (4)
Sn1—N1—N2—C80.6 (4)C12—C17—C18—C91.5 (6)
C25—Sn1—O1—C2109.0 (4)Sn1—O2—C8—N21.3 (5)
C19—Sn1—O1—C2124.4 (4)Sn1—O2—C8—C9177.7 (2)
O2—Sn1—O1—C26.2 (6)N1—N2—C8—O21.3 (5)
N1—Sn1—O1—C26.8 (4)N1—N2—C8—C9177.7 (3)
O1—Sn1—O2—C80.1 (4)C18—C9—C8—O27.8 (5)
C25—Sn1—O2—C8114.7 (3)C10—C9—C8—O2171.5 (3)
C19—Sn1—O2—C8118.2 (3)C18—C9—C8—N2173.2 (3)
N1—Sn1—O2—C80.7 (2)C10—C9—C8—N27.5 (5)
Sn1—O1—C2—C3171.0 (3)O1—Sn1—C19—C24153.9 (3)
Sn1—O1—C2—C18.8 (6)C25—Sn1—C19—C24106.9 (3)
C6—C1—C2—O1179.4 (4)O2—Sn1—C19—C244.9 (3)
C7—C1—C2—O12.4 (6)N1—Sn1—C19—C2468.6 (3)
C6—C1—C2—C30.7 (6)O1—Sn1—C19—C2080.7 (4)
C7—C1—C2—C3177.5 (4)C25—Sn1—C19—C2018.4 (4)
O1—C2—C3—C4179.9 (4)O2—Sn1—C19—C20120.4 (4)
C1—C2—C3—C40.1 (7)N1—Sn1—C19—C20166.0 (4)
C2—C3—C4—C50.5 (7)C24—C19—C20—C2154.5 (7)
C3—C4—C5—C60.4 (7)Sn1—C19—C20—C21179.1 (5)
C3—C4—C5—Br1179.8 (4)C19—C20—C21—C2255.3 (8)
C4—C5—C6—C10.2 (6)C20—C21—C22—C2356.7 (7)
Br1—C5—C6—C1179.6 (3)C21—C22—C23—C2455.8 (7)
C2—C1—C6—C50.8 (6)C20—C19—C24—C2354.3 (5)
C7—C1—C6—C5177.5 (4)Sn1—C19—C24—C23178.4 (3)
N2—N1—C7—C1175.0 (3)C22—C23—C24—C1954.0 (6)
Sn1—N1—C7—C14.7 (6)O1—Sn1—C25—C30143.8 (3)
C6—C1—C7—N1173.8 (4)C19—Sn1—C25—C30116.3 (3)
C2—C1—C7—N14.4 (6)O2—Sn1—C25—C3014.4 (3)
C18—C9—C10—O3178.2 (4)N1—Sn1—C25—C3059.3 (4)
C8—C9—C10—O32.5 (6)O1—Sn1—C25—C2689.5 (3)
C18—C9—C10—C113.1 (6)C19—Sn1—C25—C2610.4 (4)
C8—C9—C10—C11176.2 (4)O2—Sn1—C25—C26112.3 (3)
O3—C10—C11—C12177.9 (4)N1—Sn1—C25—C26174.0 (3)
C9—C10—C11—C123.4 (6)C30—C25—C26—C2756.1 (6)
C10—C11—C12—C13179.9 (4)Sn1—C25—C26—C27175.8 (4)
C10—C11—C12—C171.1 (6)C25—C26—C27—C2856.2 (7)
C11—C12—C13—C14179.0 (4)C26—C27—C28—C2955.7 (8)
C17—C12—C13—C142.2 (6)C27—C28—C29—C3054.9 (8)
C12—C13—C14—C150.2 (6)C26—C25—C30—C2954.8 (6)
C13—C14—C15—C162.0 (6)Sn1—C25—C30—C29178.8 (4)
C14—C15—C16—C171.3 (6)C28—C29—C30—C2554.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.841.862.600 (4)146

Experimental details

Crystal data
Chemical formula[Sn(C6H11)2(C18H11BrN2O3)]
Mr668.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)140
a, b, c (Å)9.2442 (2), 9.9949 (2), 29.6493 (5)
β (°) 94.874 (1)
V3)2729.54 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.43
Crystal size (mm)0.33 × 0.30 × 0.14
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.501, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
20482, 4787, 4103
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 1.09
No. of reflections4787
No. of parameters335
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.60, 0.49

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.841.862.600 (4)146.1
 

Acknowledgements

We thank the University of Malaya (grant Nos. PS320/2008 C and RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLabib, L., Khalil, T. E., Iskander, M. F. & Refaat, L. S. (1996). Polyhedron, 21, 3697–3707.  CSD CrossRef Web of Science Google Scholar
First citationLee, S. M., Lo, K. M., Ali, H. M. & Ng, S. W. (2009b). Acta Cryst. E65, m862.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, S. M., Lo, K. M., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, m816.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamanta, B., Chakraborty, J., Dey, D. K. & Mitra, S. (2007). Struct. Chem. 18, 287–297.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds