metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,3-Bis(di­phenyl­phosphino)propane-κ2P:P′]bis­­[bromidogold(I)]

aFachbereich C – Anorganische Chemie, Bergische Universität Wuppertal, 42119 Wuppertal, Germany, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 22 December 2009; accepted 11 January 2010; online 16 January 2010)

The title compound, [Au2Br2(C27H26P2)], features linearly coordinated AuI atoms within P,Br-donor sets. The central portion of the mol­ecule is practically planar as quanti­fied by the Br–Au⋯Au–Br torsion angle of −169.9 (2)°. The P—Au—Br chromophores are twisted with respect to each other [dihedral angle = 52.3 (6)°]. The benzene rings on each P atom lie on either side of this plane. The Au atoms are positioned at the periphery of the mol­ecule, which facilitates the formation of Au⋯Au inter­actions [3.2575 (11) Å] that result in the formation of supra­molecular chains along the b-axis direction. The Au⋯Au inter­actions are responsible for the deviations from the ideal linear geometry for each Au atom.

Related literature

For polymorphic structures of the chlorido analogue of the title compound, see: Cooper et al. (1984[Cooper, M. K., Mitchell, L. E., Hendrick, K., McPartlin, M. & Scott, A. (1984). Inorg. Chim. Acta, 84, L9-L10.]); Kaim et al. (2005[Kaim, W., Dogana, A., Klein, A. & Záliš, S. (2005). Z. Anorg. Allg. Chem. 631, 1355-1358.]). For background to related studies in gold chemistry, see: Gallenkamp et al. (2009[Gallenkamp, D., Porsch, T., Molter, A., Tiekink, E. R. T. & Mohr, F. (2009). J. Organomet. Chem. 694, 2380-2385.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Br2(C27H26P2)]

  • Mr = 966.17

  • Orthorhombic, P b c n

  • a = 19.610 (5) Å

  • b = 14.322 (4) Å

  • c = 19.958 (5) Å

  • V = 5605 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 13.44 mm−1

  • T = 98 K

  • 0.35 × 0.09 × 0.04 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.355, Tmax = 1

  • 33240 measured reflections

  • 5794 independent reflections

  • 5470 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.139

  • S = 1.23

  • 5794 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 2.34 e Å−3

  • Δρmin = −2.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—Br1 2.4128 (13)
Au1—P1 2.246 (3)
Au2—Br2 2.4170 (12)
Au2—P2 2.258 (3)
P1—Au1—Br1 171.73 (7)
P2—Au2—Br2 174.31 (8)

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The title compound (I) was prepared as a precursor material during studies into the biological activity of phosphinegold(I) thiolates (Gallenkamp et al., 2009). The molecular structure of (I), Fig. 1, features two linearly coordinated Au atoms defined by P and Br donor atoms, Table 1. The pairs of Au–Br and Au–P bond distances are equal within experimental error, Table 1. The central part of the molecule is approximately planar as quantified by the torsion angle Br1–Au1···Au2–Br2 of -169.91 (21) °. The propylene bridge and phosphorus atoms lie in this plane with the two benzene rings, one from each phosphorus atom, above and below the plane. The P–Au–Br chromophores are approximately orthogonal to each other. The deviations from the ideal linear geometries about the gold atoms are likely to arise from the formation of intermolecular Au···Au interactions. Each of the gold atoms lies external to but on different sides of the molecule to facilitate the formation of aurophilic, Au···Au, interactions [Au1···Au2i = 3.2575 (11) Å for i: 1/2 - x, -1/2 + y, z]. These interactions result in the formation of a supramolecular chain along the b axis, Fig. 2, and are likely responsible for the distortions from the ideal linear geometries for the gold atoms, Table 1.

Compound (I) is isomorphous with the chloro analogue (Cooper et al., 1984) for which the intermolecular Au···Au distance was 3.316 (9) Å. A second polymorph of the chloro derivative is known which adopts a closo structure with an intramolecular Au···Au interaction of 3.2368 (9) Å (Kaim et al., 2005).

Related literature top

For polymorphic structures of the chloro analogue of the title compound, see: Cooper et al. (1984); Kaim et al. (2005). For background to related studies in gold chemistry, see: Gallenkamp et al. (2009).

Experimental top

Crystals of (dppp)Au2Br2 were isolated from an attempted reaction of (dppp)Au2Br2 with a selenourea ligand in the presence of a base in CH22Cl2 solution (Gallenkamp et al., 2009).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 2.34 and -2.69 e Å-3, respectively, were located 1.13 Å and 0.95 Å from the Au1 atom.

Structure description top

The title compound (I) was prepared as a precursor material during studies into the biological activity of phosphinegold(I) thiolates (Gallenkamp et al., 2009). The molecular structure of (I), Fig. 1, features two linearly coordinated Au atoms defined by P and Br donor atoms, Table 1. The pairs of Au–Br and Au–P bond distances are equal within experimental error, Table 1. The central part of the molecule is approximately planar as quantified by the torsion angle Br1–Au1···Au2–Br2 of -169.91 (21) °. The propylene bridge and phosphorus atoms lie in this plane with the two benzene rings, one from each phosphorus atom, above and below the plane. The P–Au–Br chromophores are approximately orthogonal to each other. The deviations from the ideal linear geometries about the gold atoms are likely to arise from the formation of intermolecular Au···Au interactions. Each of the gold atoms lies external to but on different sides of the molecule to facilitate the formation of aurophilic, Au···Au, interactions [Au1···Au2i = 3.2575 (11) Å for i: 1/2 - x, -1/2 + y, z]. These interactions result in the formation of a supramolecular chain along the b axis, Fig. 2, and are likely responsible for the distortions from the ideal linear geometries for the gold atoms, Table 1.

Compound (I) is isomorphous with the chloro analogue (Cooper et al., 1984) for which the intermolecular Au···Au distance was 3.316 (9) Å. A second polymorph of the chloro derivative is known which adopts a closo structure with an intramolecular Au···Au interaction of 3.2368 (9) Å (Kaim et al., 2005).

For polymorphic structures of the chloro analogue of the title compound, see: Cooper et al. (1984); Kaim et al. (2005). For background to related studies in gold chemistry, see: Gallenkamp et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by Au···Au interactions (orange dashed lines). Color code: Au, orange; Br, olive; P, pink; C, grey; and H, green.
[µ-1,3-Bis(diphenylphosphino)propane- κ2P:P']bis[bromidogold(I)] top
Crystal data top
[Au2Br2(C27H26P2)]F(000) = 3568
Mr = 966.17Dx = 2.290 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2n 2abCell parameters from 32332 reflections
a = 19.610 (5) Åθ = 2.0–40.7°
b = 14.322 (4) ŵ = 13.44 mm1
c = 19.958 (5) ÅT = 98 K
V = 5605 (2) Å3Plate, light-brown
Z = 80.35 × 0.09 × 0.04 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5794 independent reflections
Radiation source: fine-focus sealed tube5470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2424
Tmin = 0.355, Tmax = 1k = 1717
33240 measured reflectionsl = 2520
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0548P)2 + 72.0449P]
where P = (Fo2 + 2Fc2)/3
5794 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 2.34 e Å3
0 restraintsΔρmin = 2.69 e Å3
Crystal data top
[Au2Br2(C27H26P2)]V = 5605 (2) Å3
Mr = 966.17Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 19.610 (5) ŵ = 13.44 mm1
b = 14.322 (4) ÅT = 98 K
c = 19.958 (5) Å0.35 × 0.09 × 0.04 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5794 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5470 reflections with I > 2σ(I)
Tmin = 0.355, Tmax = 1Rint = 0.073
33240 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0548P)2 + 72.0449P]
where P = (Fo2 + 2Fc2)/3
5794 reflectionsΔρmax = 2.34 e Å3
298 parametersΔρmin = 2.69 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.14604 (2)0.53723 (3)0.620369 (19)0.01793 (13)
Au20.21598 (2)0.98204 (3)0.538567 (18)0.01725 (13)
Br10.13248 (6)0.37156 (7)0.63780 (5)0.0240 (2)
Br20.15705 (6)1.05983 (8)0.62910 (5)0.0257 (3)
P10.14836 (14)0.69395 (18)0.61668 (12)0.0166 (5)
P20.26129 (14)0.90170 (19)0.45196 (12)0.0160 (5)
C10.2237 (6)0.7464 (7)0.5797 (5)0.018 (2)
H1A0.22100.81500.58530.021*
H1B0.26440.72430.60430.021*
C20.2331 (6)0.7243 (7)0.5047 (5)0.020 (2)
H2A0.24450.65740.49930.024*
H2B0.18980.73640.48070.024*
C30.2900 (6)0.7840 (7)0.4738 (5)0.017 (2)
H3A0.30720.75270.43290.021*
H3B0.32830.78860.50590.021*
C40.1402 (6)0.7438 (8)0.6997 (5)0.020 (2)
C50.0974 (6)0.6998 (8)0.7471 (5)0.025 (2)
H50.07740.64110.73710.030*
C60.0845 (6)0.7424 (9)0.8087 (5)0.030 (3)
H60.05600.71190.84040.036*
C70.1123 (6)0.8278 (8)0.8241 (5)0.028 (3)
H70.10170.85710.86550.034*
C80.1573 (7)0.8723 (9)0.7779 (6)0.029 (3)
H80.17820.93000.78920.035*
C90.1704 (6)0.8308 (7)0.7165 (5)0.022 (2)
H90.19980.86080.68540.026*
C100.0788 (6)0.7460 (8)0.5690 (5)0.023 (2)
C110.0562 (5)0.8379 (8)0.5832 (5)0.021 (2)
H110.07480.87170.61980.025*
C120.0060 (7)0.8779 (9)0.5424 (6)0.036 (3)
H120.00980.93920.55200.043*
C130.0212 (6)0.8300 (9)0.4881 (6)0.032 (3)
H130.05560.85780.46130.039*
C140.0028 (7)0.7409 (9)0.4736 (6)0.033 (3)
H140.01480.70860.43580.039*
C150.0514 (6)0.6983 (8)0.5129 (5)0.026 (2)
H150.06650.63700.50250.031*
C160.1996 (5)0.8807 (7)0.3852 (5)0.017 (2)
C170.1306 (6)0.9081 (9)0.3939 (6)0.028 (3)
H170.11670.94010.43330.033*
C180.0837 (7)0.8871 (9)0.3435 (6)0.032 (3)
H180.03770.90670.34820.038*
C190.1032 (7)0.8381 (9)0.2867 (5)0.033 (3)
H190.07040.82300.25340.039*
C200.1712 (7)0.8111 (9)0.2783 (5)0.028 (3)
H200.18460.77820.23920.034*
C210.2197 (6)0.8326 (9)0.3281 (5)0.026 (2)
H210.26590.81420.32260.032*
C220.3332 (6)0.9573 (8)0.4126 (5)0.021 (2)
C230.3253 (8)1.0161 (11)0.3567 (7)0.044 (4)
H230.28091.02680.33930.053*
C240.3804 (8)1.0586 (10)0.3266 (7)0.040 (3)
H240.37371.09670.28820.049*
C250.4445 (7)1.0462 (9)0.3514 (6)0.032 (3)
H250.48221.07580.33050.038*
C260.4542 (6)0.9906 (8)0.4069 (6)0.027 (3)
H260.49880.98370.42490.033*
C270.4003 (6)0.9448 (8)0.4369 (6)0.024 (2)
H270.40840.90480.47400.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0139 (2)0.0208 (2)0.0191 (2)0.00115 (14)0.00109 (14)0.00287 (14)
Au20.0146 (2)0.0192 (2)0.0179 (2)0.00048 (15)0.00127 (14)0.00027 (13)
Br10.0204 (6)0.0247 (5)0.0271 (5)0.0012 (4)0.0007 (4)0.0003 (4)
Br20.0236 (6)0.0273 (5)0.0261 (5)0.0012 (4)0.0050 (4)0.0038 (4)
P10.0129 (14)0.0184 (12)0.0186 (12)0.0024 (10)0.0020 (10)0.0024 (9)
P20.0102 (13)0.0218 (13)0.0160 (11)0.0023 (10)0.0021 (9)0.0014 (9)
C10.017 (6)0.014 (4)0.022 (5)0.000 (4)0.003 (4)0.002 (4)
C20.023 (6)0.026 (5)0.012 (4)0.000 (4)0.003 (4)0.001 (4)
C30.017 (6)0.019 (5)0.015 (4)0.003 (4)0.003 (4)0.005 (4)
C40.012 (6)0.033 (6)0.015 (4)0.001 (4)0.005 (4)0.009 (4)
C50.025 (7)0.029 (6)0.021 (5)0.003 (5)0.002 (5)0.008 (4)
C60.021 (7)0.048 (7)0.020 (5)0.004 (5)0.004 (4)0.010 (5)
C70.026 (7)0.037 (6)0.021 (5)0.011 (5)0.007 (5)0.000 (4)
C80.024 (7)0.035 (6)0.028 (5)0.004 (5)0.005 (5)0.001 (5)
C90.025 (6)0.026 (5)0.014 (4)0.005 (4)0.004 (4)0.002 (4)
C100.013 (6)0.028 (6)0.029 (5)0.007 (4)0.003 (4)0.015 (4)
C110.008 (5)0.034 (6)0.021 (5)0.000 (4)0.000 (4)0.005 (4)
C120.034 (8)0.040 (7)0.034 (6)0.010 (6)0.008 (5)0.022 (5)
C130.013 (6)0.051 (8)0.033 (6)0.006 (5)0.000 (5)0.016 (5)
C140.028 (8)0.044 (7)0.025 (5)0.019 (6)0.012 (5)0.014 (5)
C150.012 (6)0.038 (6)0.027 (5)0.003 (5)0.000 (4)0.002 (5)
C160.011 (5)0.027 (5)0.014 (4)0.001 (4)0.001 (4)0.005 (4)
C170.009 (6)0.043 (7)0.031 (6)0.004 (5)0.006 (4)0.008 (5)
C180.014 (6)0.048 (7)0.034 (6)0.000 (5)0.001 (5)0.002 (5)
C190.029 (7)0.044 (7)0.025 (5)0.005 (6)0.009 (5)0.001 (5)
C200.029 (7)0.041 (7)0.015 (5)0.000 (5)0.004 (5)0.006 (4)
C210.021 (7)0.040 (7)0.019 (5)0.003 (5)0.001 (4)0.005 (4)
C220.019 (6)0.029 (6)0.015 (5)0.003 (4)0.006 (4)0.002 (4)
C230.019 (8)0.067 (10)0.046 (8)0.004 (7)0.008 (6)0.032 (7)
C240.032 (8)0.048 (8)0.042 (7)0.009 (6)0.000 (6)0.024 (6)
C250.026 (7)0.040 (7)0.029 (6)0.008 (5)0.005 (5)0.003 (5)
C260.019 (7)0.032 (6)0.031 (6)0.004 (5)0.006 (5)0.001 (5)
C270.015 (6)0.025 (5)0.032 (6)0.004 (4)0.000 (5)0.007 (4)
Geometric parameters (Å, º) top
Au1—Br12.4128 (13)C10—C151.417 (16)
Au1—P12.246 (3)C11—C121.400 (16)
Au1—Au2i3.2574 (8)C11—H110.9500
Au2—Br22.4170 (12)C12—C131.389 (19)
Au2—P22.258 (3)C12—H120.9500
Au2—Au1ii3.2574 (8)C13—C141.391 (19)
P1—C41.811 (10)C13—H130.9500
P1—C11.815 (11)C14—C151.377 (17)
P1—C101.822 (11)C14—H140.9500
P2—C221.799 (12)C15—H150.9500
P2—C161.826 (10)C16—C211.388 (15)
P2—C31.829 (10)C16—C171.419 (16)
C1—C21.540 (13)C17—C181.395 (17)
C1—H1A0.9900C17—H170.9500
C1—H1B0.9900C18—C191.389 (17)
C2—C31.535 (14)C18—H180.9500
C2—H2A0.9900C19—C201.397 (19)
C2—H2B0.9900C19—H190.9500
C3—H3A0.9900C20—C211.410 (16)
C3—H3B0.9900C20—H200.9500
C4—C51.413 (14)C21—H210.9500
C4—C91.420 (15)C22—C231.406 (16)
C5—C61.395 (15)C22—C271.414 (16)
C5—H50.9500C23—C241.379 (19)
C6—C71.375 (18)C23—H230.9500
C6—H60.9500C24—C251.36 (2)
C7—C81.426 (17)C24—H240.9500
C7—H70.9500C25—C261.378 (17)
C8—C91.387 (15)C25—H250.9500
C8—H80.9500C26—C271.380 (16)
C9—H90.9500C26—H260.9500
C10—C111.417 (16)C27—H270.9500
P1—Au1—Br1171.73 (7)C11—C10—C15119.1 (10)
P1—Au1—Au2i102.08 (7)C11—C10—P1120.7 (8)
Br1—Au1—Au2i85.71 (3)C15—C10—P1120.0 (9)
P2—Au2—Br2174.31 (8)C12—C11—C10119.0 (11)
P2—Au2—Au1ii100.40 (7)C12—C11—H11120.5
Br2—Au2—Au1ii84.87 (4)C10—C11—H11120.5
C4—P1—C1106.3 (5)C13—C12—C11121.4 (12)
C4—P1—C10104.5 (5)C13—C12—H12119.3
C1—P1—C10103.1 (5)C11—C12—H12119.3
C4—P1—Au1111.2 (4)C14—C13—C12119.1 (11)
C1—P1—Au1116.3 (3)C14—C13—H13120.4
C10—P1—Au1114.3 (4)C12—C13—H13120.4
C22—P2—C16105.9 (5)C15—C14—C13121.4 (11)
C22—P2—C3105.7 (5)C15—C14—H14119.3
C16—P2—C3103.0 (5)C13—C14—H14119.3
C22—P2—Au2114.6 (4)C14—C15—C10120.0 (11)
C16—P2—Au2112.5 (4)C14—C15—H15120.0
C3—P2—Au2114.1 (3)C10—C15—H15120.0
C2—C1—P1114.1 (7)C21—C16—C17120.6 (10)
C2—C1—H1A108.7C21—C16—P2119.5 (8)
P1—C1—H1A108.7C17—C16—P2119.7 (8)
C2—C1—H1B108.7C18—C17—C16118.7 (11)
P1—C1—H1B108.7C18—C17—H17120.7
H1A—C1—H1B107.6C16—C17—H17120.7
C3—C2—C1111.3 (8)C19—C18—C17121.1 (12)
C3—C2—H2A109.4C19—C18—H18119.5
C1—C2—H2A109.4C17—C18—H18119.5
C3—C2—H2B109.4C18—C19—C20120.0 (11)
C1—C2—H2B109.4C18—C19—H19120.0
H2A—C2—H2B108.0C20—C19—H19120.0
C2—C3—P2112.7 (7)C19—C20—C21120.0 (10)
C2—C3—H3A109.1C19—C20—H20120.0
P2—C3—H3A109.1C21—C20—H20120.0
C2—C3—H3B109.1C16—C21—C20119.6 (11)
P2—C3—H3B109.1C16—C21—H21120.2
H3A—C3—H3B107.8C20—C21—H21120.2
C5—C4—C9118.7 (9)C23—C22—C27116.7 (11)
C5—C4—P1119.3 (9)C23—C22—P2121.7 (10)
C9—C4—P1121.7 (7)C27—C22—P2121.6 (8)
C6—C5—C4120.2 (11)C24—C23—C22121.6 (13)
C6—C5—H5119.9C24—C23—H23119.2
C4—C5—H5119.9C22—C23—H23119.2
C7—C6—C5120.9 (11)C25—C24—C23120.4 (12)
C7—C6—H6119.5C25—C24—H24119.8
C5—C6—H6119.5C23—C24—H24119.8
C6—C7—C8119.9 (10)C24—C25—C26119.8 (12)
C6—C7—H7120.0C24—C25—H25120.1
C8—C7—H7120.0C26—C25—H25120.1
C9—C8—C7119.6 (11)C25—C26—C27121.1 (12)
C9—C8—H8120.2C25—C26—H26119.5
C7—C8—H8120.2C27—C26—H26119.5
C8—C9—C4120.5 (10)C26—C27—C22120.3 (10)
C8—C9—H9119.7C26—C27—H27119.8
C4—C9—H9119.7C22—C27—H27119.8
Br1—Au1—P1—C433.0 (7)C1—P1—C10—C1595.1 (9)
Au2i—Au1—P1—C4127.3 (4)Au1—P1—C10—C1532.1 (10)
Br1—Au1—P1—C1154.9 (6)C15—C10—C11—C121.7 (16)
Au2i—Au1—P1—C15.3 (4)P1—C10—C11—C12175.5 (9)
Br1—Au1—P1—C1085.0 (6)C10—C11—C12—C130.8 (17)
Au2i—Au1—P1—C10114.7 (4)C11—C12—C13—C140.9 (18)
Br2—Au2—P2—C22155.8 (7)C12—C13—C14—C151.8 (18)
Au1ii—Au2—P2—C2246.6 (4)C13—C14—C15—C100.9 (18)
Br2—Au2—P2—C1634.8 (9)C11—C10—C15—C140.8 (16)
Au1ii—Au2—P2—C16167.6 (4)P1—C10—C15—C14174.7 (9)
Br2—Au2—P2—C382.1 (9)C22—P2—C16—C2153.7 (10)
Au1ii—Au2—P2—C375.5 (4)C3—P2—C16—C2157.1 (10)
C4—P1—C1—C2171.0 (7)Au2—P2—C16—C21179.6 (8)
C10—P1—C1—C261.4 (9)C22—P2—C16—C17130.5 (9)
Au1—P1—C1—C264.5 (8)C3—P2—C16—C17118.8 (9)
P1—C1—C2—C3170.0 (7)Au2—P2—C16—C174.6 (10)
C1—C2—C3—P281.0 (10)C21—C16—C17—C181.1 (17)
C22—P2—C3—C2176.9 (7)P2—C16—C17—C18176.8 (9)
C16—P2—C3—C265.9 (8)C16—C17—C18—C191.8 (18)
Au2—P2—C3—C256.3 (8)C17—C18—C19—C201.7 (19)
C1—P1—C4—C5163.6 (9)C18—C19—C20—C210.8 (19)
C10—P1—C4—C587.7 (9)C17—C16—C21—C200.2 (17)
Au1—P1—C4—C536.1 (10)P2—C16—C21—C20176.0 (9)
C1—P1—C4—C922.4 (11)C19—C20—C21—C160.1 (18)
C10—P1—C4—C986.2 (10)C16—P2—C22—C2331.6 (12)
Au1—P1—C4—C9150.0 (8)C3—P2—C22—C23140.5 (11)
C9—C4—C5—C61.1 (16)Au2—P2—C22—C2393.0 (11)
P1—C4—C5—C6172.9 (9)C16—P2—C22—C27149.1 (9)
C4—C5—C6—C70.6 (18)C3—P2—C22—C2740.2 (10)
C5—C6—C7—C82.5 (18)Au2—P2—C22—C2786.3 (9)
C6—C7—C8—C92.7 (18)C27—C22—C23—C241 (2)
C7—C8—C9—C40.9 (17)P2—C22—C23—C24179.9 (12)
C5—C4—C9—C81.0 (17)C22—C23—C24—C252 (2)
P1—C4—C9—C8173.0 (9)C23—C24—C25—C260 (2)
C4—P1—C10—C1132.3 (10)C24—C25—C26—C271.9 (19)
C1—P1—C10—C1178.7 (9)C25—C26—C27—C222.7 (18)
Au1—P1—C10—C11154.1 (7)C23—C22—C27—C261.3 (17)
C4—P1—C10—C15153.9 (9)P2—C22—C27—C26178.1 (9)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Au2Br2(C27H26P2)]
Mr966.17
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)98
a, b, c (Å)19.610 (5), 14.322 (4), 19.958 (5)
V3)5605 (2)
Z8
Radiation typeMo Kα
µ (mm1)13.44
Crystal size (mm)0.35 × 0.09 × 0.04
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.355, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
33240, 5794, 5470
Rint0.073
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.139, 1.23
No. of reflections5794
No. of parameters298
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0548P)2 + 72.0449P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.34, 2.69

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Au1—Br12.4128 (13)Au2—Br22.4170 (12)
Au1—P12.246 (3)Au2—P22.258 (3)
P1—Au1—Br1171.73 (7)P2—Au2—Br2174.31 (8)
 

Footnotes

Additional correspondence author, e-mail: fmohr@uni-wuppertal.de.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCooper, M. K., Mitchell, L. E., Hendrick, K., McPartlin, M. & Scott, A. (1984). Inorg. Chim. Acta, 84, L9–L10.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGallenkamp, D., Porsch, T., Molter, A., Tiekink, E. R. T. & Mohr, F. (2009). J. Organomet. Chem. 694, 2380–2385.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKaim, W., Dogana, A., Klein, A. & Záliš, S. (2005). Z. Anorg. Allg. Chem. 631, 1355–1358.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds