metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Oxonium (di­hydrogen 1-amino­ethane-1,1-diyldi­phospho­nato-κ2N,O)[hydrogen (1-amino-1-phosphono­ethyl)phospho­nato-κ2N,O]palladium(II) trihydrate

aInstitute of General and Inorganic Chemistry, National Academy of Science Ukraine, Prospekt Palladina 32/34, Kyiv 03680, Ukraine
*Correspondence e-mail: dudco_anatolij@ukr.net

(Received 24 December 2009; accepted 7 January 2010; online 16 January 2010)

The title compound, (H3O)[Pd(C2H7NO6P2)(C2H8NO6P2)]·3H2O, was synthesized by the reaction of [Pd(H2O)4](NO3)2 with 1-amino­ethane-1,1-diyldiphospho­nic acid in aqueous solution. The asymmetric unit contains one mol­ecule of the complex existing as an anion, an oxonium counter-ion and three solvent water mol­ecules. The PdII ion occupies a position on a pseudo-twofold axis, which is not realized crystallographically. The slightly distorted square-planar coordination environment of the PdII ion consists of the O atoms from two phospho­nic acid groups and two N atoms of the amino groups in cis positions. The crystal structure displays N—H⋯O and O—H⋯O hydrogen bonding, which creates a wide three-dimensional network.

Related literature

For general background and the medical use of organic diphospho­nic acids, see: Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]); Curic et al. (1996[Curic, M., Tusek-Bozic, L., Vikic-Topic, D., Scarcia, V., Furlani, A., Balzarini, J. & Clercq, E. (1996). J. Inorg. Biochem. 63, 125-142.]); Szabo et al. (2002[Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894-2903.]). For related structures, see: Shkol'nikova et al. (1991[Shkol'nikova, L. M., Porai-Koshits, M. A., Fundamenskii, V. S., Poznyak, A. L. & Kalugina, E. V. (1991). Koord. Khim. 17, 954-963]).

[Scheme 1]

Experimental

Crystal data
  • (H3O)[Pd(C2H7NO6P2)(C2H8NO6P2)]·3H2O

  • Mr = 586.53

  • Orthorhombic, P c a 21

  • a = 9.9412 (2) Å

  • b = 9.0941 (2) Å

  • c = 19.9004 (3) Å

  • V = 1799.12 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 100 K

  • 0.48 × 0.29 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.536, Tmax = 0.823

  • 53680 measured reflections

  • 5568 independent reflections

  • 5545 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.041

  • S = 1.09

  • 5568 reflections

  • 301 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: racemic twin (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2697 Friedel pairs

  • Flack parameter: 0.362 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O1i 0.83 (2) 2.28 (2) 3.0527 (16) 154 (2)
N1—H12N⋯O16 0.77 (2) 2.38 (2) 3.0647 (18) 149 (2)
N2—H21N⋯O7i 0.86 (2) 2.01 (2) 2.8245 (17) 159 (2)
N2—H22N⋯O10 0.80 (2) 2.53 (2) 2.9844 (17) 117.7 (19)
O2—H2O⋯O6ii 0.77 (2) 1.79 (2) 2.5582 (15) 174 (3)
O4—H4O⋯O11iii 0.73 (3) 1.94 (3) 2.6593 (16) 170 (3)
O13—H133⋯O5 1.06 (2) 1.40 (3) 2.4558 (16) 174 (2)
O8—H8O⋯O15 0.81 (2) 1.76 (2) 2.5607 (17) 173 (3)
O10—H10O⋯O16iv 0.83 (3) 1.80 (3) 2.6298 (17) 172 (3)
O12—H12O⋯O14 0.79 (2) 1.71 (2) 2.4608 (16) 159 (3)
O13—H131⋯O3v 0.80 (3) 1.79 (3) 2.5728 (16) 165 (2)
O13—H132⋯O9vi 0.89 (2) 1.62 (2) 2.5044 (16) 174 (2)
O14—H141⋯O3vii 0.79 (2) 1.96 (2) 2.7220 (16) 162 (2)
O14—H142⋯O11viii 0.80 (3) 1.90 (3) 2.6911 (17) 171 (3)
O15—H151⋯O4ix 0.82 (3) 2.18 (3) 2.9904 (18) 169 (3)
O15—H152⋯O6iv 0.79 (2) 1.97 (2) 2.7504 (17) 176 (3)
O16—H161⋯O14ix 0.76 (3) 2.19 (3) 2.8534 (16) 147 (3)
O16—H162⋯O8x 0.87 (3) 2.48 (3) 3.0109 (17) 120 (2)
O16—H162⋯O2 0.87 (3) 2.62 (3) 3.1809 (16) 123 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z]; (ii) [x-{\script{1\over 2}}, -y, z]; (iii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x+{\script{1\over 2}}, -y, z]; (vi) [-x+{\script{1\over 2}}, y-1, z-{\script{1\over 2}}]; (vii) [-x+1, -y+1, z+{\script{1\over 2}}]; (viii) [x+{\script{1\over 2}}, -y+2, z]; (ix) [x-{\script{1\over 2}}, -y+1, z]; (x) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

During the last decade, there has been a growing interest in the study of organic diphosphonic acids owing to their potentially very powerful chelating properties used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). Also in the last years, there has been a surge of interest in palladium complexes as a perspective antitumor preparation (Curic et al., 1996).

The title compound crystallized in non-centrosymmetric space group Pca21 with Flack parameter equal 0.362 (11), which indicate the presence of racemic twin in the structure (Flack, 1983). The asymmetric unit of title compound contains one formula unit, which exists as a complex anion and oxonium cation, which are bonding together via strong H-bond (Fig.1, Table 1). The Pd atom occupies a position on the pseudo twofold axis and shows slightly distorted square-planar coordination environment, which consists of O atoms from two phosphonic groups and two N atoms of amino group, located in cis position. The crystal structure displays N—H···O and O—H···O hydrogen bonding, which creates a three-dimensional network (Table 1, Fig.2). Hydrogen bonds often play a dominant role in crystal engineering (Matczak-Jon & Videnova-Adrabinska, 2005) because they combine the desirable attributes of specificity, strength and directionality.

Related literature top

For general background and the medical use of organic diphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005); Curic et al. (1996); Szabo et al. (2002). For related structures, see: Shkol'nikova et al. (1991).

Experimental top

Aqueous solution of AgNO3 (0,4076 g, 0,24 mmol) was added to the solution of PdCl2 (0,063 g, 0,6 mmol) in 12 ml of hydrochloric acid. The solution was stirred at 3–4 °C and protected from light for 30 min. The AgCl precipitated and was filtered off. The dark red solution turned yellow and than 1-aminoethane-1,1-diyldiphosphonic acid (0,2459 g, 0,12 mmol) was added in one portion. The solution was stirred for 1 h at 3–4 °C and left staying overnight at room temperature. The solvent was removed under reduced pressure leaving a pale yellow solid, which was washed twice with methanol and diethyl ether and dried under vacuum. Suitable single crystals of title compound were produced by slow evaporation of a water solution at room temperature. A pale yellow rectangular crystal was used for data collection.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined with constrained Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined using riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. Several restraints were used in the final refinement for improving the O—H distances O2—H2O, O8—H8O, O12—H12O, O14—H1 41, O15—H152 onto reasonable values.

Structure description top

During the last decade, there has been a growing interest in the study of organic diphosphonic acids owing to their potentially very powerful chelating properties used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). Also in the last years, there has been a surge of interest in palladium complexes as a perspective antitumor preparation (Curic et al., 1996).

The title compound crystallized in non-centrosymmetric space group Pca21 with Flack parameter equal 0.362 (11), which indicate the presence of racemic twin in the structure (Flack, 1983). The asymmetric unit of title compound contains one formula unit, which exists as a complex anion and oxonium cation, which are bonding together via strong H-bond (Fig.1, Table 1). The Pd atom occupies a position on the pseudo twofold axis and shows slightly distorted square-planar coordination environment, which consists of O atoms from two phosphonic groups and two N atoms of amino group, located in cis position. The crystal structure displays N—H···O and O—H···O hydrogen bonding, which creates a three-dimensional network (Table 1, Fig.2). Hydrogen bonds often play a dominant role in crystal engineering (Matczak-Jon & Videnova-Adrabinska, 2005) because they combine the desirable attributes of specificity, strength and directionality.

For general background and the medical use of organic diphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005); Curic et al. (1996); Szabo et al. (2002). For related structures, see: Shkol'nikova et al. (1991).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The title compound showing 50% probability displacement ellipsoids for the non-H atoms. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of title compound, projection down the b axis. Dashed lines indicate hydrogen bonds.
Oxonium (dihydrogen 1-aminoethane-1,1-diyldiphosphonato-κ2N,O)[hydrogen (1-amino-1-phosphonoethyl)phosphonato-κ2N,O]palladium(II) trihydrate top
Crystal data top
(H3O)[Pd(C2H7NO6P2)(C2H8NO6P2)]·3H2ODx = 2.165 Mg m3
Mr = 586.53Melting point: 542 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9199 reflections
a = 9.9412 (2) Åθ = 3.0–30.7°
b = 9.0941 (2) ŵ = 1.47 mm1
c = 19.9004 (3) ÅT = 100 K
V = 1799.12 (6) Å3Prism, yellow
Z = 40.48 × 0.29 × 0.14 mm
F(000) = 1184
Data collection top
Bruker APEXII CCD
diffractometer
5568 independent reflections
Radiation source: fine-focus sealed tube5545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.26 pixels mm-1θmax = 30.7°, θmin = 2.1°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.536, Tmax = 0.823l = 2828
53680 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.6821P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5568 reflectionsΔρmax = 0.80 e Å3
301 parametersΔρmin = 0.61 e Å3
6 restraintsAbsolute structure: racemic twin (Flack, 1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.362 (11)
Crystal data top
(H3O)[Pd(C2H7NO6P2)(C2H8NO6P2)]·3H2OV = 1799.12 (6) Å3
Mr = 586.53Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 9.9412 (2) ŵ = 1.47 mm1
b = 9.0941 (2) ÅT = 100 K
c = 19.9004 (3) Å0.48 × 0.29 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
5568 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5545 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.823Rint = 0.027
53680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041Δρmax = 0.80 e Å3
S = 1.09Δρmin = 0.61 e Å3
5568 reflectionsAbsolute structure: racemic twin (Flack, 1983), with how many Friedel pairs?
301 parametersAbsolute structure parameter: 0.362 (11)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.277544 (8)0.490311 (10)0.552262 (8)0.00533 (3)
P10.18198 (3)0.27187 (4)0.450244 (18)0.00635 (6)
P20.45406 (3)0.13836 (4)0.414989 (18)0.00657 (6)
P30.18727 (3)0.72538 (4)0.648914 (17)0.00648 (6)
P40.46193 (3)0.80633 (4)0.704329 (19)0.00694 (6)
C10.36318 (13)0.30710 (15)0.43864 (7)0.0064 (2)
C20.37971 (15)0.42927 (16)0.38612 (7)0.0101 (2)
H2A0.32470.51420.39900.015*
H2B0.35060.39300.34210.015*
H2C0.47440.45870.38380.015*
C30.35636 (14)0.65907 (15)0.67191 (7)0.0068 (2)
C40.34278 (15)0.53574 (17)0.72415 (7)0.0107 (2)
H4A0.27570.46420.70880.016*
H4B0.31420.57770.76720.016*
H4C0.42980.48660.72980.016*
N10.41461 (12)0.36316 (14)0.50470 (6)0.0071 (2)
H11N0.488 (2)0.403 (3)0.4966 (12)0.009*
H12N0.429 (2)0.295 (3)0.5263 (11)0.009*
N20.41624 (12)0.59683 (14)0.60867 (6)0.0071 (2)
H21N0.487 (2)0.545 (3)0.6173 (12)0.009*
H22N0.447 (2)0.661 (3)0.5861 (11)0.009*
O10.13407 (10)0.40368 (12)0.49205 (5)0.00857 (18)
O20.17592 (11)0.13034 (12)0.49408 (6)0.0109 (2)
H2O0.121 (2)0.072 (2)0.4877 (12)0.016*
O30.11271 (12)0.25861 (13)0.38397 (6)0.0100 (2)
O40.59246 (11)0.19312 (13)0.38559 (6)0.0108 (2)
H4O0.595 (2)0.180 (3)0.3495 (13)0.016*
O50.37046 (11)0.06419 (12)0.36199 (5)0.01071 (19)
H1330.379 (2)0.084 (3)0.3421 (12)0.016*
O60.48312 (10)0.05260 (13)0.47795 (6)0.00955 (19)
O70.13394 (10)0.60237 (12)0.60317 (5)0.00854 (19)
O80.20867 (11)0.86805 (13)0.60679 (6)0.0109 (2)
H8O0.238 (2)0.846 (3)0.5705 (9)0.016*
O90.10146 (11)0.75447 (13)0.70822 (6)0.0119 (2)
O100.50545 (12)0.90097 (12)0.64312 (6)0.01182 (19)
H10O0.470 (3)0.982 (3)0.6345 (16)0.018*
O110.38539 (11)0.88643 (13)0.75747 (5)0.01041 (19)
O120.58885 (11)0.72475 (14)0.72731 (6)0.0118 (2)
H12O0.649 (2)0.778 (3)0.7377 (12)0.018*
O130.38258 (11)0.19735 (12)0.33187 (5)0.00984 (19)
H1310.447 (3)0.227 (3)0.3520 (13)0.015*
H1320.382 (2)0.212 (3)0.2878 (12)0.015*
O140.80746 (11)0.83022 (13)0.75959 (5)0.01002 (18)
H1410.813 (2)0.801 (2)0.7968 (9)0.015*
H1420.822 (3)0.917 (3)0.7586 (12)0.015*
O150.30815 (12)0.81984 (13)0.49016 (6)0.0136 (2)
H1510.257 (3)0.820 (3)0.4577 (13)0.020*
H1520.356 (2)0.888 (2)0.4850 (13)0.020*
O160.37176 (13)0.14546 (13)0.62029 (6)0.0138 (2)
H1610.376 (3)0.179 (3)0.6551 (13)0.021*
H1620.287 (3)0.126 (3)0.6135 (13)0.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.00476 (4)0.00531 (4)0.00592 (4)0.00017 (3)0.00038 (4)0.00138 (4)
P10.00546 (15)0.00627 (15)0.00734 (15)0.00002 (11)0.00077 (11)0.00155 (12)
P20.00633 (13)0.00681 (15)0.00657 (14)0.00094 (11)0.00007 (11)0.00088 (12)
P30.00557 (14)0.00721 (15)0.00667 (15)0.00051 (11)0.00001 (11)0.00196 (12)
P40.00715 (14)0.00637 (15)0.00732 (14)0.00025 (11)0.00118 (11)0.00102 (12)
C10.0067 (5)0.0059 (5)0.0066 (5)0.0002 (4)0.0007 (4)0.0005 (4)
C20.0112 (6)0.0077 (6)0.0114 (6)0.0000 (5)0.0000 (5)0.0017 (5)
C30.0083 (5)0.0057 (5)0.0064 (5)0.0000 (4)0.0004 (4)0.0008 (4)
C40.0113 (6)0.0111 (6)0.0098 (6)0.0008 (5)0.0014 (5)0.0030 (5)
N10.0056 (5)0.0080 (5)0.0078 (5)0.0005 (4)0.0012 (4)0.0016 (4)
N20.0063 (5)0.0073 (5)0.0077 (5)0.0007 (4)0.0001 (4)0.0017 (4)
O10.0051 (4)0.0104 (5)0.0102 (4)0.0008 (3)0.0014 (3)0.0049 (4)
O20.0090 (4)0.0095 (5)0.0141 (5)0.0031 (4)0.0020 (4)0.0026 (4)
O30.0075 (4)0.0135 (5)0.0092 (5)0.0005 (4)0.0027 (3)0.0034 (4)
O40.0082 (4)0.0152 (5)0.0089 (5)0.0004 (4)0.0031 (3)0.0006 (4)
O50.0125 (5)0.0090 (5)0.0106 (5)0.0019 (4)0.0032 (4)0.0029 (4)
O60.0101 (5)0.0085 (5)0.0101 (5)0.0021 (4)0.0002 (3)0.0009 (4)
O70.0063 (4)0.0100 (5)0.0093 (5)0.0008 (3)0.0003 (3)0.0042 (4)
O80.0127 (5)0.0082 (5)0.0119 (5)0.0009 (3)0.0006 (4)0.0011 (4)
O90.0088 (4)0.0175 (5)0.0094 (5)0.0016 (4)0.0021 (4)0.0047 (4)
O100.0136 (5)0.0086 (5)0.0133 (5)0.0024 (4)0.0032 (4)0.0017 (4)
O110.0127 (5)0.0089 (5)0.0096 (4)0.0021 (4)0.0006 (4)0.0024 (4)
O120.0089 (5)0.0097 (5)0.0167 (5)0.0004 (4)0.0051 (4)0.0018 (4)
O130.0093 (4)0.0108 (5)0.0094 (5)0.0009 (4)0.0020 (4)0.0014 (4)
O140.0100 (4)0.0101 (5)0.0099 (5)0.0014 (4)0.0005 (4)0.0007 (4)
O150.0148 (5)0.0129 (5)0.0131 (5)0.0017 (4)0.0014 (4)0.0033 (4)
O160.0180 (5)0.0133 (5)0.0101 (5)0.0017 (4)0.0008 (4)0.0002 (4)
Geometric parameters (Å, º) top
Pd1—N12.0223 (12)C3—N21.5028 (18)
Pd1—O12.0226 (10)C3—C41.535 (2)
Pd1—N22.0247 (12)C4—H4A0.9800
Pd1—O72.0256 (10)C4—H4B0.9800
P1—O31.4926 (12)C4—H4C0.9800
P1—O11.5349 (11)N1—H11N0.83 (2)
P1—O21.5560 (12)N1—H12N0.77 (2)
P1—C11.8442 (14)N2—H21N0.86 (2)
P2—O51.5027 (11)N2—H22N0.80 (2)
P2—O61.5039 (12)O2—H2O0.774 (16)
P2—O41.5759 (11)O4—H4O0.73 (3)
P2—C11.8418 (14)O5—H1331.40 (3)
P3—O91.4801 (12)O8—H8O0.805 (16)
P3—O71.5366 (11)O10—H10O0.83 (3)
P3—O81.5593 (12)O12—H12O0.791 (17)
P3—C31.8435 (14)O13—H1331.06 (2)
P4—O111.4926 (11)O13—H1310.80 (3)
P4—O121.5335 (12)O13—H1320.89 (2)
P4—O101.5530 (12)O14—H1410.788 (16)
P4—C31.8196 (14)O14—H1420.80 (3)
C1—N11.4998 (18)O15—H1510.82 (3)
C1—C21.5342 (19)O15—H1520.785 (16)
C2—H2A0.9800O16—H1610.76 (3)
C2—H2B0.9800O16—H1620.87 (3)
C2—H2C0.9800
N1—Pd1—O188.58 (5)H2A—C2—H2C109.5
N1—Pd1—N294.26 (5)H2B—C2—H2C109.5
O1—Pd1—N2174.28 (5)N2—C3—C4109.07 (11)
N1—Pd1—O7175.31 (5)N2—C3—P4110.22 (9)
O1—Pd1—O789.73 (4)C4—C3—P4110.38 (9)
N2—Pd1—O787.82 (5)N2—C3—P3106.05 (9)
O3—P1—O1113.50 (6)C4—C3—P3109.08 (10)
O3—P1—O2114.25 (7)P4—C3—P3111.91 (7)
O1—P1—O2109.28 (6)C3—C4—H4A109.5
O3—P1—C1110.74 (6)C3—C4—H4B109.5
O1—P1—C1103.61 (6)H4A—C4—H4B109.5
O2—P1—C1104.58 (6)C3—C4—H4C109.5
O5—P2—O6117.27 (7)H4A—C4—H4C109.5
O5—P2—O4111.35 (7)H4B—C4—H4C109.5
O6—P2—O4107.79 (6)C1—N1—Pd1112.02 (8)
O5—P2—C1106.38 (6)C1—N1—H11N106.1 (16)
O6—P2—C1108.26 (6)Pd1—N1—H11N115.9 (16)
O4—P2—C1105.06 (6)C1—N1—H12N106.4 (17)
O9—P3—O7113.81 (6)Pd1—N1—H12N108.9 (17)
O9—P3—O8111.01 (7)H11N—N1—H12N107 (2)
O7—P3—O8109.53 (6)C3—N2—Pd1112.01 (8)
O9—P3—C3112.71 (6)C3—N2—H21N111.1 (16)
O7—P3—C3102.92 (6)Pd1—N2—H21N113.9 (16)
O8—P3—C3106.34 (6)C3—N2—H22N110.5 (16)
O11—P4—O12116.37 (6)Pd1—N2—H22N107.3 (16)
O11—P4—O10115.30 (7)H21N—N2—H22N101 (2)
O12—P4—O10105.83 (7)P1—O1—Pd1113.98 (6)
O11—P4—C3108.45 (7)P1—O2—H2O120.4 (18)
O12—P4—C3102.96 (7)P2—O4—H4O110.0 (19)
O10—P4—C3106.88 (6)P2—O5—H133126.4 (10)
N1—C1—C2108.33 (11)P3—O7—Pd1114.80 (6)
N1—C1—P2109.88 (9)P3—O8—H8O108.8 (17)
C2—C1—P2112.13 (9)P4—O10—H10O122 (2)
N1—C1—P1106.40 (9)P4—O12—H12O113.7 (19)
C2—C1—P1108.40 (9)H133—O13—H131105 (2)
P2—C1—P1111.49 (7)H133—O13—H132110 (2)
C1—C2—H2A109.5H131—O13—H132116 (2)
C1—C2—H2B109.5H141—O14—H142110 (2)
H2A—C2—H2B109.5H151—O15—H152106 (3)
C1—C2—H2C109.5H161—O16—H162106 (3)
O5—P2—C1—N1162.48 (9)O7—P3—C3—N242.06 (10)
O6—P2—C1—N135.62 (11)O8—P3—C3—N273.07 (10)
O4—P2—C1—N179.34 (10)O9—P3—C3—C447.74 (11)
O5—P2—C1—C276.99 (11)O7—P3—C3—C475.28 (10)
O6—P2—C1—C2156.15 (10)O8—P3—C3—C4169.59 (9)
O4—P2—C1—C241.19 (11)O9—P3—C3—P474.69 (9)
O5—P2—C1—P144.78 (9)O7—P3—C3—P4162.28 (7)
O6—P2—C1—P182.09 (8)O8—P3—C3—P447.16 (9)
O4—P2—C1—P1162.95 (7)C2—C1—N1—Pd180.78 (11)
O3—P1—C1—N1163.27 (9)P2—C1—N1—Pd1156.42 (6)
O1—P1—C1—N141.23 (10)P1—C1—N1—Pd135.59 (11)
O2—P1—C1—N173.22 (10)O1—Pd1—N1—C117.73 (10)
O3—P1—C1—C246.95 (11)N2—Pd1—N1—C1157.30 (10)
O1—P1—C1—C275.08 (10)C4—C3—N2—Pd179.72 (12)
O2—P1—C1—C2170.47 (9)P4—C3—N2—Pd1158.94 (6)
O3—P1—C1—P276.95 (9)P3—C3—N2—Pd137.63 (10)
O1—P1—C1—P2161.02 (7)N1—Pd1—N2—C3156.26 (9)
O2—P1—C1—P246.57 (8)O7—Pd1—N2—C319.52 (9)
O11—P4—C3—N2167.68 (9)O3—P1—O1—Pd1148.99 (7)
O12—P4—C3—N268.45 (10)O2—P1—O1—Pd182.21 (7)
O10—P4—C3—N242.79 (11)C1—P1—O1—Pd128.83 (8)
O11—P4—C3—C471.76 (11)N1—Pd1—O1—P110.10 (7)
O12—P4—C3—C452.11 (11)O7—Pd1—O1—P1165.52 (7)
O10—P4—C3—C4163.35 (10)O9—P3—O7—Pd1150.89 (7)
O11—P4—C3—P349.93 (9)O8—P3—O7—Pd184.19 (7)
O12—P4—C3—P3173.79 (7)C3—P3—O7—Pd128.61 (8)
O10—P4—C3—P374.96 (9)O1—Pd1—O7—P3165.75 (7)
O9—P3—C3—N2165.08 (9)N2—Pd1—O7—P39.09 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O1i0.83 (2)2.28 (2)3.0527 (16)154 (2)
N1—H12N···O160.77 (2)2.38 (2)3.0647 (18)149 (2)
N2—H21N···O7i0.86 (2)2.01 (2)2.8245 (17)159 (2)
N2—H22N···O100.80 (2)2.53 (2)2.9844 (17)117.7 (19)
O2—H2O···O6ii0.77 (2)1.79 (2)2.5582 (15)174 (3)
O4—H4O···O11iii0.73 (3)1.94 (3)2.6593 (16)170 (3)
O13—H133···O51.06 (2)1.40 (3)2.4558 (16)174 (2)
O8—H8O···O150.81 (2)1.76 (2)2.5607 (17)173 (3)
O10—H10O···O16iv0.83 (3)1.80 (3)2.6298 (17)172 (3)
O12—H12O···O140.79 (2)1.71 (2)2.4608 (16)159 (3)
O13—H131···O3v0.80 (3)1.79 (3)2.5728 (16)165 (2)
O13—H132···O9vi0.89 (2)1.62 (2)2.5044 (16)174 (2)
O14—H141···O3vii0.79 (2)1.96 (2)2.7220 (16)162 (2)
O14—H142···O11viii0.80 (3)1.90 (3)2.6911 (17)171 (3)
O15—H151···O4ix0.82 (3)2.18 (3)2.9904 (18)169 (3)
O15—H152···O6iv0.79 (2)1.97 (2)2.7504 (17)176 (3)
O16—H161···O14ix0.76 (3)2.19 (3)2.8534 (16)147 (3)
O16—H162···O8x0.87 (3)2.48 (3)3.0109 (17)120 (2)
O16—H162···O20.87 (3)2.62 (3)3.1809 (16)123 (2)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y, z; (iii) x+1, y+1, z1/2; (iv) x, y+1, z; (v) x+1/2, y, z; (vi) x+1/2, y1, z1/2; (vii) x+1, y+1, z+1/2; (viii) x+1/2, y+2, z; (ix) x1/2, y+1, z; (x) x, y1, z.

Experimental details

Crystal data
Chemical formula(H3O)[Pd(C2H7NO6P2)(C2H8NO6P2)]·3H2O
Mr586.53
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)9.9412 (2), 9.0941 (2), 19.9004 (3)
V3)1799.12 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.48 × 0.29 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.536, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
53680, 5568, 5545
Rint0.027
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.041, 1.09
No. of reflections5568
No. of parameters301
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.61
Absolute structureRacemic twin (Flack, 1983), with how many Friedel pairs?
Absolute structure parameter0.362 (11)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O1i0.83 (2)2.28 (2)3.0527 (16)154 (2)
N1—H12N···O160.77 (2)2.38 (2)3.0647 (18)149 (2)
N2—H21N···O7i0.86 (2)2.01 (2)2.8245 (17)159 (2)
N2—H22N···O100.80 (2)2.53 (2)2.9844 (17)117.7 (19)
O2—H2O···O6ii0.774 (16)1.787 (17)2.5582 (15)174 (3)
O4—H4O···O11iii0.73 (3)1.94 (3)2.6593 (16)170 (3)
O13—H133···O51.06 (2)1.40 (3)2.4558 (16)174 (2)
O8—H8O···O150.805 (16)1.760 (16)2.5607 (17)173 (3)
O10—H10O···O16iv0.83 (3)1.80 (3)2.6298 (17)172 (3)
O12—H12O···O140.791 (17)1.707 (18)2.4608 (16)159 (3)
O13—H131···O3v0.80 (3)1.79 (3)2.5728 (16)165 (2)
O13—H132···O9vi0.89 (2)1.62 (2)2.5044 (16)174 (2)
O14—H141···O3vii0.788 (16)1.961 (17)2.7220 (16)162 (2)
O14—H142···O11viii0.80 (3)1.90 (3)2.6911 (17)171 (3)
O15—H151···O4ix0.82 (3)2.18 (3)2.9904 (18)169 (3)
O15—H152···O6iv0.785 (16)1.967 (17)2.7504 (17)176 (3)
O16—H161···O14ix0.76 (3)2.19 (3)2.8534 (16)147 (3)
O16—H162···O8x0.87 (3)2.48 (3)3.0109 (17)120 (2)
O16—H162···O20.87 (3)2.62 (3)3.1809 (16)123 (2)
Symmetry codes: (i) x+1/2, y+1, z; (ii) x1/2, y, z; (iii) x+1, y+1, z1/2; (iv) x, y+1, z; (v) x+1/2, y, z; (vi) x+1/2, y1, z1/2; (vii) x+1, y+1, z+1/2; (viii) x+1/2, y+2, z; (ix) x1/2, y+1, z; (x) x, y1, z.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCuric, M., Tusek-Bozic, L., Vikic-Topic, D., Scarcia, V., Furlani, A., Balzarini, J. & Clercq, E. (1996). J. Inorg. Biochem. 63, 125–142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShkol'nikova, L. M., Porai-Koshits, M. A., Fundamenskii, V. S., Poznyak, A. L. & Kalugina, E. V. (1991). Koord. Khim. 17, 954–963  CAS Google Scholar
First citationSzabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894–2903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds