metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,1′-Bis(di­phenyl­phosphino)ferro­cene-κ2P:P′]bis­­[chloridogold(I)]–chloro­form–hexane (2/2/1)

aFachbereich C – Anorganische Chemie, Bergische Universität Wuppertal, 42119 Wuppertal, Germany, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 22 December 2009; accepted 12 January 2010; online 16 January 2010)

In the title mixed solvate, [Au2Fe(C17H14P)2Cl2]·CHCl3·0.5CH3(CH2)4CH3, the hexane solvent mol­ecule is disposed about an inversion centre. The Au atoms exist within nearly ideal linear coordination defined by P,Cl-donor sets, and when viewed down the P⋯P axis the Au atoms are gauche to each other. In the crystal structure, the chloro­form solvent mol­ecule is associated with the complex via a C—H⋯Cl contact, and the hexane solvent mol­ecules occupy voids defined by the remaining components of the structure.

Related literature

For three polymorphs of the unsolvated title complex, see: Crespo et al. (2000[Crespo, O., Gimeno, M. C., Jones, P. G. & Laguna, A. (2000). Acta Cryst. C56, 1433-1434.]); Constable et al. (2007[Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Shardlow, E. (2007). Acta Cryst. E63, m1697.]); Segapelo et al. (2008[Segapelo, T. V., Guzei, I. A. & Darkwa, J. (2008). J. Organomet. Chem. 693, 701-708.]). For solvated forms of the title complex, see: Hill et al. (1989[Hill, D. T., Girard, G. R., McCabe, F. L., Johnson, R. K., Stupik, P. D., Zhang, J. H., Reiff, W. M. & Eggleston, D. S. (1989). Inorg. Chem. 28, 3529-3533.]); Canales et al. (1997[Canales, F., Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (1997). Inorg. Chem. 36, 5206-5211.]). For a definition of a pseudo-polymorph, see: Nangia (2006[Nangia, A. (2006). Cryst. Growth Des. 6, 2-4.]). For background to related studies in gold chemistry, see: Gallenkamp et al. (2009[Gallenkamp, D., Porsch, T., Molter, A., Tiekink, E. R. T. & Mohr, F. (2009). J. Organomet. Chem. 694, 2380-2385.]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Fe(C17H14P)2Cl2]·CHCl3·0.5C6H14

  • Mr = 1181.64

  • Triclinic, [P \overline 1]

  • a = 11.631 (5) Å

  • b = 12.763 (5) Å

  • c = 14.530 (7) Å

  • α = 103.586 (7)°

  • β = 110.803 (9)°

  • γ = 92.802 (10)°

  • V = 1939.0 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.37 mm−1

  • T = 98 K

  • 0.22 × 0.19 × 0.04 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.222, Tmax = 1

  • 19988 measured reflections

  • 8010 independent reflections

  • 7541 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.08

  • 8010 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 2.53 e Å−3

  • Δρmin = −2.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—Cl1 2.3131 (17)
Au1—P1 2.2413 (17)
Au2—Cl2 2.2988 (17)
Au2—P2 2.2357 (17)
P1—Au1—Cl1 177.27 (5)
P2—Au2—Cl2 179.34 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C35—H35⋯Cl2i 1.00 2.72 3.634 (8) 153
Symmetry code: (i) x, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

In connection with on-going investigations of the biological activity of phosphinegold(I) thiolates (Gallenkamp et al., 2009), the title mixed solvate, (I), was isolated and characterized crystallographically. The asymmetric unit of (I) comprises a dinuclear (C34H28FeP2)(AuCl)2 molecule, Fig. 1, a chloroform molecule, and half an hexane molecule which is located about an inversion centre. Each gold atom exists within a linear geometry defined by phosphorus and chloride atoms, Table 1. Each of the pairs of Au–Cl and Au–P bond distances are equal within 5σ, and the deviations from the ideal linear geometry are minimal, Table 1. The relative disposition of the P–Au–Cl chromophores is best described in terms of the Au1–P1···P1–Au2 torsion angle of 79.5 (6) ° and so may be regarded as being gauche (see discussion below). In the crystal structure, the chloroform molecule forms a C–H···Cl interaction with the Cl2 atom, Table 2. The hexane molecules occupy voids defined by the remaining components of the structure, Fig. 2.

Unsolvated polymorphic forms of the title complex have been characterized previously, i.e. in monoclinic space groups P21/n (Crespo et al., 2000) and C2/c (Segapelo et al., 2008), and triclinic P1 (Constable et al., 2007). In each of these polymorphs, the iron atom is located on a centre of inversion so that, from symmetry, the Au–P···P–Au torsion angle is 180 °. Two pseudo-polymorphs (Nangia, 2006) of the title complex are also known. In the 1:2 dichloromethane solvate, the iron atom is again located on a centre of inversion (Canales et al., 1997). Finally, Hill et al. (1989) reported a chloroform solvate where the ratio of complex to chloroform was 3:2. One of the independent complex molecules was located about a centre of inversion. The second complex molecule adopted a gauche conformation with the Au–P···P–Au torsion angle being 117.78 (14) °.

Related literature top

For three polymorphs of the unsolvated title complex, see: Crespo et al. (2000); Constable et al. (2007); Segapelo et al. (2008). For solvated forms of the title complex, see: Hill et al. (1989); Canales et al. (1997). For a definition of a pseudo-polymorph, see: Nangia (2006). For background to related studies in gold chemistry, see: Gallenkamp et al. (2009).

Experimental top

Crystals of Au2Cl2(dppf) were adventitiously isolated by layering hexane onto a CDCl3 solution containing stoichiometric amounts of Au2Cl2(dppf) with 1,8-(Me3Sn2) naphthalene in an NMR tube.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 2.53 and -2.36 e Å-3, respectively, were located 1.50 Å and 0.84 Å from the Cl5 and Au2 atoms, respectively.

Structure description top

In connection with on-going investigations of the biological activity of phosphinegold(I) thiolates (Gallenkamp et al., 2009), the title mixed solvate, (I), was isolated and characterized crystallographically. The asymmetric unit of (I) comprises a dinuclear (C34H28FeP2)(AuCl)2 molecule, Fig. 1, a chloroform molecule, and half an hexane molecule which is located about an inversion centre. Each gold atom exists within a linear geometry defined by phosphorus and chloride atoms, Table 1. Each of the pairs of Au–Cl and Au–P bond distances are equal within 5σ, and the deviations from the ideal linear geometry are minimal, Table 1. The relative disposition of the P–Au–Cl chromophores is best described in terms of the Au1–P1···P1–Au2 torsion angle of 79.5 (6) ° and so may be regarded as being gauche (see discussion below). In the crystal structure, the chloroform molecule forms a C–H···Cl interaction with the Cl2 atom, Table 2. The hexane molecules occupy voids defined by the remaining components of the structure, Fig. 2.

Unsolvated polymorphic forms of the title complex have been characterized previously, i.e. in monoclinic space groups P21/n (Crespo et al., 2000) and C2/c (Segapelo et al., 2008), and triclinic P1 (Constable et al., 2007). In each of these polymorphs, the iron atom is located on a centre of inversion so that, from symmetry, the Au–P···P–Au torsion angle is 180 °. Two pseudo-polymorphs (Nangia, 2006) of the title complex are also known. In the 1:2 dichloromethane solvate, the iron atom is again located on a centre of inversion (Canales et al., 1997). Finally, Hill et al. (1989) reported a chloroform solvate where the ratio of complex to chloroform was 3:2. One of the independent complex molecules was located about a centre of inversion. The second complex molecule adopted a gauche conformation with the Au–P···P–Au torsion angle being 117.78 (14) °.

For three polymorphs of the unsolvated title complex, see: Crespo et al. (2000); Constable et al. (2007); Segapelo et al. (2008). For solvated forms of the title complex, see: Hill et al. (1989); Canales et al. (1997). For a definition of a pseudo-polymorph, see: Nangia (2006). For background to related studies in gold chemistry, see: Gallenkamp et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the complex in (I), showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing in (I). The C–H···Cl interactions are shown as blue dashed lines, and the solvent hexane molecules are represented in space filling mode. Color code: Au, orange; Fe, brown; Cl, cyan; P, pink; C, grey; and H, green.
[µ-1,1'-Bis(diphenylphosphino)ferrocene- κ2P:P]bis[chloridogold(I)]–chloroform–hexane (2/2/1) top
Crystal data top
[Au2Fe(C17H14P)2Cl2]·CHCl3·0.5C6H14Z = 2
Mr = 1181.64F(000) = 1126
Triclinic, P1Dx = 2.024 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 11.631 (5) ÅCell parameters from 7032 reflections
b = 12.763 (5) Åθ = 2.0–30.1°
c = 14.530 (7) ŵ = 8.37 mm1
α = 103.586 (7)°T = 98 K
β = 110.803 (9)°Block, orange
γ = 92.802 (10)°0.22 × 0.19 × 0.04 mm
V = 1939.0 (15) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
8010 independent reflections
Radiation source: fine-focus sealed tube7541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.222, Tmax = 1k = 1316
19988 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0508P)2 + 6.3295P]
where P = (Fo2 + 2Fc2)/3
8010 reflections(Δ/σ)max = 0.002
433 parametersΔρmax = 2.53 e Å3
0 restraintsΔρmin = 2.36 e Å3
Crystal data top
[Au2Fe(C17H14P)2Cl2]·CHCl3·0.5C6H14γ = 92.802 (10)°
Mr = 1181.64V = 1939.0 (15) Å3
Triclinic, P1Z = 2
a = 11.631 (5) ÅMo Kα radiation
b = 12.763 (5) ŵ = 8.37 mm1
c = 14.530 (7) ÅT = 98 K
α = 103.586 (7)°0.22 × 0.19 × 0.04 mm
β = 110.803 (9)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
8010 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
7541 reflections with I > 2σ(I)
Tmin = 0.222, Tmax = 1Rint = 0.041
19988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.08Δρmax = 2.53 e Å3
8010 reflectionsΔρmin = 2.36 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.581716 (18)0.161739 (17)0.103915 (15)0.01852 (8)
Au20.735621 (18)0.075680 (16)0.585129 (15)0.01820 (8)
Fe0.74224 (7)0.14693 (6)0.41137 (6)0.01708 (16)
Cl10.37269 (12)0.10792 (13)0.00408 (10)0.0270 (3)
Cl20.73374 (14)0.26065 (11)0.53407 (11)0.0265 (3)
Cl30.79521 (19)0.55203 (16)0.72594 (19)0.0530 (5)
Cl40.62630 (15)0.67474 (14)0.79754 (13)0.0349 (4)
Cl50.5292 (2)0.47710 (15)0.62931 (16)0.0477 (4)
P10.78213 (13)0.21388 (11)0.20723 (10)0.0179 (3)
P20.73597 (12)0.10415 (11)0.63297 (10)0.0168 (3)
C10.8941 (5)0.1834 (4)0.1473 (4)0.0187 (11)
C21.0085 (5)0.1529 (5)0.1977 (5)0.0255 (12)
H21.02770.14390.26440.031*
C31.0948 (6)0.1357 (6)0.1512 (5)0.0328 (14)
H31.17300.11650.18670.039*
C41.0667 (6)0.1466 (6)0.0532 (5)0.0314 (14)
H41.12400.13240.02030.038*
C50.9536 (6)0.1787 (6)0.0035 (5)0.0361 (15)
H50.93490.18800.06300.043*
C60.8673 (6)0.1974 (5)0.0497 (4)0.0283 (13)
H60.79060.21950.01500.034*
C70.8213 (6)0.3588 (4)0.2703 (4)0.0222 (12)
C80.7257 (6)0.4229 (5)0.2624 (5)0.0263 (13)
H80.64180.39020.22370.032*
C90.7524 (7)0.5335 (6)0.3104 (5)0.0355 (15)
H90.68720.57640.30630.043*
C100.8745 (7)0.5806 (5)0.3643 (5)0.0360 (16)
H100.89310.65690.39510.043*
C110.9705 (7)0.5189 (6)0.3743 (5)0.0354 (15)
H111.05390.55290.41350.042*
C120.9458 (6)0.4076 (5)0.3274 (5)0.0286 (13)
H121.01170.36510.33360.034*
C130.8234 (5)0.1463 (4)0.3073 (4)0.0191 (11)
C140.7668 (5)0.0387 (5)0.2938 (4)0.0216 (11)
H140.70260.00560.23370.026*
C150.8246 (6)0.0102 (5)0.3874 (4)0.0240 (12)
H150.80530.05690.40020.029*
C160.9153 (5)0.0984 (5)0.4582 (4)0.0267 (13)
H160.96670.10100.52640.032*
C170.9160 (5)0.1821 (5)0.4094 (4)0.0226 (12)
H170.96860.25030.43910.027*
C180.6783 (5)0.1609 (4)0.5259 (4)0.0167 (10)
C190.7099 (5)0.2673 (4)0.5177 (4)0.0204 (11)
H190.76940.32450.56960.024*
C200.6348 (5)0.2711 (5)0.4162 (4)0.0229 (12)
H200.63670.33190.38930.028*
C210.5572 (5)0.1694 (5)0.3625 (4)0.0232 (12)
H210.49860.15060.29400.028*
C220.5828 (5)0.1011 (5)0.4293 (4)0.0193 (11)
H220.54380.02850.41330.023*
C230.6329 (5)0.1383 (4)0.7019 (4)0.0188 (11)
C240.6470 (5)0.0969 (5)0.7854 (4)0.0223 (11)
H240.71150.05460.80660.027*
C250.5684 (6)0.1168 (5)0.8376 (4)0.0261 (12)
H250.57800.08730.89370.031*
C260.4740 (6)0.1807 (5)0.8078 (5)0.0261 (13)
H260.42170.19700.84510.031*
C270.4581 (6)0.2194 (5)0.7238 (5)0.0273 (13)
H270.39230.26030.70200.033*
C280.5369 (5)0.1997 (4)0.6704 (4)0.0209 (11)
H280.52560.22760.61310.025*
C290.8855 (5)0.1835 (5)0.7195 (4)0.0191 (11)
C300.8942 (6)0.2915 (5)0.7667 (5)0.0253 (12)
H300.82190.32610.75290.030*
C311.0095 (6)0.3513 (5)0.8356 (5)0.0306 (14)
H311.01580.42660.86740.037*
C321.1147 (6)0.2991 (6)0.8568 (5)0.0318 (14)
H321.19280.33930.90370.038*
C331.1069 (5)0.1903 (5)0.8108 (5)0.0280 (13)
H331.17890.15530.82690.034*
C340.9930 (5)0.1316 (5)0.7406 (4)0.0209 (11)
H340.98760.05700.70710.025*
C350.6456 (7)0.5917 (6)0.6900 (6)0.0385 (16)
H350.63850.63570.64010.046*
C360.5378 (6)0.4984 (6)0.9665 (5)0.0350 (15)
H36A0.56620.57390.96930.042*
H36B0.48380.46100.89470.042*
C370.6526 (7)0.4386 (6)0.9999 (5)0.0357 (15)
H37A0.70740.47711.07110.043*
H37B0.62420.36380.99880.043*
C380.7268 (7)0.4324 (6)0.9323 (6)0.0436 (18)
H38A0.75000.35930.91790.065*
H38B0.80210.48640.96730.065*
H38C0.67630.44750.86800.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01595 (12)0.02468 (13)0.01377 (12)0.00351 (9)0.00404 (9)0.00541 (9)
Au20.01883 (12)0.01858 (13)0.01681 (12)0.00345 (9)0.00594 (9)0.00520 (9)
Fe0.0152 (4)0.0221 (4)0.0148 (4)0.0046 (3)0.0054 (3)0.0068 (3)
Cl10.0172 (6)0.0406 (8)0.0188 (7)0.0039 (6)0.0032 (5)0.0058 (6)
Cl20.0301 (7)0.0217 (7)0.0253 (7)0.0048 (6)0.0073 (6)0.0066 (6)
Cl30.0501 (11)0.0430 (10)0.0916 (16)0.0231 (9)0.0479 (12)0.0288 (10)
Cl40.0350 (9)0.0389 (9)0.0388 (9)0.0144 (7)0.0194 (7)0.0147 (7)
Cl50.0600 (12)0.0370 (9)0.0527 (11)0.0106 (8)0.0284 (10)0.0124 (8)
P10.0172 (7)0.0220 (7)0.0137 (6)0.0022 (5)0.0053 (5)0.0044 (5)
P20.0155 (6)0.0196 (7)0.0145 (6)0.0028 (5)0.0044 (5)0.0052 (5)
C10.018 (3)0.017 (3)0.018 (3)0.001 (2)0.005 (2)0.003 (2)
C20.024 (3)0.034 (3)0.021 (3)0.008 (2)0.009 (2)0.010 (2)
C30.024 (3)0.043 (4)0.035 (4)0.007 (3)0.012 (3)0.016 (3)
C40.029 (3)0.048 (4)0.023 (3)0.011 (3)0.015 (3)0.011 (3)
C50.029 (3)0.060 (5)0.021 (3)0.005 (3)0.010 (3)0.013 (3)
C60.022 (3)0.045 (4)0.019 (3)0.008 (3)0.006 (2)0.013 (3)
C70.030 (3)0.018 (3)0.020 (3)0.003 (2)0.010 (2)0.005 (2)
C80.027 (3)0.024 (3)0.024 (3)0.005 (2)0.007 (3)0.003 (2)
C90.041 (4)0.031 (3)0.028 (3)0.009 (3)0.007 (3)0.005 (3)
C100.052 (4)0.022 (3)0.031 (4)0.001 (3)0.016 (3)0.002 (3)
C110.035 (4)0.041 (4)0.029 (3)0.004 (3)0.016 (3)0.003 (3)
C120.023 (3)0.033 (3)0.026 (3)0.002 (2)0.009 (3)0.002 (3)
C130.020 (3)0.022 (3)0.015 (3)0.004 (2)0.006 (2)0.005 (2)
C140.025 (3)0.025 (3)0.017 (3)0.008 (2)0.012 (2)0.004 (2)
C150.029 (3)0.025 (3)0.027 (3)0.012 (2)0.017 (3)0.011 (2)
C160.022 (3)0.046 (4)0.017 (3)0.017 (3)0.008 (2)0.014 (3)
C170.012 (3)0.038 (3)0.017 (3)0.006 (2)0.002 (2)0.009 (2)
C180.013 (2)0.024 (3)0.012 (2)0.006 (2)0.004 (2)0.004 (2)
C190.024 (3)0.016 (3)0.019 (3)0.005 (2)0.009 (2)0.002 (2)
C200.022 (3)0.024 (3)0.028 (3)0.008 (2)0.012 (2)0.011 (2)
C210.016 (3)0.037 (3)0.018 (3)0.011 (2)0.005 (2)0.010 (2)
C220.015 (3)0.021 (3)0.018 (3)0.000 (2)0.004 (2)0.001 (2)
C230.021 (3)0.017 (3)0.017 (3)0.000 (2)0.007 (2)0.002 (2)
C240.022 (3)0.027 (3)0.016 (3)0.002 (2)0.006 (2)0.004 (2)
C250.027 (3)0.030 (3)0.019 (3)0.001 (2)0.007 (2)0.007 (2)
C260.026 (3)0.026 (3)0.027 (3)0.001 (2)0.014 (3)0.002 (2)
C270.027 (3)0.027 (3)0.031 (3)0.011 (2)0.014 (3)0.009 (3)
C280.022 (3)0.018 (3)0.019 (3)0.001 (2)0.004 (2)0.003 (2)
C290.018 (3)0.028 (3)0.008 (2)0.001 (2)0.003 (2)0.004 (2)
C300.022 (3)0.027 (3)0.023 (3)0.006 (2)0.010 (2)0.002 (2)
C310.034 (3)0.023 (3)0.026 (3)0.005 (3)0.008 (3)0.003 (2)
C320.025 (3)0.042 (4)0.018 (3)0.001 (3)0.002 (3)0.001 (3)
C330.015 (3)0.037 (4)0.024 (3)0.001 (2)0.002 (2)0.002 (3)
C340.022 (3)0.025 (3)0.015 (3)0.006 (2)0.006 (2)0.004 (2)
C350.048 (4)0.037 (4)0.043 (4)0.018 (3)0.025 (4)0.020 (3)
C360.033 (4)0.043 (4)0.027 (3)0.002 (3)0.011 (3)0.005 (3)
C370.041 (4)0.033 (4)0.030 (3)0.003 (3)0.010 (3)0.006 (3)
C380.046 (4)0.038 (4)0.046 (4)0.009 (3)0.020 (4)0.006 (3)
Geometric parameters (Å, º) top
Au1—Cl12.3131 (17)C14—H140.9500
Au1—P12.2413 (17)C15—C161.417 (9)
Au2—Cl22.2988 (17)C15—H150.9500
Au2—P22.2357 (17)C16—C171.415 (8)
Fe—C182.026 (5)C16—H160.9500
Fe—C222.039 (5)C17—H170.9500
Fe—C142.045 (5)C18—C191.432 (8)
Fe—C132.046 (5)C18—C221.446 (7)
Fe—C152.049 (5)C19—C201.437 (8)
Fe—C192.059 (5)C19—H190.9500
Fe—C172.060 (6)C20—C211.420 (8)
Fe—C162.060 (6)C20—H200.9500
Fe—C202.069 (5)C21—C221.417 (8)
Fe—C212.071 (5)C21—H210.9500
Cl3—C351.767 (7)C22—H220.9500
Cl4—C351.764 (7)C23—C241.396 (8)
Cl5—C351.761 (8)C23—C281.399 (8)
P1—C131.795 (6)C24—C251.379 (8)
P1—C71.814 (6)C24—H240.9500
P1—C11.817 (5)C25—C261.404 (9)
P2—C181.798 (5)C25—H250.9500
P2—C291.819 (6)C26—C271.378 (9)
P2—C231.825 (5)C26—H260.9500
C1—C61.396 (8)C27—C281.393 (8)
C1—C21.397 (8)C27—H270.9500
C2—C31.396 (8)C28—H280.9500
C2—H20.9500C29—C301.369 (8)
C3—C41.386 (9)C29—C341.414 (8)
C3—H30.9500C30—C311.404 (9)
C4—C51.392 (9)C30—H300.9500
C4—H40.9500C31—C321.394 (9)
C5—C61.394 (9)C31—H310.9500
C5—H50.9500C32—C331.376 (9)
C6—H60.9500C32—H320.9500
C7—C81.401 (8)C33—C341.393 (8)
C7—C121.410 (8)C33—H330.9500
C8—C91.385 (9)C34—H340.9500
C8—H80.9500C35—H351.0000
C9—C101.377 (10)C36—C36i1.521 (13)
C9—H90.9500C36—C371.554 (9)
C10—C111.383 (10)C36—H36A0.9900
C10—H100.9500C36—H36B0.9900
C11—C121.391 (9)C37—C381.511 (10)
C11—H110.9500C37—H37A0.9900
C12—H120.9500C37—H37B0.9900
C13—C141.432 (8)C38—H38A0.9800
C13—C171.439 (8)C38—H38B0.9800
C14—C151.428 (8)C38—H38C0.9800
P1—Au1—Cl1177.27 (5)C16—C15—Fe70.3 (3)
P2—Au2—Cl2179.34 (5)C14—C15—Fe69.5 (3)
C18—Fe—C2241.7 (2)C16—C15—H15125.6
C18—Fe—C14144.2 (2)C14—C15—H15125.6
C22—Fe—C14112.3 (2)Fe—C15—H15126.3
C18—Fe—C13173.4 (2)C17—C16—C15108.0 (5)
C22—Fe—C13144.7 (2)C17—C16—Fe69.9 (3)
C14—Fe—C1341.0 (2)C15—C16—Fe69.4 (3)
C18—Fe—C15113.2 (2)C17—C16—H16126.0
C22—Fe—C15107.2 (2)C15—C16—H16126.0
C14—Fe—C1540.8 (2)Fe—C16—H16126.3
C13—Fe—C1568.5 (2)C16—C17—C13108.4 (5)
C18—Fe—C1941.0 (2)C16—C17—Fe69.9 (3)
C22—Fe—C1969.1 (2)C13—C17—Fe69.0 (3)
C14—Fe—C19173.1 (2)C16—C17—H17125.8
C13—Fe—C19134.4 (2)C13—C17—H17125.8
C15—Fe—C19145.9 (2)Fe—C17—H17126.9
C18—Fe—C17133.0 (2)C19—C18—C22107.6 (5)
C22—Fe—C17171.6 (2)C19—C18—P2129.7 (4)
C14—Fe—C1768.6 (2)C22—C18—P2122.6 (4)
C13—Fe—C1741.0 (2)C19—C18—Fe70.7 (3)
C15—Fe—C1767.8 (2)C22—C18—Fe69.6 (3)
C19—Fe—C17111.0 (2)P2—C18—Fe126.4 (3)
C18—Fe—C16108.3 (2)C18—C19—C20107.1 (5)
C22—Fe—C16131.8 (2)C18—C19—Fe68.2 (3)
C14—Fe—C1668.6 (2)C20—C19—Fe70.0 (3)
C13—Fe—C1668.6 (2)C18—C19—H19126.5
C15—Fe—C1640.3 (2)C20—C19—H19126.5
C19—Fe—C16115.9 (2)Fe—C19—H19126.8
C17—Fe—C1640.2 (2)C21—C20—C19109.1 (5)
C18—Fe—C2068.6 (2)C21—C20—Fe70.0 (3)
C22—Fe—C2067.8 (2)C19—C20—Fe69.3 (3)
C14—Fe—C20132.9 (2)C21—C20—H20125.5
C13—Fe—C20110.8 (2)C19—C20—H20125.5
C15—Fe—C20171.0 (2)Fe—C20—H20126.9
C19—Fe—C2040.7 (2)C22—C21—C20107.8 (5)
C17—Fe—C20118.1 (2)C22—C21—Fe68.6 (3)
C16—Fe—C20148.5 (3)C20—C21—Fe69.9 (3)
C18—Fe—C2169.0 (2)C22—C21—H21126.1
C22—Fe—C2140.3 (2)C20—C21—H21126.1
C14—Fe—C21107.8 (2)Fe—C21—H21127.0
C13—Fe—C21115.0 (2)C21—C22—C18108.4 (5)
C15—Fe—C21131.4 (3)C21—C22—Fe71.0 (3)
C19—Fe—C2168.6 (2)C18—C22—Fe68.7 (3)
C17—Fe—C21148.0 (2)C21—C22—H22125.8
C16—Fe—C21170.5 (3)C18—C22—H22125.8
C20—Fe—C2140.1 (2)Fe—C22—H22126.0
C13—P1—C7106.1 (3)C24—C23—C28119.5 (5)
C13—P1—C1104.4 (3)C24—C23—P2118.4 (4)
C7—P1—C1105.0 (3)C28—C23—P2122.1 (4)
C13—P1—Au1110.77 (19)C25—C24—C23120.7 (5)
C7—P1—Au1113.9 (2)C25—C24—H24119.7
C1—P1—Au1115.77 (19)C23—C24—H24119.7
C18—P2—C29107.8 (3)C24—C25—C26120.0 (6)
C18—P2—C23104.4 (2)C24—C25—H25120.0
C29—P2—C23104.2 (2)C26—C25—H25120.0
C18—P2—Au2112.56 (18)C27—C26—C25119.4 (5)
C29—P2—Au2115.27 (19)C27—C26—H26120.3
C23—P2—Au2111.73 (18)C25—C26—H26120.3
C6—C1—C2119.2 (5)C26—C27—C28121.1 (5)
C6—C1—P1118.4 (4)C26—C27—H27119.5
C2—C1—P1122.3 (4)C28—C27—H27119.5
C3—C2—C1120.6 (6)C27—C28—C23119.4 (5)
C3—C2—H2119.7C27—C28—H28120.3
C1—C2—H2119.7C23—C28—H28120.3
C4—C3—C2120.2 (6)C30—C29—C34119.9 (5)
C4—C3—H3119.9C30—C29—P2120.8 (4)
C2—C3—H3119.9C34—C29—P2119.3 (4)
C3—C4—C5119.2 (6)C29—C30—C31120.4 (6)
C3—C4—H4120.4C29—C30—H30119.8
C5—C4—H4120.4C31—C30—H30119.8
C4—C5—C6121.1 (6)C32—C31—C30119.3 (6)
C4—C5—H5119.4C32—C31—H31120.3
C6—C5—H5119.4C30—C31—H31120.3
C5—C6—C1119.7 (6)C33—C32—C31120.9 (6)
C5—C6—H6120.2C33—C32—H32119.6
C1—C6—H6120.2C31—C32—H32119.6
C8—C7—C12119.6 (5)C32—C33—C34119.8 (6)
C8—C7—P1119.1 (5)C32—C33—H33120.1
C12—C7—P1121.3 (5)C34—C33—H33120.1
C9—C8—C7120.6 (6)C33—C34—C29119.8 (5)
C9—C8—H8119.7C33—C34—H34120.1
C7—C8—H8119.7C29—C34—H34120.1
C10—C9—C8119.3 (6)Cl5—C35—Cl4111.4 (4)
C10—C9—H9120.4Cl5—C35—Cl3111.0 (4)
C8—C9—H9120.4Cl4—C35—Cl3110.2 (4)
C9—C10—C11121.3 (6)Cl5—C35—H35108.1
C9—C10—H10119.4Cl4—C35—H35108.1
C11—C10—H10119.4Cl3—C35—H35108.1
C10—C11—C12120.4 (6)C36i—C36—C37112.6 (7)
C10—C11—H11119.8C36i—C36—H36A109.1
C12—C11—H11119.8C37—C36—H36A109.1
C11—C12—C7118.8 (6)C36i—C36—H36B109.1
C11—C12—H12120.6C37—C36—H36B109.1
C7—C12—H12120.6H36A—C36—H36B107.8
C14—C13—C17107.5 (5)C38—C37—C36113.2 (6)
C14—C13—P1122.8 (4)C38—C37—H37A108.9
C17—C13—P1129.7 (4)C36—C37—H37A108.9
C14—C13—Fe69.5 (3)C38—C37—H37B108.9
C17—C13—Fe70.0 (3)C36—C37—H37B108.9
P1—C13—Fe127.4 (3)H37A—C37—H37B107.8
C15—C14—C13107.4 (5)C37—C38—H38A109.5
C15—C14—Fe69.7 (3)C37—C38—H38B109.5
C13—C14—Fe69.5 (3)H38A—C38—H38B109.5
C15—C14—H14126.3C37—C38—H38C109.5
C13—C14—H14126.3H38A—C38—H38C109.5
Fe—C14—H14126.0H38B—C38—H38C109.5
C16—C15—C14108.8 (5)
Cl1—Au1—P1—C1338.5 (11)C20—Fe—C17—C1390.0 (4)
Cl1—Au1—P1—C781.1 (11)C21—Fe—C17—C1351.5 (6)
Cl1—Au1—P1—C1157.1 (11)C29—P2—C18—C1921.3 (5)
Cl2—Au2—P2—C1816 (5)C23—P2—C18—C1989.1 (5)
Cl2—Au2—P2—C29141 (4)Au2—P2—C18—C19149.5 (4)
Cl2—Au2—P2—C23101 (4)C29—P2—C18—C22160.9 (4)
C13—P1—C1—C6162.1 (5)C23—P2—C18—C2288.7 (4)
C7—P1—C1—C686.4 (5)Au2—P2—C18—C2232.6 (5)
Au1—P1—C1—C640.1 (5)C29—P2—C18—Fe73.3 (4)
C13—P1—C1—C221.8 (5)C23—P2—C18—Fe176.4 (3)
C7—P1—C1—C289.7 (5)Au2—P2—C18—Fe55.0 (4)
Au1—P1—C1—C2143.8 (4)C22—Fe—C18—C19118.2 (4)
C6—C1—C2—C30.5 (9)C14—Fe—C18—C19172.7 (4)
P1—C1—C2—C3176.6 (5)C13—Fe—C18—C1947.8 (19)
C1—C2—C3—C41.3 (10)C15—Fe—C18—C19151.6 (3)
C2—C3—C4—C52.3 (11)C17—Fe—C18—C1971.1 (4)
C3—C4—C5—C61.6 (11)C16—Fe—C18—C19108.7 (4)
C4—C5—C6—C10.2 (11)C20—Fe—C18—C1937.9 (3)
C2—C1—C6—C51.3 (9)C21—Fe—C18—C1981.1 (3)
P1—C1—C6—C5177.5 (5)C14—Fe—C18—C2254.5 (5)
C13—P1—C7—C8113.5 (5)C13—Fe—C18—C22166.0 (18)
C1—P1—C7—C8136.3 (5)C15—Fe—C18—C2290.2 (4)
Au1—P1—C7—C88.6 (5)C19—Fe—C18—C22118.2 (4)
C13—P1—C7—C1266.1 (5)C17—Fe—C18—C22170.8 (3)
C1—P1—C7—C1244.1 (5)C16—Fe—C18—C22133.1 (3)
Au1—P1—C7—C12171.7 (4)C20—Fe—C18—C2280.3 (3)
C12—C7—C8—C90.3 (9)C21—Fe—C18—C2237.1 (3)
P1—C7—C8—C9179.4 (5)C22—Fe—C18—P2116.2 (5)
C7—C8—C9—C101.6 (10)C14—Fe—C18—P261.6 (5)
C8—C9—C10—C112.3 (10)C13—Fe—C18—P277.8 (19)
C9—C10—C11—C121.9 (11)C15—Fe—C18—P226.0 (4)
C10—C11—C12—C70.6 (10)C19—Fe—C18—P2125.6 (5)
C8—C7—C12—C110.2 (9)C17—Fe—C18—P254.6 (5)
P1—C7—C12—C11179.9 (5)C16—Fe—C18—P217.0 (4)
C7—P1—C13—C14155.6 (4)C20—Fe—C18—P2163.5 (4)
C1—P1—C13—C1493.8 (5)C21—Fe—C18—P2153.3 (4)
Au1—P1—C13—C1431.5 (5)C22—C18—C19—C200.6 (6)
C7—P1—C13—C1726.9 (6)P2—C18—C19—C20178.7 (4)
C1—P1—C13—C1783.7 (5)Fe—C18—C19—C2059.5 (4)
Au1—P1—C13—C17151.1 (4)C22—C18—C19—Fe60.1 (3)
C7—P1—C13—Fe67.4 (4)P2—C18—C19—Fe121.8 (4)
C1—P1—C13—Fe178.1 (3)C22—Fe—C19—C1838.9 (3)
Au1—P1—C13—Fe56.7 (4)C14—Fe—C19—C18141.9 (19)
C18—Fe—C13—C14144.5 (18)C13—Fe—C19—C18173.2 (3)
C22—Fe—C13—C1451.6 (5)C15—Fe—C19—C1851.1 (5)
C15—Fe—C13—C1438.1 (3)C17—Fe—C19—C18132.2 (3)
C19—Fe—C13—C14172.6 (3)C16—Fe—C19—C1888.5 (4)
C17—Fe—C13—C14118.5 (5)C20—Fe—C19—C18118.8 (5)
C16—Fe—C13—C1481.6 (4)C21—Fe—C19—C1882.3 (3)
C20—Fe—C13—C14132.2 (3)C18—Fe—C19—C20118.8 (5)
C21—Fe—C13—C1488.8 (4)C22—Fe—C19—C2079.9 (4)
C18—Fe—C13—C1726 (2)C14—Fe—C19—C2023 (2)
C22—Fe—C13—C17170.1 (4)C13—Fe—C19—C2068.0 (4)
C14—Fe—C13—C17118.5 (5)C15—Fe—C19—C20169.9 (4)
C15—Fe—C13—C1780.4 (4)C17—Fe—C19—C20109.0 (4)
C19—Fe—C13—C1768.9 (4)C16—Fe—C19—C20152.7 (3)
C16—Fe—C13—C1736.9 (4)C21—Fe—C19—C2036.5 (3)
C20—Fe—C13—C17109.3 (4)C18—C19—C20—C210.4 (6)
C21—Fe—C13—C17152.8 (3)Fe—C19—C20—C2158.8 (4)
C18—Fe—C13—P199.3 (18)C18—C19—C20—Fe58.4 (4)
C22—Fe—C13—P164.6 (6)C18—Fe—C20—C2182.5 (3)
C14—Fe—C13—P1116.2 (5)C22—Fe—C20—C2137.4 (3)
C15—Fe—C13—P1154.3 (4)C14—Fe—C20—C2163.0 (4)
C19—Fe—C13—P156.4 (5)C13—Fe—C20—C21104.5 (3)
C17—Fe—C13—P1125.3 (5)C15—Fe—C20—C2120.6 (16)
C16—Fe—C13—P1162.2 (4)C19—Fe—C20—C21120.7 (5)
C20—Fe—C13—P116.0 (4)C17—Fe—C20—C21149.1 (3)
C21—Fe—C13—P127.4 (5)C16—Fe—C20—C21172.8 (4)
C17—C13—C14—C150.3 (6)C18—Fe—C20—C1938.2 (3)
P1—C13—C14—C15178.2 (4)C22—Fe—C20—C1983.2 (4)
Fe—C13—C14—C1559.7 (4)C14—Fe—C20—C19176.3 (3)
C17—C13—C14—Fe60.0 (4)C13—Fe—C20—C19134.8 (3)
P1—C13—C14—Fe122.1 (4)C15—Fe—C20—C19141.2 (14)
C18—Fe—C14—C1555.0 (5)C17—Fe—C20—C1990.2 (4)
C22—Fe—C14—C1590.8 (4)C16—Fe—C20—C1952.1 (6)
C13—Fe—C14—C15118.5 (5)C21—Fe—C20—C19120.7 (5)
C19—Fe—C14—C15168.8 (18)C19—C20—C21—C220.0 (6)
C17—Fe—C14—C1580.3 (4)Fe—C20—C21—C2258.3 (4)
C16—Fe—C14—C1537.0 (4)C19—C20—C21—Fe58.3 (4)
C20—Fe—C14—C15170.7 (3)C18—Fe—C21—C2238.3 (3)
C21—Fe—C14—C15133.6 (4)C14—Fe—C21—C22103.8 (4)
C18—Fe—C14—C13173.5 (3)C13—Fe—C21—C22147.3 (3)
C22—Fe—C14—C13150.7 (3)C15—Fe—C21—C2264.7 (4)
C15—Fe—C14—C13118.5 (5)C19—Fe—C21—C2282.5 (3)
C19—Fe—C14—C1350 (2)C17—Fe—C21—C22178.2 (4)
C17—Fe—C14—C1338.3 (3)C16—Fe—C21—C2237.2 (15)
C16—Fe—C14—C1381.5 (4)C20—Fe—C21—C22119.5 (5)
C20—Fe—C14—C1370.8 (4)C18—Fe—C21—C2081.2 (3)
C21—Fe—C14—C13107.9 (3)C22—Fe—C21—C20119.5 (5)
C13—C14—C15—C160.2 (6)C14—Fe—C21—C20136.7 (3)
Fe—C14—C15—C1659.4 (4)C13—Fe—C21—C2093.1 (4)
C13—C14—C15—Fe59.6 (4)C15—Fe—C21—C20175.8 (3)
C18—Fe—C15—C1691.3 (4)C19—Fe—C21—C2037.1 (3)
C22—Fe—C15—C16135.5 (3)C17—Fe—C21—C2058.6 (6)
C14—Fe—C15—C16120.1 (5)C16—Fe—C21—C20156.8 (12)
C13—Fe—C15—C1681.8 (4)C20—C21—C22—C180.4 (6)
C19—Fe—C15—C1657.6 (5)Fe—C21—C22—C1858.7 (4)
C17—Fe—C15—C1637.4 (3)C20—C21—C22—Fe59.1 (4)
C20—Fe—C15—C16169.2 (13)C19—C18—C22—C210.6 (6)
C21—Fe—C15—C16173.2 (3)P2—C18—C22—C21178.9 (4)
C18—Fe—C15—C14148.6 (3)Fe—C18—C22—C2160.2 (4)
C22—Fe—C15—C14104.5 (4)C19—C18—C22—Fe60.8 (3)
C13—Fe—C15—C1438.3 (3)P2—C18—C22—Fe120.9 (4)
C19—Fe—C15—C14177.6 (4)C18—Fe—C22—C21119.5 (5)
C17—Fe—C15—C1482.6 (4)C14—Fe—C22—C2191.6 (4)
C16—Fe—C15—C14120.1 (5)C13—Fe—C22—C2157.8 (5)
C20—Fe—C15—C1449.2 (16)C15—Fe—C22—C21134.8 (3)
C21—Fe—C15—C1466.7 (4)C19—Fe—C22—C2181.2 (4)
C14—C15—C16—C170.6 (6)C17—Fe—C22—C21173.4 (15)
Fe—C15—C16—C1759.5 (4)C16—Fe—C22—C21172.3 (3)
C14—C15—C16—Fe58.9 (4)C20—Fe—C22—C2137.3 (3)
C18—Fe—C16—C17136.2 (3)C14—Fe—C22—C18149.0 (3)
C22—Fe—C16—C17176.8 (3)C13—Fe—C22—C18177.3 (4)
C14—Fe—C16—C1781.8 (4)C15—Fe—C22—C18105.8 (3)
C13—Fe—C16—C1737.6 (3)C19—Fe—C22—C1838.3 (3)
C15—Fe—C16—C17119.2 (5)C17—Fe—C22—C1853.9 (17)
C19—Fe—C16—C1792.5 (4)C16—Fe—C22—C1868.3 (4)
C20—Fe—C16—C1757.6 (6)C20—Fe—C22—C1882.2 (3)
C21—Fe—C16—C17151.5 (12)C21—Fe—C22—C18119.5 (5)
C18—Fe—C16—C15104.6 (3)C18—P2—C23—C24174.6 (4)
C22—Fe—C16—C1564.0 (4)C29—P2—C23—C2472.5 (5)
C14—Fe—C16—C1537.4 (3)Au2—P2—C23—C2452.6 (5)
C13—Fe—C16—C1581.6 (3)C18—P2—C23—C282.1 (5)
C19—Fe—C16—C15148.3 (3)C29—P2—C23—C28110.9 (5)
C17—Fe—C16—C15119.2 (5)Au2—P2—C23—C28124.0 (4)
C20—Fe—C16—C15176.8 (4)C28—C23—C24—C250.7 (8)
C21—Fe—C16—C1532.3 (15)P2—C23—C24—C25177.4 (4)
C15—C16—C17—C130.7 (6)C23—C24—C25—C261.0 (9)
Fe—C16—C17—C1358.4 (4)C24—C25—C26—C272.5 (9)
C15—C16—C17—Fe59.2 (4)C25—C26—C27—C282.4 (9)
C14—C13—C17—C160.6 (6)C26—C27—C28—C230.8 (9)
P1—C13—C17—C16178.4 (4)C24—C23—C28—C270.8 (8)
Fe—C13—C17—C1659.0 (4)P2—C23—C28—C27177.4 (4)
C14—C13—C17—Fe59.6 (4)C18—P2—C29—C3063.6 (5)
P1—C13—C17—Fe122.6 (5)C23—P2—C29—C3046.9 (5)
C18—Fe—C17—C1664.0 (5)Au2—P2—C29—C30169.7 (4)
C22—Fe—C17—C1616.7 (18)C18—P2—C29—C34118.7 (4)
C14—Fe—C17—C1681.7 (4)C23—P2—C29—C34130.8 (4)
C13—Fe—C17—C16120.0 (5)Au2—P2—C29—C348.0 (5)
C15—Fe—C17—C1637.6 (4)C34—C29—C30—C310.5 (9)
C19—Fe—C17—C16105.6 (4)P2—C29—C30—C31178.2 (5)
C20—Fe—C17—C16150.0 (4)C29—C30—C31—C321.2 (9)
C21—Fe—C17—C16171.4 (4)C30—C31—C32—C330.3 (10)
C18—Fe—C17—C13176.1 (3)C31—C32—C33—C341.2 (10)
C22—Fe—C17—C13136.6 (15)C32—C33—C34—C291.9 (9)
C14—Fe—C17—C1338.2 (3)C30—C29—C34—C331.1 (8)
C15—Fe—C17—C1382.4 (4)P2—C29—C34—C33176.6 (4)
C19—Fe—C17—C13134.4 (3)C36i—C36—C37—C38178.6 (7)
C16—Fe—C17—C13120.0 (5)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C35—H35···Cl2ii1.002.723.634 (8)153
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Au2Fe(C17H14P)2Cl2]·CHCl3·0.5C6H14
Mr1181.64
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)11.631 (5), 12.763 (5), 14.530 (7)
α, β, γ (°)103.586 (7), 110.803 (9), 92.802 (10)
V3)1939.0 (15)
Z2
Radiation typeMo Kα
µ (mm1)8.37
Crystal size (mm)0.22 × 0.19 × 0.04
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.222, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
19988, 8010, 7541
Rint0.041
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.08
No. of reflections8010
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.53, 2.36

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Au1—Cl12.3131 (17)Au2—Cl22.2988 (17)
Au1—P12.2413 (17)Au2—P22.2357 (17)
P1—Au1—Cl1177.27 (5)P2—Au2—Cl2179.34 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C35—H35···Cl2i1.002.723.634 (8)153
Symmetry code: (i) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: fmohr@uni-wuppertal.de.

Acknowledgements

The authors thank the German Research Foundation (DFG) for support of this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCanales, F., Gimeno, M. C., Jones, P. G., Laguna, A. & Sarroca, C. (1997). Inorg. Chem. 36, 5206–5211.  CSD CrossRef CAS Web of Science Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Shardlow, E. (2007). Acta Cryst. E63, m1697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCrespo, O., Gimeno, M. C., Jones, P. G. & Laguna, A. (2000). Acta Cryst. C56, 1433–1434.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGallenkamp, D., Porsch, T., Molter, A., Tiekink, E. R. T. & Mohr, F. (2009). J. Organomet. Chem. 694, 2380–2385.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHill, D. T., Girard, G. R., McCabe, F. L., Johnson, R. K., Stupik, P. D., Zhang, J. H., Reiff, W. M. & Eggleston, D. S. (1989). Inorg. Chem. 28, 3529–3533.  CSD CrossRef CAS Web of Science Google Scholar
First citationNangia, A. (2006). Cryst. Growth Des. 6, 2–4.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSegapelo, T. V., Guzei, I. A. & Darkwa, J. (2008). J. Organomet. Chem. 693, 701–708.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds